
Eur. Phys. J. Special Topics 227, 1959–1967 (2019)
c© The Author(s) 2019

https://doi.org/10.1140/epjst/e2018-800051-9

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Quantifying the impact of phonon scattering
on electrical and thermal transport
in quantum dots

Bahareh Goldozian, Gediminas Kiršanskas, Fikeraddis A. Damtie,
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Abstract. We report the inclusion of phonon scattering to our recently
established numerical package QmeQ for transport in quantum dot
systems. This enables straightforward calculations for a large vari-
ety of devices. As examples we show (i) transport in a double-dot
structure, where energy relaxation is crucial to match the energy dif-
ference between the levels, and (ii) the generation of electrical power
by contacting cold electric contacts with quantum dot states, which are
subjected to heated phonons.

1 Introduction

During the last decades, there has been a large amount of research on the elec-
tronic properties and electron transport in nanostructure devices [1–4]. A tremendous
progress has been made in this area and new exciting optical, electronic, and
thermoelectric applications have been suggested [5–9].

The confinement of electrons in nanostructure devices leads to discrete electronic
states and hence to quantized electron transport [10–14]. Therefore, the transport
properties become influenced by this quantization that can be seen as Coulomb block-
ade [1,11,15] and resonant tunneling [16]. Likewise the electrons, phonons can also
be confined in nanostructure devices. The confinement of phonons leads to different
modes with a one-dimensional dispersion [17]. An example of such effects is the tem-
perature dependence of resistivity in Si nanowires [18]. Another example is probing of
the individual phonon modes in transport [19]. This new kind of phonon spectroscopy
allows to get information on the energetic location of the phonon modes as well as
electron phonon interaction strength.

To understand the role of different interactions in the many-body physics of
nanostructures, some studies have focused on the details of electron–electron [20,21],
electron–phonon [22], and electron–photon [23] coupling effects on nonlinear thermo-
electric transport. Moreover, a lot of progress has been made both in formulating
the many-body theories and developing experimental methods in this subject. The
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recent technological progress in the design and fabrication of semiconductor nanos-
tructures can help to achieve a better understanding of how the electron–phonon
coupling affects the transport in nanostructures.

There is a large variety of theoretical approaches to calculate transport through
nanostructure systems [24–27]. For systems, where Coulomb interaction is dominant,
single particle transmission approaches are insufficient and different types of master
equations have been established. Recently, some of us published a software package
called Quantum master equation for Quantum dot transport calculations (QmeQ)
[28], which allows a simple comparison of several Master equations for quantum dot
systems with full Coulomb interaction. Here, we show the first results of phonon
scattering integration into this package.

As a model system, we consider a spinful double dot with tunable energy levels
and compare with experimental data from [19]. Double quantum dots are well-known
to be suitable systems to study essential concepts of quantum mechanics, due to
their high tunability. Furthermore, we consider non-equilibrium phonon distributions,
which can establish particle current flow against the bias [29].

2 QmeQ and its extension for phonon interaction

The package QmeQ [28] is designed to study transport in quantum dot systems
described by the general Hamiltonian,

Hsys =
∑
nσ

End
†
nσdnσ +

∑
nmσ

Ωnmd
†
nσdmσ +

1

2

∑
mnkl

∑
σσ′

Vmnkld
†
mσ d

†
nσ′dkσ′dlσ, (1)

where d†nσ is the electron creation operator in the system for a level with energy En
and spin σ. Ωnm describes the coupling between the single-particle levels m and n,
and the last part quantifies the electron–electron interaction with different Coulomb
matrix elements Vmnkl. Using a Fock basis, Hsys is diagonalized providing the many-
particle eigenstates of the form

|a〉 =
∑
n

bnd
†
n1
d†n2

...d†nNa
|0〉 , (2)

where ni represents the ith single particle state in the Slater determinant determined
by the index n = (n1, n2,, ..., nNa) with Na number of particles.

The tunneling and the lead Hamiltonians are

HLeads =
∑
kσl

Ekσ`c
†
kσlckσ`, HT =

∑
n,kσ`

(tn`d
†
nσckσ` + H.c.), (3)

where c†kσ` denotes the electron creation operators in the leads with index ` (typically
R,L for right and left lead, respectively) and k labels the spatial wave-functions
of the continuum of states. We assume a thermal distribution with electrochemical
potential µ` and temperature T` for each lead. A bias V applied to the leads provides
µL/R = ±eV/2, where e is the elementary charge. The tunneling Hamiltonian, HT ,
can be expressed by the many-particle eigenstates

HT =
∑
ab,k`σ

(T
ba

(`σ) |b〉 〈a| ck`σ + H.c.) with T
ba

(`σ) =
∑
n

tn` 〈b| d†nσ |a〉 . (4)
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Here, we use the letter convention restricting the combination of states |a〉, |a′〉, |b〉 to
Nb = Na + 1, and Na = Na′.

QmeQ is able to calculate the current for a stationary state with different
approaches: the Pauli (classical) master equation [24,30], first-order Redfield [31,32]
and first/second-order von Neumann approaches [33,34], and a master equation in
a Lindblad form [35] using the Position and Energy Resolved Lindblad Approach
(PERLind) of reference [36].

In this study, we calculate the impact of electron–phonon interaction on the par-
ticle current through the device with different first-order approaches. The phonons
are modeled as simple non-interacting bosonic modes

Hph =
∑
q

~ωqb†qbq, (5)

where b†q creates a phonon in a mode q. The electron–phonon interaction is given by

He−ph =
∑
nmσ,q

gqnmd
†
nσdmσ(b†q + bq). (6)

with the matrix elements gqnm and q denoting the complex conjugate state of q. Since
the phonon coupling to the free electrons in the leads is very small compared to the
electron phonon coupling in the quantum dots, see reference [37], only the electron–
phonon coupling in the dot will be considered. Within the lowest nonvanishing order
in the phonon coupling studied here, coherent superpositions of states with different
phonon number are neglected.

We consider deformation potential coupling to the phonons, which is given by the
divergence of the displacement following [38]. The corresponding coupling matrix ele-
ment for the first acoustic phonon mode coupled to the electrons via the deformation
potential can be expressed by

gq1nm =

∫
d3r Ψ∗n(r)D∇ · uq1(r)Ψm(r). (7)

Here, uq1(r) is the displacement and D is the deformation potential coefficient. We
express the electron–phonon coupling matrix element, gqnm = g(q)yqnm, in terms of a
state-independent overall strength g(q) and a dimensionless coefficient

yqnm =

∫
d3r Ψ∗n(r)eiq·r(r)Ψn′(r). (8)

By assuming that yqnm is q-independent (e.g. by choosing a characteristic value), we
obtain

yqnm ≈ ynm, yqnm ≈ ynm = y∗mn, (9)

and we can collect all the energy dependence in the spectral density

J(E) =
∑
q

|g(q)|2 δ(E − ~ωq). (10)
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Both J(E) and ynm are required inputs in the new version of QmeQ with the pos-
sibility to add further vibrational modes as independent processes in an analogous
way.

3 Results

In order to illustrate the performance of QmeQ, we simulate the nanowire double-dot
system studied in reference [19], and compare the results with experimental data.
Each dot has a ground level EL/R and an excited level EL/R + 5.5 meV (both spin
degenerate), where EL and ER can be individually shifted by plunger gates. The two
dots are coupled to each other and to the leads by tunnel barriers. We use the InAs
nanowire material parameters (see Ref. [19]) to calculate the spectral density for the
lowest, one-dimensional phonon mode:

J(E) = 3.8804× 10−4E. (11)

The matrix elements ynm for the relevant single-particle levels m and n are
calculated from equation (8), where the corresponding electron wave functions

are assumed to be Ψ1(r) = a−3/2π−3/4e−(x
2+y2+z2)/2a2 for the ground state and

Ψ3(r) =
√

2za−5/2π−3/4e−(x
2+y2+z2)/2a2 for the excited state of the left dot with the

Gaussian radius a = 5.8 nm [38]. The corresponding states for the right dot (n = 2, 4)
are shifted by d = 120 m, in z-direction. For qa� 1, q only enters as the phase eiqd

for matrix elements with different dots, and we use a typical value eiqd = eiπ/3 to
remove the q-dependence.

The electron–electron Coulomb matrix elements are calculated with the same
methods as described in [39]. We consider intradot interactions, U = 12 meV,
as the interaction between electrons in the same dot and inter-dot interaction,
Un = 2.5 meV, as the interaction between electrons in the neighboring dots. The
couplings between the energy levels in the dots and the left and right leads are
ΓL = 90 neV and ΓR = 10 neV, respectively [19].

Figure 1 shows the current as a function of the left and the right dot energy levels
(EL and ER) for three different tunnel coupling strengths Ω. We can see the lowest
inter-dot transitions between different level configurations of the double dot, which
give rise to the current. What stands out in this figure is the current increase in the
presence of phonon scattering close to the current peaks from the resonance. This is
a result of the electron–phonon scattering which is an inelastic process. The triangles
of finite current appear due to the phonon emission process. When the energy level
in the left dot is higher than the one in the right dot, electrons in the left dot are able
to transport through the right dot by emitting phonons. The absorption of phonons
does not play any role since kBT � eV . We observed a pair of overlapping full
bias triangles, for each transition, due to the inter-dot Coulomb interactions. These
triangles are more pronounced in the plots corresponding to stronger tunnel coupling
between the dots (Figs. 1b and 1c).

On the left top of the plots current suppression due to Pauli spin blockade [40,41]
can be seen. This corresponds to the transition (1, 1) −→ (0, 2), where current is
blocked, if both dots are occupied by the same spin. Figure 1d shows the energy
levels at this operation point.

Figure 2a depicts the results for the same system as Figure 1, but with higher
bias. As we can see here, in contrast to Figure 1, the transition (1, 1) −→ (0, 2) is
possible, since the high bias creates a new transport channel via the excited state. As
the schematic diagram in Figure 2b explains, electrons from the excitation µL,0(1, 1)
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Fig. 1. Stability diagrams of the double dot system ranging from weak to strong inter-dot
tunnel coupling, i.e., (a) Ω = 0.005 meV, (b) Ω = 0.01 meV and (c) Ω = 0.02 meV. The bias
is V = 5 mV for all of them. The diagram in (d) shows schematically the removal energies
µi,n(Nl, Nr) at the operation point denoted by red squares in (a), (b) and (c). At this point,
the current is suppressed due to Pauli spin blockade. [µi,n(Nl, Nr) is the energy of an electron
removed from the level n (0 = ground, 1 = excited) of dot i (left or right) where Nl/r is the
number of electrons in the left/right dot.]

can now be in resonance with µR,1(0, 2), while the lower lying two-particle state
µR,0(0, 2) is still emptied to the right lead. The triangular regions as well as the
truncated triangle between the (1,1) and (0,2) region fully agree with experimental
data displayed in Figure 2c. Note that the bias polarity was chosen differently in the
experiment, so that (0,2) compares to (2,0) in our definition. While the line due to
tunneling via the excited state is shifted from the ground state by a fixed amount
5.5 meV for all triangles in our simulation, see Figure 2a, two different separations
can be seen in the experiment, depending on the charging of the receiving quantum
dot. This difference can be attributed to the exchange interaction within the dots.
Assuming Uex = 3 meV, Figure 2d provides a better agreement with the experiment.
We observe, that Figure 2d contains some additional features in the triangles with
two electrons in the left dot, if a spin triplet becomes possible. These are not observed
in the experiment, most likely due to spin relaxations on nanosecond (or shorter) time
scales. Such spin-relaxation also explains the incomplete spin blockade observed in
the experiment.

As a second example we consider the impact of a heated phonon distribution in
the double dot system, which can act as a heat engine [29,42]. A similar scenario can
also arise due to a noise source [43]. Here, we consider the same system as before, but
neglect the excited levels. The setup is sketched in the right panel of Figure 3. While
keeping the electron leads at TC = 60 mK, we apply a different temperature TH in
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Fig. 2. (a) Stability diagram of the double dot system with the inter-dot tunnel coupling Ω
= 0.02 meV and an increased bias V = 8 mV compared to Figure 1. Here, the combination of
electron–phonon coupling and high bias lifts the Pauli spin blockade as sketched in panel (b).
(c) Experimental data (with different bias polarity) taken from the supplementary material
of [19]. The highest current is ≈ 1 pA. (d) Stability diagram for the same parameters as
panel (a) including the exchange interaction, Uex = 3 meV, displayed with swapped axes to
reflect the different bias polarity in (c).

Fig. 3. (a) Zero-bias current as a function of ∆, the difference between the energy levels of
the dots, for different phonon temperatures. Inset: current as a function of ∆ for different
biases and TH = 300 mK. Further parameter: TC = 60 mK, Ω = 0.05 meV, ΓL = ΓR =
90 neV. (b) A sketch of a double dot system coupled to non-equilibrium phonon bath.
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Fig. 4. (a) Zero-bias current as a function of ∆, the difference between the energy lev-
els of the dots, for Pauli, Redfield and 1vN approaches. TC = 60 mK, TH = 300 mK,
Ω = 0.001 meV, ΓL = ΓR = 0.005 meV. (b) Zero-bias current as a function of ∆,
TC = TH = 60 mK, other parameters are the same as (a).

the phonon distribution. Figure 3 shows the current as a function of the difference
between the energy levels of the dots, ∆ = EL - ER, which are shifted symmetrically
with respect to the electrochemical potential in the leads at zero bias. We find that
an asymmetry in the level energies drives a current through the quantum dot system,
where (for TH > TC) the net particle current goes from the lower to the higher level.
The reason is that the thermal distributions in the contacts result in a significant
difference between the occupations of the upper and lower dot level. For the larger
phonon temperature, this implies a dominance of phonon absorption over phonon
emission between these levels, actually driving the current by taking heat from the
phonon system. As thoroughly discussed in references [29,42] this acts as a heat
engine, if this current flows against an electric bias. This can be seen in the inset: for
a positive detuning ∆ ≈ 0.08 meV, i.e., EL > ER, the current flows against the bias
polarity. In contrast to the treatment of reference [42] the use of QmeQ allows for
a straightforward implementation of the full many-body interaction in the transport
calculations.

These calculations were performed with the Pauli master equation, while the
Redfield and first order von Neumann (1vN) approaches gave the same results for
these parameters, where Γ is much smaller than the level splitting and non-diagonal
elements of the density matrix are not relevant [28,39]. However, in the case where Ω
is less than Γ, as it is shown in Figure 4, coherences become important and the Pauli
master equation is not reliable. Figure 4a shows the current as a function of ∆, for
Pauli, Redfield, and 1vN approaches. As it can be seen the current is reduced in the
Redfield and 1vN approaches where the coherences are important. Figure 4b displays
the zero bias current as a function of ∆ for TC = TH = 60 mK. Here, no current
should flow which is recovered by the Pauli master equation. However, the Redfield
and 1vN approaches show a very small current as they do not fully satisfy thermal
detailed balance. These violations are actually three orders of magnitude smaller than
the features studied in Figure 4a and thus do not affect the main results.

4 Conclusion

We included phonon scattering in QmeQ, which improves the applicability of this
versatile simulation package. The new implementation was tested for a double-dot
structure, where we could reproduce experimental results and demonstrated the
applicability for thermoelectric elements.
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