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Abstract. We reconsider the Generalized Kadanoff–Baym Ansatz
(GKBA) approximation for non-equilibrium Green’s functions and
extend it to self-consistently define an equilibrium correlated (within
GKBA) state in closed systems. The advantage of the proposed pre-
scription is to avoid the preparation of the initial equilibrium correlated
state via adiabatic switching-on of the correlations. A simple model
system, namely a Hubbard-dimer, is used to illustrate aspects of the
computational implementation and performance of the new scheme.

1 Introduction

The description of time-dependent processes in non-equilibrium quantum systems can
be formulated within the Nonequilibrium Green’s function (NEGF) formalism, i.e.
in terms of contour Green’s function G(z, z′), where z and z′ are generalized times
running over Martin–Schwinger–Keldysh contour γ [1–6]. The Green’s function can
be propagated from its initial equilibrium value (the initial equilibrium state) accord-
ing to the Kadanoff–Baym equations (KBE) [1]. In the last two decades, there have
been several works devoted to the numerical implementation of the KBE; among
the applications, we mention simple models of atoms or molecules [7,8], quantum
dots [9] and lattice systems [10–15]. The implementation of the KBE requires to
propagate two-time integro-differential equations. Due to memory costs, only limited
systems sizes (or propagation times) can be reached [14]. In the KBE method there
are two ways to prepare the equilibrium correlated state. The first way is based on the
Martin–Schwinger–Keldysh contour with the imaginary time appendix, representing
the equilibrium state [4,10,11,16–18]. The second way is via the so-called adiabatic
switching procedure [2], where one starts the evolution from an uncorrelated (nonin-
teracting or Hartree–Fock) state and adiabatically switches on the correlation during
the evolution, see e.g. reference [14] for numerical details. Both methods gives the
same results, as numerical comparisons show [6,14], but the latter has larger memory
costs [14].
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To overcome the size and the propagation-time limitations of the KBE, we can
propagate directly a transport equation for the density matrix ρ(t). The density
matrix is the equal-time lesser Green’s function ρ(t) = −iG<(t, t), where the function
G<(t, t′) follows from the contour Green’s function G(z, z′) by setting z = t on the
forward branch and z′ = t′ on the backward branch of the Martin–Schwinger–Keldysh
contour [4] (in this way we lose access to the spectral features). The transport equation
for ρ can be formally derived from the KBE, and with help of so-called Generalized
Kadanoff–Baym Ansatz (GKBA) [19–21] we can close the transport equations. In
recent years there has been an increasing number of implementation of the GKBA
transport equations in inhomogeneous systems [14,15,22–30]. In these studies, the ini-
tial equilibrium correlated density matrix (the initial equilibrium state) was typically
prepared via adiabatic switching of the electronic correlations. So far an alterna-
tive way to access the initial equilibrium correlated state is lacking. The problems is
addressed here, where we propose a method, to obtain the initial equilibrium density
matrix directly, i.e. by avoiding the adiabatic switching.

2 Generalized Kadanoff Baym Ansatz – overview

The exact transport equation for the density matrix ρ, which can be derived from
the Kadanoff–Baym equations (KBE), reads in matrix form

∂tρ(t) + i[hHF [ρ(t)], ρ(t)] = −(I<(t, t) + h.c.), (1)

where hHF is the Hartree-Fock term and the collision term I< reads

I<(t, t) =

∫ t

−∞
dt̄(Σ<[G](t, t̄)GA(t̄, t) + ΣR[G](t, t̄)G<(t̄, t)). (2)

Here < and R respectively label the lesser and retarded components of the Green’s
function and self-energy [31]. The self-energy can be composed from the correlation
part and from the embedding part Σ[G] = Σcorr.[G] + Σemb.. The correlation self-
energy is a functional of the Green’s function, while for closed systems, as considered
here, Σemb. = 0. The exact transport equation is not a closed equation for ρ. To close
the equation we can use so-called reconstruction equations [19]:

G<(t, t′) = −GR(t, t′)ρ(t′) + ρ(t)GA(t, t′) . . . , (3)

G>(t, t′) = GR(t, t′)(1− ρ(t′))− (1− ρ(t))GA(t, t′) + . . . (4)

where the dots stands for terms of higher order in ρ and GR/A. The sum of all terms of
such expansion gives back the solution of the full KBE [19]. In such case the Green’s
function components satisfy the relation

G>(t, t′)−G<(t, t′) = GR(t, t′)−GA(t, t′), (5)

and the ρ from the transport equation connects to the Green’s function from the
KBE via ρ(t) = −iG<(t, t).

In the Generalized Kadanoff–Baym Ansatz (GKBA) the reconstruction-equation
expansion is truncated after the first order, i.e.

G̃<(t, t′) = −G̃R(t, t′)ρ(t′) + ρ(t)G̃A(t, t′), (6)

G̃>(t, t′) = G̃R(t, t′)(1− ρ(t′))− (1− ρ(t))G̃A(t, t′), (7)
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where we denote the approximate GKBA Green’s function by ∼. The components of
the GKBA Green’s function, according to their definition, automatically satisfy an
analog of equation (5):

G̃>(t, t′)− G̃<(t, t′) = G̃R(t, t′)− G̃A(t, t′). (8)

By construction, the relation ρ = −iG̃< is also identically satisfied. Another impor-
tant aspect to be noted is that the lesser and greater GKBA Green’s functions are
fully characterized only when the retarded and advanced components in equation (6)
are specified. The equation of motion for such an auxiliary Green’s function reads

(i∂t − hHF [ρ](t))G̃R/A(t, t′) = δ(t− t′) +

∫ t

t′
dt̄Σ̃R/A(t, t̄)G̃R/A(t̄, t′). (9)

Here the level of approximation of G̃ is given by the auxiliary self-energy Σ̃. Therefore
there is a freedom in its choice [19,22] and in most of the practical implementations

the auxiliary self-energy is different from self-energy in the transport equation Σ 6= Σ̃.
Typically we choose Σ̃R(t, t̄) = Σ̃R(t)δ(t− t̄) local in time, in order to minimize the
computational costs. In closed systems, auxiliary retarded and advanced Green’s
functions can be constructed from the density matrix ρ at the Hartree-Fock (HF)

level [22], i.e. Σ̃R(t, t̄) = 0.
The GKBA auxiliary Green’s functions are then used to close the transport

equation, since they approximate the scattering integral I[G]→ I[G̃] explicitly as

I<(t, t) ≈
∫ t

−∞
dt̄(Σ<[G̃](t, t̄)G̃A(t̄, t) + ΣR[G̃](t, t̄)G̃<(t̄, t)), (10)

where the auxiliary GKBA functions are also used in the construction of correlations
selfenergies, see Figure 1i. The interesting property of the GKBA is the fulfillment of
the relation for the selfenergies

Σ>[G̃](t, t′)− Σ<[G̃](t, t′) = ΣR[G̃](t, t′)− ΣA[G̃](t, t′), (11)

even if the auxiliary GKBA Green’s functions G̃ are used for the construction. The
formal proof of this relation is similar to the proof of relation for the full Green’s
function dependence. The relation Σ> −Σ< = ΣR −ΣA holds since each component
of the self-energy is constructed according to the Langreth–Wilkins rules [31]. To
derive the latter, equation (5) is usually used. Here the GKBA analog equation (8)
can be used instead to derive similar rules. For the model system used below to test
our approach, we have verified equation (11) analytically and numerically (not shown
here).

3 Generalized Kadanoff Baym Ansatz – equilibrium correlated
state

In the GKBA approximation the commonly used strategy is the adiabatic switching,
where an uncorrelated Hartree–Fock density matrix is constructed and then propa-
gated according to the adiabatic switching protocol [14,22,24] from t = −∞ to t = 0.
After such preparation, one obtains a correlated density matrix which fulfils a steady
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state equilibrium version of the transport equation

i[hHF [ρeq.], ρeq.] = −(I<(0, 0) + h.c.) (12)

where the scattering integral reads

I<(0, 0) =

∫ 0

−∞
dt̄(Σ<[G̃](0, t̄)G̃A(t̄, 0) + ΣR[G̃](0, t̄)G̃<(t̄, 0)). (13)

One can wonder if this equation can be used to directly generate the equilibrium
correlated density matrix. The answer is negative; some elements of such a matrix
equation give the trivial relation 0 = 0. This happens in closed systems, where the
collision term contains only the correlation self-energy.

Thus, in closed systems, such set of equation (12) is under-determined and we have
to search for another way to determine the equilibrium density ρeq.. The prescription
proposed in this paper is to instead search for a equilibrium state Green’s function
G<eq.(ω) which gives the density matrix via

ρeq. = −i
∫
dω

2π
G<eq.(ω) = −i

∫
dω

2π
(−2i)ImGReq.(ω)f(ω), (14)

where f is the Fermi-Dirac function. We stress that the equilibrium state Green’s
function is not the GKBA function. In the case of the GKBA Green’s function G̃<

the relation ρeq. = −i
∫
dω
2π G̃

<
eq.(ω) is only a tautology. In order to find the desired

equilibrium function we have to extend the GKBA approximation from the transport
equation for ρ to the full KBE, as discussed in the following section.

Before moving to the next section, it is important to stress that with our procedure
as presented in equation (14) and detailed below, one is solving for the equilibrium
density matrix ρeq. but not for I<(0, 0). However, as recently shown in reference [32],
the scattering integral I<(0, 0) will be needed if one wants to start the propaga-
tion at time t = 0 using ρeq. as the starting point. This augmented term persists at
subsequent times, in the form of

I<(t, t) =

∫ 0

−∞
dt̄(Σ<[G̃](t, t̄)G̃A(t̄, t) + ΣR[G̃](t, t̄)G̃<(t̄, t)), (15)

and prevents spurious oscillations of the density [32].

4 Extended generalized Kadanoff Baym Ansatz

The GKBA is formulated for a time-diagonal transport equation and it aims directly
at the time evolution of the density matrix. In this way we loose the part of informa-
tion contained in the Green’s function, notably the spectral function, which may be
used for the construction of the equilibrium state. Hence we wish now to investigate
what will happen if we extend the GKBA approximation to the off-diagonal equation.
This corresponds to use I[G] → I[G̃] in the collision part of the KBE equations for
G≶, see Figure 1ii.
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Fig. 1. A flowchart showing the loss of the spectral information within the Generalized
Kadanoff–Baym Ansatz (GKBA) applied in the collision integral I< of the time diagonal
transport equation, panel i). The information will be restored if the Ansatz is applied in
the real time equations for GR and G<, panel ii). Such extended Generalized Kadanoff–
Baym Ansatz (eGKBA) is used in equilibrium calculations, where the equation for GR is to
be solved with the help of the fluctuation-dissipation (FD) theorem, panel iii). The dotted
arrows indicate the closure of the equations.

In this extended Generalized Kadanoff–Baym Ansatz (eGKBA for simplicity), we
approximate the collision part of the KBE (note the off-diagonal structure t, t′)

(i∂t − hHF [ρ](t))G≶(t, t′) =

∫ t

−∞
dt̄(Σ≶[G̃](t, t̄)G̃A(t̄, t′) + ΣR[G̃](t, t̄)G̃≶(t̄, t′)).

(16)
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This differential equations can be formally solved by integration starting from the
initial uncorrelated Hartree–Fock equilibrium state [2], schematically written

G≶ = G
≶
HF +G

≶
HFΣA[G̃]G̃A +GRHFΣ≶[G̃]G̃A +GRHFΣR[G̃]G̃≶. (17)

This solution is our desired Green’s function, and its components have to obey equa-
tion (5). Below we show that the corresponding evolution of the retarded (advanced)
Green’s function must then obey to

(i∂t − hHF [ρ](t))GR/A(t, t′) = δ(t, t′) +

∫ t

t′
dt̄ΣR/A[G̃](t, t̄)G̃R/A(t̄, t′). (18)

This is formally solved by integration, starting from the initial uncorrelated Hartree–
Fock equilibrium state, and schematically written as

GR/A = G
R/A
HF +G

R/A
HF ΣR/A[G̃]G̃R/A. (19)

We note that this equation is not a standard Dyson equation, as GR/A does not
appear on the right hand site of the equation.

Consistency check. To check that equation (5) is satisfied by the evolution integral
equations (17) and (19), we start by the difference of the left hand sides of equation
(17), so we have

G> −G< = (G>HF −G
<
HF ) + (G>HF −G

<
HF )ΣAG̃A

+GRHF (Σ> − Σ<)G̃A +GRHFΣR(G̃> − G̃<). (20)

Then, using that G>HF − G
<
HF = GRHF − GAHF , and also the relations equations (8)

and (11) discussed above we get

G> −G< = (GRHF −GAHF ) + (GRHF −GAHF )ΣAG̃A

+GRHF (ΣR − ΣA)G̃A +GRHFΣR(G̃R − G̃A). (21)

By cancellation of some terms we obtain

G> −G< = GRHF −GAHF −GAHFΣAG̃A +GRHFΣRG̃R = GR −GA, (22)

where we used equation (19). Thus, we have consistently extended the GKBA idea
to the KBE double time domain.

5 Equilibrium correlated state from eGKBA

The eGKBA approximation presented in the previous section for the KBE double-
time domain can be also used in the equilibrium, see Figure 1iii. Since the eGKBA
is defined for the full KBE, we follow the same logic as in the KBE case. Then the
crucial equation is

G>(t, t′)−G<(t, t′) = GR(t, t′)−GA(t, t′), (23)
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which must be fulfilled at all times (this has been verified in the previous section).
Assuming that in the long time limit the functions depend only on the time difference,

G>(t− t′)−G<(t− t′) = GR(t− t′)−GA(t− t′), (24)

we can use the Fourier transform to express the equation in the omega space

G>(ω)−G<(ω) = GR(ω)−GA(ω). (25)

Here we can imagine that we have arrived to the steady state by the adiabatic
switching procedure. If we further assume that except for the adiabatic switching
there is no external force during the evolution then after the evolution the adia-
batically prepared state is the equilibrium [2]. Then the equilibrium state can be
represented by the Green’s function (on the Matsubara imaginary time segment)
which should fulfill the Kubo–Martin–Schwinger conditions [4] and which can be
analytically continued to real times. The analytically continued Green’s function sat-
isfy the same boundary conditions [4]. Then we can finally express the lesser Green’s
function as

G<eq.(ω) = −2iImGReq.(ω)f(ω). (26)

This relation is known as fluctuation–dissipation theorem. The density is given by

ρeq. =

∫
dω

2π
(−i)G<eq.(ω) = −

∫
dω

π
ImGReq.(ω)f(ω), (27)

and it should correspond to the density reached by the preparation of the correlated
equilibrium state by the adiabatic switching ρHF → ρeq..

At this point we have to provide the equation for retarded Green’s function, which
is an analog of the usual Dyson equation. In the eGKBA approximation the retarded
Green’s function is computed via equation (19), which becomes in the equilibrium
(omitting the equilibrium index)

GR(ω) = GRHF (ω) +GRHF (ω)ΣR[G̃](ω)G̃R(ω). (28)

This rather interesting equation does not have the standard Dyson structure, as
GR/A does not appear on the right hand site. The resulting Green’s function is not
guaranteed to have a positive spectral function, even if Σ generates the positive spec-
tral function in the standard full KBE. This is a pure artefact of the GKBA which
focus exclusively on the density matrix, i.e. the integral of the spectral function. The
mentioned analytic behavior of the retarded Green’s function can lead to practical
problems during the iteration of the equilibrium state equations due to the numeri-
cally delicate evaluation of ρ from the equation (27). In the next section we discuss
an approximation of equation (28) to avoid the mentioned practical problems.

6 Approximate equilibrium correlated state from eGKBA

Here, we are mainly interested in closed systems where the auxiliary Green’s function
is usually chosen to be the Hartree–Fock Green’s function G̃R(ω) = GRHF (ω). Then
equation (28) becomes

GR(ω) = GRHF (ω) +GRHF (ω)ΣR[GHF ](ω)GRHF (ω). (29)
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This equation can still be problematic to solve, since the spectral features mentioned
above persist. However, we can make an observation about an approximate retarded
Green’s function given by

GRappr. = GRHF +GRHFΣRGRappr. = GRHF +GRHFΣRGRHF +GRHFΣRGRHFΣRGRHF . . .
(30)

If the second and higher orders of the expansion are negligible, the approximate
Green’s function will be the same as in equation (29). The advantage of this equation
is that it has the Dyson structure and gives a numerically less delicate evaluation of
ρ. The error between the approximate Green’s function and the Green’s function

GRappr. −GR = GRHFΣRGRHFΣRGRHF + . . . (31)

is of the second order in the interaction expansion and it grows with the interaction
strength.

7 Approximate equilibrium correlated state from eGKBA -
example

The solution of the approximate correlated equilibrium (ground) state is illustrated
using a Hubbard dimer, i.e. a two-site, tight-binding cluster, with one orbital per site:

Hdimer =
∑
σ

[
−t(c†1σc2σ + c.c.) + v1n1σ + v2n2σ

]
+ U1n1↑n1↓ + U2n2↑n2↓. (32)

This system is exactly solvable. Here we consider the case of two electrons with
opposite spin projections, which mutually interact when at the same site.

We solve GRappr. given by the equations (27) and (30) with the Second-Born
correlation self-energy which, written in the orbital indexes i and j, reads

ΣRij(ω) = UiUj

∫ ∫
dω′dω′′

(2π)2

(
G̃Rij(ω

′)G̃<ji(ω
′′)G̃<ij(ω − ω′ + ω′′)

+G̃Rij(ω
′)G̃<ji(ω

′′)G̃Rij(ω − ω′ + ω′′)− G̃Rij(ω′)G̃<ji(ω′′)(G̃Rji)
∗
(ω − ω′ + ω′′)

+G̃<ij(ω
′)(G̃Rij)

∗
(ω′′)G̃<ij(ω − ω′ + ω′′) + G̃<ij(ω

′)G̃<ji(ω
′′)G̃Rij(ω − ω′ + ω′′)

)
,

(33)

where, as in the GKBA, the lesser and greater function are

G̃<ij(ω) =
∑
l

[
−G̃Ril (ω)ρlj + ρilG̃

A
lj(ω)

]
, (34)

G̃>ij(ω) =
∑
l

[
G̃Ril (ω)(1− ρ)lj − (1− ρ)ilG̃

A
lj(ω)]. (35)

and G̃R/A = G
R/A
HF is used as the auxiliary GKBA Green’s function.

In Figure 2 we show a comparison of the direct solution with the GKBA adi-
abatic switching ρHF → ρeq.. From the results we can clearly see that for strong
enough interactions there is a deviation, since we compute the equilibrium state only
approximately. Here, the higher order terms given by (31) are not negligible. However,
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Fig. 2. The density matrix elements for the Hubbard dimer v1 − v2 = 0.4t where t = 1 is the
hopping and vi are the on-site energies, for the different strengths of the on-site interactions
U1 = U2 = U . Time is measured in inverse of the hopping t. A comparison of the GKBA
adiabatic switching with the approximate correlated equilibrium state (straight lines).

for lower interaction strengths where we can neglect these terms, the approximation
is remarkably good.

8 Conclusions

We have shown how to directly obtain the initial equilibrium state for GKBA approx-
imation, thus avoiding the usual adiabatic switching protocol. For this purpose we
have extended the GKBA approximation from the transport equation for ρ to the
full Kadanoff–Baym equation. The extended GKBA was then used to define the
equilibrium-state equation. The approximate solution of the extended GKBA was
compared to the adiabatic switching procedure for a case of Hubbard dimer with
good results. Our work provides an alternative way how to find the initial equilib-
rium GKBA states and, at the same time, provides a new and broader perspective on
the GKBA approximation. It would be interesting to test eGKBA on other (and with
more degrees of freedom) systems, and for approximations other than Second-Born,
and this is left as future work.
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