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Abstract. We calculate density and current spatial distributions of a 2D
model junction between a normal QAH contact and a superconducting
QAH region hosting propagating (chiral) Majorana modes. We use a
simplified Hamiltonian describing the spatial coupling of the modes on
each side of the junction, as well as the related junction conductance.
We study how this coupling is affected by orbital effects caused by an
external magnetic field.

1 Introduction

Majorana states in Condensed Matter have been a hot topic for a few years now [1–11].
Different experiments have been carried out in order to demonstrate the actual exis-
tence of such topological states. Majorana modes are characterized by being chargeless
and spinless edge states, hence most of the experiments aiming at their detection
are based on identifying characteristic signatures on the electrical conductance of
devices attached to them [12–16]. To obtain Majorana states one needs the presence of
superconductivity, therefore the typical scenario usually requires a contact between a
normal lead and a hybrid proximity-coupled semiconductor-superconductor. As topo-
logical states, Majorana modes are separated by an energy gap that protects them
from other normal states and local sources of noise, a robustness that might allow
the use of such states for topological quantum computing.

In many ways Majoranas can be understood as non-local split Fermions. In this
sense there are two kinds of Majorana states: non-propagating Majorana states
appearing at the ends of (quasi) 1D nanowires and propagating chiral Majorana
states formed along the edges of 2D-like hybrid structures. In this work, we will focus
on the second kind. We refer, more specifically, to devices similar to those of refer-
ences [16–22] consisting of a quantum Hall (QH) or quantum anomalous Hall (QAH)
insulator proximity coupled with a superconductor (QAH + S). In particular, we will
consider a simple model of QAH + S that does not need the presence of external
magnetic fields. In this kind of systems, chiral Majorana modes propagate along the
edges in a clockwise or anticlockwise manner (depending on device parameters) for
finite systems.
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An open infinite nanowire like the one depicted in the inset of Figure 1 may hold
two pairs of counterpropagating Majorana channels, one pair at each edge of the
device. In general, it has been reported that each chiral Majorana channel contributes
0.5e2/h to the linear conductance of a device. However, in this work we will show
that for the infinite nanowire with only one normal contact the conductance remains
e2/h independently of the number of active Majorana modes (one or two), even with a
finite transmission probability to the Majorana channel of ≈ 0.5. The reason for this is
that we consider a single normal contact connected to a semi-infinite Majorana device,
instead of the two usual contacts in a normal-superconductor-normal arrangement.
When only one normal contact (left) is present, only half of the possible Majorana
channels are active, the outgoing ones. Ingoing Majorana modes into the junction
would necessarily require a second (right) normal contact and therefore they are not
contributing in our arrangement.

We use a method based on the evaluation of the (complex) wave numbers allowed
on each side of the junction and giving the detailed spatial distribution patterns of
density and currents. In addition, we study how the spatial distribution of the Majo-
rana modes is affected by magnetic orbital effects, on top of the already present QAH
physics. We show how the spatial coupling between Majorana and non-Majorana
states at both sides of the junction modifies the transmission and reflection pro-
cesses, and thus also the conductance. This article is divided in five parts. Sections 2
and 3 present the model and the method of resolution to determine ingoing and out-
going modes of the junction. Next, in Sections 4 and 5 we present the results without
and with orbital effects of the magnetic field, respectively. Finally, a summary and
outlook of the work is given in Section 6.

2 Model

Our main objective is to study the distribution of currents and the conductance
present in a N-(QAH+S) junction where chiral Majoranas may be present. We
start using a simplified model of QAH+S Hamiltonian similar to the one devised
in references [17,18],

hBdG(p) = m(p)σz −
α

~
(pxσy − pyσx)τz + ∆(x) τ+ + ∆(x)∗ τ− , (1)

where m(p) = m0 + m1p
2, with m0 and m1 known material parameters. As usual,

the σ’s and τ ’s represent Pauli matrices for spin and isospin, respectively. We will
consider α a known parameter related with the quasi-particle mass governing the
shape of the Dirac cone for energies near its apex. In this work, we set α ≡ 1 as our
unit for practical reasons. We will assume superconductivity achieved by proximity
coupling between the QAH semiconductor and a metallic superconductor. The union
between a superconducting and non superconducting region will be achieved through
the spatial variation of the superconductor coupling constant ∆(x).

The numerical results of this work will be presented in natural units of the prob-
lem, i.e., taking 2m1, ~ and α as unit values. That is, our length and energy units are
LU ≡ Lso = 2m1~2/α and EU = α2/2m1~2. The physical values for LU and EU are
determined once m1 and α are known for a specific system. For definiteness, assuming
(2m1)−1 ≈ 0.06me [23], where me is the bare electron mass, and α ≈ 0.2 eVÅ it is
EU = 0.5 meV and LU = 50 nm.

This model provides two phase boundaries with a critical value of the m0 param-

eter, m
(c)
0 = ±|∆|. For large positive values of m0 the device will be in a trivial phase

while for large negative ones a phase of Chern number C = 2 will arise with two
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Fig. 1. E(k = 0) as a function of the material parameter m0 for a QAH thin slab of
Ly = 5LU proximity coupled with a superconductor yielding strength ∆ = 2EU . A sketch
of the infinite system used for this band structure calculation is given in the upper inset.
Notice the phase transitions at m0 ≈ ±∆, as indicated by the presence of zero modes. The
remaining small oscillation around zero energy, zoomed in in the lower inset, is a finite size
effect.

chiral Majoranas attached to each edge of the device. For intermediate values of m0,
between the two phase boundaries, there is a single Majorana phase of Chern number
one (see Fig. 1). The phase-transition boundaries may differ slightly from these values
due to the transversal confinement, in a similar manner as in non-chiral Majorana
nanowires [24]. Of course, the effect of the transversal confinement becomes negligible
in wide enough wires.

The presence of the Majorana modes is signaled by a pair of topological bands
at wavenumber k = 0 for the translationally invariant (infinite) wire. In Figure 1,
this can be seen with a plot of the energy E(k = 0) as a function of m0. The pres-
ence of zero-energy modes indicate the Majorana phases, in good agreement with
the expected critical values. The bulk-edge correspondence principle ensures that the

critical value m
(c)
0 also indicates when chiral Majoranas will appear in a semi-infinite

nanowire or in the superconducting region of the N-(QAH+S) junction studied in
this work.

3 Method

We want to calculate the distribution of currents for a junction between a normal
QAH material and a material of the same kind proximity coupled with a superconduc-
tor (see Fig. 2 for a graphical representation of the device). The numerical method was
already used by us to calculate local currents and conductance in N-S junctions for
non-chiral Majoranas in references [25,26], with some technical differences as briefly
explained below.
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Fig. 2. Graphical description of the nanowire junction considered in this work, an infinite
QAH thin slab with half of the slab proximity coupled with a superconductor. The junction
interface separates normal and superconducting regions. On the left side there is a normal
QAH region while on the right side there is a hybrid QAH+superconducting region with a
non-zero ∆.

The overall idea is that of a matching method for two different sets of asymptotic
solutions, for a given energy E, one for each side of the junction and characterized by
a k wave number, Ψk(x, y, ησ, ητ ) = φk(y, ησ, ητ )eikx. These asymptotic solutions for
the left and right contacts are assumed to be known for a large-enough set of wave
numbers, with k being either real (propagating) or complex (evanescent) [27]. Typi-
cally, we find well converged results with a total of ≈ 200 k-modes. The full solution
for the left and right sides of the junction (c = L,R) is given by a superposition of
the corresponding set of modes,

Ψ(c)(x, y, ησ, ητ ) =
∑
k

d
(c)
k eikx φk(y, ησ, ητ ) . (2)

The wavenumbers and the transverse eigenstates can be obtained numerically as
solutions of the BdG Hamiltonian for each contact, where

∑
ησητ

∫
dy |φk|2 = 1. The

coefficients d
(c)
k that determine the strength of each channel are obtained from the

matching algorithm [25,26].
The distribution of currents is calculated from the wave functions given by equa-

tion (2). We consider three different kinds of densites ρa(x, y) and currents ja(x, y),
where subindex a may be a = qp, c, s for quasiparticle, charge, and spin, respectively.
Quasi-particle distributions are given by

ρqp(x, y) = Ψ∗(x, y)Ψ(x, y), (3)

jqp(x, y) = Re [ Ψ∗(x, y) v̂qp Ψ(x, y) ] , (4)

where the velocities are given by v̂qp,x = ∂H/∂px and v̂qp,y = ∂H/∂py. Quasiparticle
density and current fulfill a continuity equation ∂ρqp(x, y)/∂t = ∇ · jqp(x, y) because
the model has no sources or sinks of quasiparticles. With the Hamiltonian of equation
(1) it is,

v̂qp,x = −i~2m1∂xσz −
α

~
σyτz , (5)

v̂qp,y = −i~2m1∂yσz +
α

~
σxτz . (6)
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Substitution of equations (5) and (6) in equation (4) lead to the more familiar
expressions

jqp(x, y) = 2~m1Im [ Ψ∗(x, y)∇σz Ψ(x, y) ] + jso(x, y), (7)

where

jso(x, y) = −α
~

Re [ Ψ∗(x, y) (σyx̂− σxŷ)τz Ψ(x, y) ] . (8)

The charge and spin densities are obtained by adding −eτz and σz operators,
respectively, in equation (3),

ρc(x, y) = −eΨ∗(x, y)τzΨ(x, y) , (9)

ρs(x, y) = Ψ∗(x, y)σzΨ(x, y) . (10)

Analogous substitutions in equation (4) yield the definitions of jc(x, y) and js(x, y),
the charge and spin currents.

The conductance of the junction is evaluated on the normal side as

g(E) =
e2

h
[N(E)− Pee(E) + Peh(E) ] , (11)

where

Pee(E) =
∑
k,ησ

d
(L)
k (E)

∫
dy
∣∣∣φ(L)k (y, ησ,⇑)

∣∣∣2 , (12)

Peh(E) =
∑
k,ησ

d
(L)
k (E)

∫
dy
∣∣∣φ(L)k (y, ησ,⇓)

∣∣∣2 , (13)

are, respectively, the electron-electron (ee) and electron-hole (eh or Andreev) reflec-
tion probabilities. As well known, normal ee reflection reduces the conductance while
Andreev eh one increases it. Notice also that in the k-sums of equations (12) and (13)

only propagating output modes have to be included. The coefficients d
(c)
k for both

evanescent and propagating modes are obtained from the numerical algorithm, with
the exception of the input channels that are set to one for normalization purposes.
We consider as input channels the electron propagating solutions in the normal lead
with a quasi-particle flow into the junction. As a peculiarity of this problem, we found
that for E = 0 and k = 0 some instabilities in the flow calculation are obtained. They
are due to state degeneracies not allowing the algorithm to properly identify the
channels. They are simply resolved, however, by using a nonzero (small) value for E.

4 Current distributions

In Figure 3 we display the quasi-particle current distribution (arrows) overprinted
on their corresponding quasiparticle densities (color or gray-shaded) for two different
scenarios. Figures 3a and 3c are for the case when the right side of the junction
has a Chern number one, i.e., with a pair of topological bands crossing zero energy.
Therefore, for energies below the gap there is a propagating Majorana mode attached
to a system edge. On the other hand, Figures 3b and 3d correspond to the case of
Chern number two, with an additional pair of bands crossing zero energy. In this
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Fig. 3. Quasi-particle current overprinted on its corresponding probability density for a
NS junction with (a) one chiral Majorana mode in the superconducting side of the junc-
tion (that is, C = 1 topological phase); (b) two simultaneous Chiral Majorana modes in
the superconducting region (C = 2 topological phase). (c) and (d) the charge current and
densities corresponsing to the cases in (a) and (b), respectively. The material parameter for
(a) is m0 = −1EU while for (b) is m0 = −3EU . The rest of the parameters are Ly = 5LU ,
∆ = 2.0EU and E = 0.1EU . Note that we take α = 1EULU and m1 = 0.5EUL

2
U/~2.

latter case we have simultaneously two propagating Majorana modes attached to the
same edge. The first thing we notice is that only the lower edge shows an attached
Majorana channel on the right side of the junction. The reason behind this difference
between upper and lower edges is that in an infinite NS junction there are no counter
propagating modes. That is, the Majorana channel in the lower border is an outgoing
channel. An ingoing Majorana channel would appear on the upper edge in case we
considered a second junction with a normal lead on the right of the superconductor
region, with its corresponding incident modes.

As seen in Figures 3a and 3c, with only one pair of topological bands in the super-
conductor region (C = 1) an incident electron channel from the normal region will
be transmitted to a Majorana channel in the superconducting region. Note that the
Majorana channel is associated with a zero charge density and zero charge current.
The transmission probability is PT = 0.5 and, nevertheless, the conductance g(E)
is still one quantum g(E) = e2/h. The reason behind this apparent paradox is the
distribution of probability between the reflected ee and eh channels. The electronic
incident channel is partially reflected back in equal measure as an electron and as a
hole through Andreev reflection, Pee = 0.25 and Peh = 0.25. This is not in contra-
diction with current literature finding a conductance of g(E) = 0.5e2/h due to the
Majorana mode because, as explained above, we are considering a NS junction with a
single normal lead and therefore neglecting the effect in the junction from Majorana
counterpropagating states with an origin in a second lead. As a matter of fact an NSN
double junction can be seen in a simple way as a series combination of two NS single
junctions and therefore a reduction of ≈ 2 in conductance is to be expected in the
double junction. In this sense, the NS reflected channels have several peculiarities.
First, their charge current and densities add up to zero and the same happens with
their spin current and density (see Fig. 4). The incident electron channel is respon-
sible for an ingoing spin current into the Majorana mode, signaling the topological
state of the superconductor.



Non-Equilibrium Dynamics 2031

Fig. 4. Spin current overprinted on the spin density for the case when the superconduc-
tor holds a single chiral Majorana mode. The Hamiltonian parameters are Ly = 5LU ,
m0 = −1EU , ∆ = 2EU and E = 0.1EU .

On the other hand, in Figures 3b and 3d we can see the case with two pairs of
topological bands active on the right side of the junction. In this case the incident
electronic channel just goes through the junction without reflection. That is not sur-
prising because two chiral Majorana channels add up to a single electron channel.
We can see in Figure 3d how charge neutrality of the chiral Majoranas on the right
side has been lost with the presence of charge current in the lower superconducting
border. Furthermore, the available edge channels degrade with increasing energy of
the incident channel (i.e., the quality of the edge modes is worse as we deviate more
and more from zero energy and approach the gap energy). For this reason we use a
small value E = 0.1EU . This charge current is thus a manifestation of the Fermion-
ization of the two Majoranas in the C = 2 phase. With narrower slabs similar charge
current may build up even in the C = 1 topological phase due to finite size effects for
smaller Ly’s. However, this is already not the case in Figure 3c with Ly = 5LU .

In Figure 5 we can see the case when the superconductor is in a trivial state.
In previous figures we considered an homogeneous infinite semiconductor thin slab
with a junction separating the proximity coupled superconducting region from the
non-superconducting one. However, here for pedagogical reason we consider that
the junction separates two semiconductors having different material parameter m0.
The reason is that no open incident channels are available in the normal region for the
range of values where the superconducting region is in a trivial phase. Therefore, we
maintain the left side of the junction at a value of m0 that allows for an electronic inci-
dent channel. The result is a perfect electron-electron reflection of the quasi-particle
current. Therefore the overall charge and spin current in the contact remains zero.

5 Orbital effects

Until now we have considered the behavior of the junction mainly regarding variations
of the material parameter m0. In the underlying physical model, this parameter
relates to the magnetization of the material. In this section, we want to explore how
the inclusion of orbital effects due to an external magnetic field may affect the results
of our model. The strength of magnetic orbital effects is set by the magnetic length
lz, defined as l2z = ~c/eB. We consider a fully perpendicular magnetic field to the
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Fig. 5. (a) Quasi-particle current overprinted on the probability density for the case when
the superconducting side of the junction is in a trivial phase. (b) The same of (a) for the
charge current and density. In order to have open channels available to probe the super-
conductor, the material parameter m0 takes different values on the left and right sides; it
is m0 = −1EU on the left and m0 = 2EU on the right. The rest of the parameters are the
same of preceding figures.

sample using a Landau gauge centered on y = 0 through the magnetic substitution
px → px − ~y/l2z . We also add the required Pauli matrix τz to properly consider the
electron-hole symmetry of the problem [24].

The physical scenario of the model is a rather strong intrinsic magnetization term
(m0) and weaker magnetic orbital terms (lz). The actual strength of the magnetic
field is proportional to l−2

z . With our length unit LU = 50 nm the field in teslas is
given by B/T ≈ 0.26 (lz/LU )−2, i.e., 1 T is roughly corresponding to l−2

z = 4L−2
U . Of

course, it is important that B does not exceed the critical field of the superconductor
needed for the proximity effect, which is also ≈ 1T for a superconducting thin Nb
film [20].

The effects of electronic orbital motion on the QAH thin slab are twofold. First,
if the external magnetic field is too large the edge channels disappear. This is not
surprising because many chiral Majorana devices are quantum Hall devices with the
addition of superconductivity. This way, different strengths of the field may enable
or disable the edge propagating channels. In a certain way we are including here a
competition between the QH and QAH effects. We can see in Figure 6a the con-
ductance, and the different probabilities of transmission and reflection for a QAH
normal-superconductor junction as a function of the magnetic length. At a certain
value of the magnetic length (l−2

z ≈ 1.3L−2
U ) the QAH propagating channels are closed

on the normal side of the junction and only evanescent modes remain.
On the other hand, the second effect of the orbital motion is to effectively change

the width of the nanowire due to magnetic confinement when lz < Ly (with Ly
the transverse width). This way, the distance of the QAH and chiral Majoranas
with respect to the device edges increases, as can be seen comparing Figure 6b with
Figure 3a. However, the most interesting feature is the separation of the propagating
states from their respective edges and how this changes differently on each side of
the junction for increasing external field. This affects how the electronic incident
channel couples with the outgoing chiral Majorana mode on the superconductor side.
Therefore, the transmission and reflection probabilities (and thus the conductance)
are modified by the relative position of the channels caused by the presence of the
orbital motion.

The oscillations in reflection and transmission probabilities, and thus in con-
ductance, are due to changes in the transversal positions of the topological states.
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Fig. 6. (a) Probabilities of reflection Pee, Andreev reflection Peh, transmission PT and con-
ductance g(E) of an incident electronic channel in a QAH slab with a normal-superconductor
junction. The probabilities and conductance are shown as a function of the inverse squared
magnetic length l−2

z that is directly proportional to the field. At zero field the device holds
a chiral Majorana nanowire in the superconducting side of the junction. The Hamiltonian
parameters are m0 = −1.0EU , ∆ = 2.0EU and E = 0.1EU . (b) Quasi-particle current and
probability density for l−2

z = 1.2L−2
U . Note that, in comparison with Figure 3a, the posi-

tion of the edge states with respect to the confinement wall has changed. There are also
differences between the left and right edge states relative position in the y direction.

However, these changes are abruptly hindered by the disappearance of the propagat-
ing channels in the normal lead with increasing magnetic field. In the rest of the paper
we will not consider orbital effects in the normal lead of the junction, assuming that
we have shielded or dampened the magnetic field in that region. This way we always
have a propagating channel opened in the normal contact to probe the behavior of
the chiral modes under the effects of the orbital motion.

In Figure 7 we consider a QAH slab with orbital effects active only on the super-
conducting side. The superconducting region is tuned to hold a single Majorana
channel at zero external field. We can see in Figure 7a (at the left of the vertical
dashed line) how the transmission probability slightly decreases while the normal
reflection increases with increasing magnetic strength. The reason is the change in
spatial alignment between the incident and the Majorana channels, as shown in
Figure 7b. This behavior persists up to the strength value marked as a black vertical
dashed line. From that point onwards the magnetic effective confinement is too nar-
row to allow the nanowire to hold the transversal length of the Majorana. Therefore
the propagating chiral Majorana mode disappears and only evanescent modes remain
in the superconducting region. This is signaled by a zero transmission probability and
the dominance of the Andreev effect as the main reflection mechanism. Electron-hole
reflection probability rises to one and the conductance achieves its maximum value
of two.

Finally, in Figure 8 we consider the same slab but with the superconducting
region tuned to hold two Majorana channels at zero external field. In Figure 8a
the first vertical dashed line signals the transition from a state with two Majorana
edge states to a single Majorana state, while the second one signals the loss of both
Majorana channels. The first transition is followed by a change in the transmission
probability PT ≈ 1 to PT ≈ 0.5 as we expect from the loss of one of the two Majorana
channels. Accordingly, the electron and hole reflection probabilities rise from zero to
Pee ≈ Peh ≈ 0.25. Note, however, that here the change of the probabilities with
the magnetic strength is not abrupt (probably because of large transverse finite size
effects). The change is also smooth at the transition from one to zero active Majorana
channels. This causes the conductance to oscillate while the system evolves between
different conductance plateaus with smooth oscillations.
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Fig. 7. (a) Same as in Figure 6a, but with the external magnetic field applied only to the
right side of the junction. This way we avoid the channel closing on the normal side and we
can probe the junction behavior for higher magnetic fields. At zero field the device holds a
chiral Majorana mode in the superconducting side of the junction and the vertical dotted
line signals the strength for which this Majorana mode disappears. The material parameter
m0 = −1EU is constant all along the slab, while the rest of the Hamiltonian parameters are
the same as above. (b) and (c) Quasi-particle current and probability density at strengths of
the external field corresponding to l−2

z = 1.2L−2
U and l−2

z = 2.4L−2
U , respectively. Note that

only evanescent modes remain on the right side in panel c).

Fig. 8. (a) Same as in Figure 7a but with a material parameter m0 = −3EU . The rest of the
Hamiltonian parameters are the same as above. This way, at zero field the device holds two
chiral Majorana modes in the superconducting side of the junction. Each vertical dotted line
in (a) signals the strength for which one Majorana mode is lost. (b) and (c) Quasi-particle
current and probability density for strengths of the external field at the right side of the
junction corresponding to l−2

z = 1.6L−2
U and l−2

z = 2.4L−2
U , respectively.
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6 Conclusion

We have studied how the conductance in a normal-superconductor junction with
chiral Majorana modes is related to the spatial distribution of currents using a simpli-
fied model. In particular, we have shown how the spatial coupling of the propagating
modes on the different sides of the junction is relevant to explain the observed results.
Furthermore, we have introduced the effect of the orbital motion in the model to
investigate how this coupling is affected by a magnetic field. It is the objective of
future work to apply this type of analysis to a more realistic physical model, like that
of reference [16], where we expect to observe similar behaviors plus some additional
ones. The reason is that many of these models may be rewritten in terms of one or
several coupled copies of the present one.

This work was funded by MINEICO-Spain, grant MAT2017-82639.
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