
Eur. Phys. J. Special Topics 227, 2155–2169 (2019)
c© EDP Sciences, Springer-Verlag GmbH Germany,

part of Springer Nature, 2019
https://doi.org/10.1140/epjst/e2018-800048-x

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

The quantum particle in a box: what we can
learn from classical electrodynamics

L. de la Peña, A.M. Cettoa, and A. Valdés-Hernández

Instituto de F́ısica, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico

Received 12 April 2018 / Received in final form 9 August 2018
Published online 31 January 2019

Abstract. The problem of a charged particle enclosed in an infinite
square potential well is analysed from the point of view of classical
theory with the addition of the electromagnetic zero-point radiation
field, with the aim to explore the extent to which such an analysis
can contribute to enhance our understanding of the quantum behavior.
First a proper treatment is made of the freely moving particle subject
to the action of the radiation field, involving a frequency cutoff ωc. The
jittering motion and the effective structure of the particle are sustained
by the permanent action of the zero-point field. As a result, the particle
interacts resonantly with the traveling field modes of frequency ωc in its
proper frame of reference, which superpose to give rise to a modulated
wave accompanying the particle. This is identified with the de Broglie
wave, validating the choice of Compton’s frequency for ωc. For the
stationary states of particles confined in the potential well, the Lorentz
force produced by the accompanying field is shown to lead to discrete
values for the mean speed and to an uneven probability distribution
that echoes the corresponding quantum distribution. The relevance of
the results obtained and the limitations of the classical approach used,
are discussed in the context of present-day stochastic electrodynamics.

1 Introduction

One of the most elementary problems in any introductory course on quantum mechan-
ics is the particle in a (one-dimensional) box. It serves to illustrate in very simple
terms the predictions of the Schrödinger equation with regard to energy quantization
and the corresponding spatial distribution of bound particles. The mathematics of the
problem is straightforward and leads to a classically unexpected result. Within the
quantum framework, normally no attempt is made to provide a physically convinc-
ing explanation for the alternating nodes and antinodes of the particle distribution
inside the well, nor for the appearance of discrete energy values. The solution read-
ily obtained from the Schrödinger equation, or the appeal to a de Broglie wave of
unknown nature, can hardly provide a satisfactory picture of the physics behind the
formal solution.

Here, we take the referred example and study it from an unconventional point
of view that may help to throw some light on the underlying physics. We consider
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a charged point particle (typically an electron) confined inside the well, subject to
the action of a real, Maxwellian fluctuating vacuum or zero-point radiation field
(ZPF). Following an entirely classical approach, we analyse the statistical behavior
of the particle, for stationary states of the particle + field system. The presence of
the vacuum is shown to lead to a particle dynamics that deviates from the standard
classical one and produces maxima and minima in the spatial distribution, bearing
qualitative resemblance with the quantum distribution.

The point of view followed here originated over fifty years ago with a paper by
Marshall [1], which gave birth to stochastic electrodynamics (SED), the theory aim-
ing to explain quantum properties of matter by adding the ZPF to classical physics.
Favorable results were obtained for a handful of problems thanks to the work of Mar-
shall, Boyer [2,3] and several others (for reviews and references see [3–5]. Examples of
more recent treatments related to the H atom are [6–9]. Other interesting approaches
to the quantum problem from a classical random perspective are discussed by ’t Hooft
[10] and Khrennikov [11,12]).

It is important to distinguish such classical approach to SED (called here CSED
for short), which we also follow here, from the general SED theory developed more
recently (see Ref. [13] and references therein). In the latter, the particle + plus ZPF
system is considered to transit towards a regime in which detailed energy balance
holds on the average and the system acquires ergodic properties; under such con-
dition, the description of the dynamics becomes consistent with the quantum rules.
Here by contrast, we remain all the time under classical rules and do not consider
the transition to the quantum regime. Yet the final results do show some relevant
quantum-like features, specifically regarding the probability distribution of particles
inside the well and the quantization of the energy in stationary states. Herein lies
the interest of the present CSED calculation: while it brings to the fore a physical
element that has been shown in other instances to play a key role in explaining quan-
tum phenomena, it reveals some of the limitations of the straightforward classical
approach followed.

The paper is organized as follows. In Section 2 we carefully revisit the problem of
the particle in interaction with the entire radiation field, including its own. This leads
to the identification of de Broglie’s clock, as a consequence of the limited response
of the particle to high frequencies, which gives rise to a jittering motion sustained by
the ZPF. In Section 3, de Broglie’s wave is seen to be electromagnetic in nature, as
discussed in earlier work (Ref. [13] and related references therein). In Section 4, the
analysis of the forces that operate in the stationary states of the particle confined to
move within the box under the guidance of de Broglie’s wave, is shown to lead to
well-defined energy values that coincide with the quantum ones, and to an uneven
particle distribution that conforms to the corresponding quantum prediction. The
paper ends with a critical discussion in Sections 5 and 6 of the implications of the
results obtained.

2 Electrodynamic origin of de Broglie’s clock

As anticipated above, the purpose of this section is to establish the electromagnetic
nature of de Broglie’s clock. For this purpose we revisit the issue of the total electro-
magnetic force acting on the electron, including the self-force, within a nonrelativistic
approach. The topic of the self-force is widely addressed in the literature, using diverse
techniques (see e.g. [14,15]). Here we follow a simple and direct procedure, based on
physical arguments that allow us to obtain a result free of divergences and acausality.
This approach serves to highlight the specific dynamical role played by the cutoff
frequency introduced along the derivation.
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We start by considering the classical problem of a particle of mass m and charge
e, subject to the action of a radiation field with vector potential A. Let HF denote
the free-field Hamiltonian; the total Hamiltonian of field and particle is then given by

H = H0 +HF , (1)

H0 =
1

2m
(p− e

c
A)2, HF =

1

8π

∫
d3x(E2 +B2), (2)

and the corresponding Hamilton equations are

mẋ = p− e

c
A, (3)

ṗ = e′
∑
n,λ

(
ẋ · ελn

)
kn

(
qλn coskn ·x− p

λ
n

ωn
sinkn·x

)
, (4)

q̇λn = pλn − e′
(
ẋ · ελn

) 1

ωn
coskn·x, (5)

ṗλn = −ω2
nq

λ
n + e′

(
ẋ · ελn

)
sinkn ·x . (6)

Here e′ = e
√

4π/V , with V the normalization volume; (n, λ) describes the modes

of the field with polarization vectors ελn, propagation vector kn, and frequency
ωn = ckn; qλn and pλn represent the quadratures of the field for each mode. In the
final calculations it is convenient to perform the transition to the continuous limit,
with the conventional rule

1√
V

∑
n,λ

fλn →
1

(2π)
3/2

∑
λ

∫
d3k fλ(k). (7)

The equation of motion for the particle becomes

mẍ = FL + F s, (8)

with FL the (external) Lorentz force and F s the self-force. The Lorentz force is
obtained by integrating equations (5) and (6), and combining with (3) and (4),

FL =
e

π
√

2

∫
d3k

∑
λ

[
ελk +

ẋ

c
×
(
k̂ × ελk

)]
(9)

×
[
ωkq

λ
k cos (k · x− ωkt)− pλk sin (k · x− ωkt)

]
.

As for F s we get

F s = − e2

2π2

∫
d3k

∑
λ

[
ελk +

ẋ

c
×
(
k̂ × ελk

)]
(10)

×
∫
dt′ẋ′ ·ελk [cos (ωk(t′ − t)− k·(x′ − x))] ,

where x′ = x(t′).
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2.1 The particle self-force

We shall in this section focus on the self-force given by equation (10) and carry out a
nonrelativistic calculation, assuming that the particle moves with a velocity ẋ, with
|ẋ| � c. We therefore consider that the electric term in the first square bracket in
equation (10) is dominant and hence neglect the magnetic term. Further, under the
same approximation the argument of the cosine function reduces to

ω(t′ − t)[1− k̂ · x
′ − x

c (t′ − t)
] ∼= ω(t′ − t), (11)

and (10) simplifies into

F s = − e2

2π2

∫
d3k

∑
λ

ελk

∫
dt′ẋ′ ·ελk cosωk(t′ − t). (12)

The angular integration over k̂ can be carried out by using

∑
λ

∫
dΩkε

λ
k(ẋ′·ελk) =

8π

3
ẋ′,

so that

F s = − 4e2

3πc3

∫ t

0

dt′ẋ′
∫
dωω2 cosω(t′ − t). (13)

At this point, in usual treatments the integral over the frequency is extended up
to infinity (see e.g. [16])

F s = − 4e2

3πc3

∫ t

0

dt′ẋ′
∫ ∞
0

dωω2 cosω(t′ − t), (14)

which gives after two integrations by parts

F s =
4e2

3πc3

(
π

2

...
x − ẍ

∫ ∞
0

dω

)
= mτ

...
x − δm∞ẍ, (15)

with τ = 2e2/3mc3 and

δm∞ =
2mτ

π

∫ ∞
0

dω. (16)

2.2 Causal Abraham-Lorentz equation

The approximate equation F s = mτ
...
x − δm∞ẍ furnishes a good description of the

nonrelativistic motion of a point charge for many purposes. The downside of it, as
is well known, is the appearance of acausality, manifested e.g. as preacceleration,
linked to the

...
x term, and of the divergent acquired mass δm∞. These problems are

normally avoided by approximating the radiation reaction in terms of the external
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force F (when there is one), mτ
...
x ' τ(∇F )·ẋ, and introducing a cutoff ωc in the

frequency integral of the mass correction,

δmc =
2mτ

π

ωc∫
0

dω =
2mτωc
π

. (17)

Strictly speaking, this procedure implies an inconsistency: whilst the nonrelativistic
assumption implies that the effect of the high-frequency modes on the motion is
considered small, the infinite mass correction is an (extreme) consequence of just
these high-frequency modes. It is clear that these latter modes do affect the particle
motion, by putting it to vibrate very rapidly. We shall therefore analyse with extra
care the effect of the high-frequency modes on the dynamics of an otherwise slowly
(nonrelativistically) moving particle. To avoid the inconsistency just mentioned, we
pay close attention to the effect of the radiation field modes of high frequency on the
particle dynamics, but assuming that the particle responds to the field only up to a
certain frequency ωc, after which it becomes transparent to it. With the introduction
of the cutoff frequency ωc, the mass correction is given by the finite expression (17).

Now we introduce the cutoff ωc in equation (13), so that

F s = − 4e2

3πc3

∫ t

0

dt′ẋ′I(t′ − t), (18)

with

I(t′ − t) =

∫ ωc

0

dωω2 cosω(t′ − t). (19)

Integration over the frequency gives

I(t′ − t) = − ∂2

∂t2
sinωc(t

′ − t)
t′ − t

, (20)

and equation (18) reads now

F s =
4e2

3πc3

∫ t

0

dt′ẋ′
∂2

∂t2
sinωc(t

′ − t)
t′ − t

. (21)

With

Sc(t− t′) =
sinωc (t− t′)
ωc (t− t′)

, (22)

the self-force takes the form

F s =
2mτωc
π

∫ t

0

dt′ẋ′
∂2

∂t2
Sc(t− t′). (23)

By performing two integrations by parts and using equation (17), this result takes
on the alternative form

F s = δmc
∂2

∂t2

∫ t

0

dt′ẋ′Sc(t− t′)− δmcẍ, (24)
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and the equation of motion that replaces the Abraham-Lorentz equation reads now
alternatively

mẍ = F +
2mτωc
π

∫ t

0

dt′ẋ′
∂2

∂t2
Sc(t− t′), (25)

or

(m+ δmc)ẍ = F + δmc
∂2

∂t2

∫ t

0

dt′ẋ′Sc(t− t′). (26)

Note that the radiation force term in equations (21) and (25) is a causal function,
with its instantaneous value dependent on the whole (past) history of the motion.
However, none of the two extra terms in equation (26) obey causality separately: the
mass correction δmc seems to be present already at time t = 0 (before the interaction),
and the second term on the right-hand side, which generalizes the radiation reaction
force mτ

...
x , thus also violates causality and leads to preacceleration.

Notice that the function Sc(t− t′) changes very rapidly for high values of ωc. Since

∂2Sc(t− t′)
∂t2

∣∣∣∣
t′=t

= −ω
2
c

3
, (27)

the accelerations for small time intervals t − t′ of the order of ω−1c are so strong
that the nonrelativistic treatment is clearly insufficient for a full description of the
motion; while it may be appropriate to describe the slow motion, it can only give an
approximate account of the fine variations around this slow motion.1

The previous discussion acquires its real importance by leading us to consider the
presence of the cutoff ωc as a physical requirement. This will become crucial for the
rest of our analysis.

2.3 De Broglie’s clock

An important property of the function Sc(t − t′) given by equation (22) is that it
oscillates at the frequency ωc, inducing oscillations of precisely this frequency on
the particle. It is the presence of these high-frequency oscillations, which play the
role of a nonrelativistic zitterbewegung, what generates an effective structure of the
particle. In the particular case of the electron it is well known that its electromagnetic
interaction induces on it an effective structure, with a radius of the order of the
Compton wavelength [16], equivalent to the distance the particle travels with velocity
c in a time interval ∆t ' 2πω−1C (the somewhat smaller value (λCrc)

1/2, where rc is
the “classical” electron radius e2/mc2, is assigned to it in Ref. [17]).2

1Of course, relativistic treatments of the radiation reaction force exist, although they also present
preacceleration and related problems (see e.g. [15]). The introduction of an effective structure asso-
ciated with the cutoff, which may be understood as acquired by the particle as a result of its
rapid oscillations (see below), helps to recover causality even in the nonrelativistic approximation
(examples and references may be seen in [5].

2From the point of view of SED, the emergence of an effective structure of the electron is most
natural. Consider the electron as a pointlike charged particle subject to the action of the random
vacuum field. Its high-frequency wandering induced by the field during the short time required
for the determination of its dimensions assigns to it a size of the order of the mean square root
of the position fluctuations. Identifying this measure of the fluctuations with the zitterbewegung
strengthens the selection λC .
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The appearance of the Compton frequency ωC = mc2/} should come as no sur-
prise in the present context, in which two electromagnetic constants play an important
role. These are the fine structure constant α, characterizing the interactions of the
field with matter, and τ, characterizing the magnitude of the radiation reaction. Since
α = e2/}c and τ = 2e2/3mc3, it follows that ωC = 2α/3τ. From a more physical point
of view, the fact that the cutoff frequency depends on the mass may be understood
in terms of the particle’s capacity to respond to the high-frequency modes, which
is limited by its total energy, mc2; at higher energies, higher processes occur that
change the nature of the particle.

It is important to note that the function Sc(t − t′) decreases rapidly as t − t′
grows beyond ∆t. This means that in the absence of an external field that maintains
such oscillations, they will decay, because of the dissipative effect of the radiation
reaction. According to the basic postulate of SED, however, the particle is perma-
nently embedded in the ZPF, so that the high-frequency oscillations – and hence the
effective structure – are continuously regenerated by the high-frequency modes of this
field, with which it interacts resonantly.3 With ωc given by ωC , these oscillations are
in line with the old proposal made by de Broglie stating that an atomic particle of
mass m carries with it a kind of clock that oscillates with the Compton frequency;
however, in contrast to the present instance, in de Broglie’s theory this behavior is
assumed as a fundamental property of the particle, without any specification of the
underlying cause that gives rise to it. His postulate, as is well known, led de Broglie
to the existence of the de Broglie wavelength and the construction of the first version
of quantum mechanics around 1925 (a detailed discussion of this and related events
is given in [19]).

3 The de Broglie wave

The above discussion endows the de Broglie wave with a concrete physical meaning, as
will be shown in what follows. For this purpose we consider a representative particle
traveling with a (constant or slowly varying) velocity v0 along the z direction and
look at the ZPF modes with which the particle interacts resonantly, namely those
with frequency ωC in the co-moving reference system Sp. Let us confine our attention
to just the couple of modes that travel along the z axis (in both directions).4 The
corresponding frequencies as seen from the laboratory are given by

ω =
γωC
1± β

,

the sign depending on the direction of propagation of the mode, with γ = 1/
√

1− β2

and β = v0/c. We write the vector potential for the two modes of the ZPF as seen
from the laboratory, in the form

Aλ = Aλ+(k)ε̂λ+e
iθλ+eiγ(1+β)(kCz−ωCt) +Aλ−(k)ε̂λ−e

iθλ−eiγ(1−β)(−kCz−ωCt) + c.c. (28)

3According to several authors (see e.g. [18]) the self-force induces oscillations on a particle with
structure, that are self-sustained and depend on the size of the particle. This argument rests on
the assumption of the particle being already endowed with a structure, in contrast with the present
treatment, in which the structure is created and sustained by the particle’s permanent interaction
with the vacuum field.

4The field modes traveling in the x and y directions are symmetrically distributed about the z
axis and are therefore considered to have a mean null effect on the dynamics.
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for every circular polarization λ (λ = ±1).5 Here Aλ+(k) and Aλ−(k) stand for the

amplitudes of the waves that travel in the +z and −z direction, respectively; ε̂λ

are the polarization vectors, kC = ωC/c, and θλ± are independent random phases.
Since β � 1, we may take both ZPF mode amplitudes of equal size A0, with
A0 =

√
πc2~/ωCV , corresponding to an energy ~ωC/2 per mode. It is convenient

to introduce the following shorthand definitions

ϕP = γ(βkCz − ωCt), ϕM = γ(kCz − βωCt); (29)

θλP = 1
2 (θλ+ + θλ−), θλM = 1

2 (θλ+ − θλ−); (30)

ελ+ = ε̂x + iε̂y, ελ− = ε∗λ+ = ε̂x − iε̂y, (31)

k̂± × ε̂± = −iλε̂λ±. (32)

Then Aλ takes the form

Aλ = 4A0 cosPλ
[
ε̂x cosMλ − λε̂y sinMλ

]
, (33)

with

Mλ = ϕM + θλM , Pλ = ϕP + θλP . (34)

Let us now look separately at the two factors contained in Aλ, which we call P - and
M -waves, respectively. The P -wave represents a high-frequency carrier signal in time;
it oscillates with Compton’s frequency, impressing on the particle a nonrelativistic
zitterbewegung (of frequency γωC instead of the relativistic value 2ωC). In space it
has a modulation, with wave number given by

kB ≡ γβkC =
γmv0
~

=
p

~
, (35)

where p = γmv0. With kB = 2π/λB , the wavelength of the P -wave reads

λB =
h

p
, (36)

which is just the famous de Broglie formula. From the dispersion relation ω2
z =

γ2ω2
C = ω2

C + c2k2B , we get for the group velocity

vg =
∂ωz
∂kB

= v0, (37)

which indicates that wave and particle travel with the same velocity, the wave ‘guid-
ing’ (or accompanying) the particle, just as proposed in de Broglie’s theory. (A more
detailed discussion of these matters can be seen in Refs. [13,21].) The association of
the ZPF modulation to the particle defines a complex wave-plus-particle entity that
gives a specific meaning to the familiar structure, pervasive in the whole of quantum

5The field is decomposed into modes of circular polarization, in attention to the fact that the
electron interacts separately with such modes, as is known from the theory of atomic transitions
[20].
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mechanics and referred to under various names, such as Eddington’s ‘wavicle’ [22],
Bunge’s ‘quanton’ [23], or Maxwell’s ‘smearon’ [24].

The M -wave, in its turn, oscillates slowly in time but contains very fine oscillations
in z-space, of Compton’s wavelength. This part of the wave is therefore responsible
for the zitterbewegung in space that gives rise to the effective structure of the particle
mentioned above. Its phase travels with the velocity given by βωC/kC = v0, which
means that as the particle moves in space, it is ‘anchored’ to some place inside the
M -wave.

Attention must be paid to the θP and θM phases contained in the P - and M -
waves, respectively, which in free space may have any value at random between 0 and
2π. For an ensemble of similar systems, its members are affected by different random
values of these phases. Thus, in any case only a statistical treatment of the problem
is meaningful.6 It follows that the de Broglie wave is a statistical concept, so that its
use implies going from an individual case over to an ensemble. How this is achieved
will become clear in what follows.

4 Mean dynamics of particles confined in an infinite potential well

In this section, we proceed to analyse the behavior of an ensemble of representative
particles enclosed in a finite region of space and subject to the action of the ZPF,
considering that the interaction occurs dominantly (resonantly) with the modes of
frequency ωC . Specifically, we are interested in the stationary states of motion of
electrons moving freely within two parallel, impenetrable walls at z = 0 (lying on
the xy plane) and z = a. According to the above discussions, the interaction of a
particle with modes of the field (of frequency ωC) traveling along z generates (small)
stochastic motions on the xy plane. Now, the magnetic component of the field on
that plane couples to such small motions, giving rise to a magnetic component of
the Lorentz force along the z axis, which adds an extra component to the original
systematic velocity of the particle along this direction. Therefore, the particles move
inside the well with a velocity that varies around its mean value v0, the variations
depending on the position variable z. The presence of the impenetrable walls is taken
account for by imposing appropriate stationarity and symmetry restrictions on the
mean local systematic motion, the result of all this being an expression for the distri-
bution of particles inside the well and a restriction on the possible values of the mean
velocity v0.7

4.1 Velocity field inside the well

To study the behavior of the electron inside the well we consider that it interacts
dominantly with waves of Compton’s frequency ωC in its own reference system Sp, all
the remaining modes of the ZPF, with frequencies other than ωC , constituting a noisy
background that may be omitted in a first approximation. (As discussed in Refs. [5,13]
and references therein, in the context of SED this noisy background is identified with
the vacuum fluctuations responsible for the radiative corrections of QED.) Further, we
assume that the particle + field system has reached a stationary state; this means that
an equilibrium has been established between the energy radiated by the particle and

6The statistical character of quantum mechanics has been recently underlined in an important
series of works that analyse the dynamics of measurement, see references [25,26].

7While here we deal with charged particles, a similar treatment is applicable in principle to any
particle that interacts with the zero-point radiation field or, for that matter, with any vacuum field.
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the one gained from the random field, and one may therefore neglect any contribution
from radiation reaction inside the well.

Because the system has axial symmetry around the z axis, for the calculation of
the Lorentz force on the particle we may single out the effective ZPF components Aλ

with wave vector along the direction of motion given by equation (33), with Pλ and
Mλ given in the nonrelativistic approximation (γ ' 1) respectively by

Pλ = kBz − ωCt+ θλP , Mλ = kCz − βωCt+ θλM , (38)

according to equations (29) and (34). From the expression for the Lorentz force
exerted by the field represented by equation (33), we get for the x-component of the
velocity

dvx
dt

= − e

mc

∂Ax
∂t
− e

mc
vz
∂Ax
∂z

= − e

mc

dAx
dt

(39)

and a similar result for dvy/dt, both for each λ. Integrating these equations, we find
that the solutions of the equations of motion for the transverse components are,
taking into account that the systematic motion has no x or y component,

vx = − e

mc
Aλx, vy = − e

mc
Aλy . (40)

Inserting these into the equation of motion for the longitudinal component

m
dvz
dt

=
e

c

(
vx
∂Aλx
∂z

+ vy
∂Aλy
∂z

)
(41)

gives, according to (33),

dvz
dt

= −4e2A2
0

m2c2
∂

∂z
cos 2Pλ. (42)

Notice that the dynamics of the particle is determined by the carrier wave P only,
which oscillates rapidly in time and varies smoothly in space. As mentioned above,
different members of the ensemble may be attached to different points of the finely
oscillating (in space) M -wave; this means that the position of the particle is defined
up to a radius of size λC . Analogously, we may consider that the extremely rapid
time oscillations (of frequency ωC) contained in the P -wave are not detected by the
measuring instrument because of its comparatively slow response. This is in line with
the usual nonrelativistic quantum-mechanical description, which is limited to the slow
motion and does not include the fine oscillations associated with the zitterbewegung.8

To mimic this in the present description we erase the rapid oscillation from Pλ by
making the substitution cos 2Pλ → cos 2P = cos 2(kBz+ϕ), where ϕ is a fixed phase,
the same for all members of the ensemble. The slow motion is therefore described by
the solution of

dvz
dt

= −4e2A2
0

m2c2
d

dz
cos 2P, P = kBz + ϕ. (43)

8Things are somewhat different in a relativistic treatment. In particular, the solution of the
Dirac equation for the free particle exhibits the zitterbewegung as an additional contribution in
the relativistic expressions for velocity and position. In neglecting here the zitterbewegung we are
assuming that its contribution to the particle energy is constant.
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Since there is no more explicit dependence on t, we have dvz/dt = vz(dvz/dz). Inte-
gration of (43) is thus straightforward; with v0 the average speed of the particle within
the well (see Eq. (50)), the solution is

vz(z) = ±v0
√

1− b cos(2kBz + 2ϕ), (44)

with b = 8e2A2
0/m

2c2v20 , and z ∈ (0, a).
The spatial confinement of the particles is taken into account by imposing the

symmetry considerations that distinguish a distribution of trapped particles from an
ensemble of freely moving particles. Specifically, in a stationary state within a well
of width a the following conditions must hold:

|vz(z)| = |vz(a− z)| , (45)

∆ϑ = ϑ(a)− ϑ(0) = 2nπ, n = 1, 2, 3, . . . (46)

where ϑ(z) = 2P. The first condition results in

kBa = πn′ − 2ϕ, n′ = 1, 2, 3, . . . (47)

which together with equation (46) gives

2ϕ = π(n′ − n) = πη, η = n′ − n, (48)

so that equation (47) becomes

kBa = πn, n = 1, 2, 3, . . . (49)

It follows from equations (35) and (49) that the speed v0 is restricted to the values

v0n =
π~
ma

n = nv1, v1 ≡
π~
ma

, (50)

which gives for de Broglie’s wavelength the familiar condition

λBn = h/mv0n (51)

and for the energy spectrum the well-known result

En =
1

2
mv20n =

π2~2

2ma2
n2. (52)

Equation (44) becomes thus

vn(z) = ±nv1

√
1− (−1)ηbn cos

2πn

a
z, (53)

with

bn =
8e2A2

0

m2c2v21n
2

=
b1
n2
. (54)
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Equation (53) gives the mean local velocity as a function of z, which is what we
need in order to find the distribution of particles along the z axis.

4.2 Probability distribution of the confined particles

We have been led by the considerations of stationarity and symmetry to an approxi-
mate statistical description of the motion of the particle inside the well. To determine
the corresponding probability distribution from equation (53) we resort to the usual
classical argument. We consider that the average number of particles dn = ρ(z)dz in
a small region dz is proportional to the mean time dt that the particles spend in the
small space interval dz (with dt� ∆t ' 2πω−1C and dz � ∆z ' 2πk−1C = λC). Then
with ρ(z) the density of particles and N the normalization constant,

ρ(z)dz = Ndt = N
dz

|v|
, (55)

or

ρ(z) =
N

|v|
. (56)

Inserting here vn(z) as given by equation (53) we obtain

ρn(z) =
N

nv1

√
1− (−1)ηbn cos 2πn

a z
. (57)

With any odd value for the free parameter η, the positions of the maxima and
minima of this expression coincide precisely with those of the corresponding quantum
results. For easiness of comparison, we introduce the modified distribution ρCn (z) by
substracting from (57) its minimum value ρn(0),

ρCn (z) = ρn(z)− ρn(0) =
N

nv1

 1√
1 + bn cos 2πn

a z
− 1√

1 + bn

 . (58)

Figure 1 illustrates the result for the cases n = 1, 2, as well as the corresponding
densities ρQn (z) (in green) predicted by quantum theory. The densities have been
normalized to a maximum value of 1. Figure 2 for the excited state n = 5, shows that
the agreement becomes better as the value of n increases. Indeed, a series expansion
of ρCn (z) gives, to first order in (2bn/1 + bn) sin2 knz,

ρCn (z) ∝ sin2(πn
z

a
), n� 1. (59)

Although the agreement between the adjusted classical curve ρCn (z) and the quan-
tum one is quite satisfactory, the differences between the quantum and the classical
predictions cannot be sidestepped: not only was it necessary to substract ρn(0) from
ρn(z), but the adjusted ρCn (z) differs from ρQn (z) for any finite value of n.
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Fig. 1. Probability density for n = 1, 2; b1 = 0.8.

Fig. 2. Same as Figure 1, for n = 5.

5 Limitations of the classical approach

We recall that in certain instances – particularly linear problems – quantum results
have been predicted with precision using the tools of CSED (see e.g. [3] for the
Casimir effect and the van der Waals forces). However, more generally – and partic-
ularly with nonlinear problems – it happens that the predictions of CSED deviate
from the quantum ones. Recent examples of relevance for the present discussion are
provided in references [6–9], devoted to the ground state of the hydrogen atom. The
numerical results reported in these important works adjust themselves reasonably
well to the statistics of the orbit up to a point, after which the atom ionizes; accord-
ing to references [7–9] this happens after about one million or more electron orbits.
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This problem with CSED had been detected at an early stage by means of analytical
calculations (e.g. [27–31]), but it was poorly understood, the then prevailing convic-
tion among the SED community being that CSED and QM were but two different
expressions of one and the same theory. The present case illustrates that not even in
the linear case this is true, as is also discussed in Section 8.1.3 of reference [5], where
it is shown that the free particle of CSED does not comply with detailed energy
balance.

It is important therefore to recognize under which conditions SED and QM furnish
equivalent results, despite their remarkable differences in approach. As discussed in
some detail in reference [13] in connection with SED, assuming that the particle-field
interaction causes the system to evolve asymptotically towards the quantum regime,
in addition to energy balance this regime implies by necessity an ergodic behavior
of the mechanical part of the system. As a consequence, the dynamical variables,
originally functions in phase space, become replaced by operators (matrices), as is
demonstrated in detail in Chapter 5 of reference [13]. Moreover, the transition to
this regime does not leave the ZPF unaffected; in particular, the ergodic condition
implies the establishment of specific correlations among the ZPF modes that sustain
the stationary states [13]. This means that as a result, both matter and the (nearby)
field become eventually affected in an essential way. For internal consistency one
appeals to the Hilbert-space formalism, which turns out to be a powerful, synthetic
tool to describe such state of affairs. Further, since SED contains the vacuum ab
initio, one arrives at a theory that is in essence equivalent to nonrelativistic QED.9

The transition from the classical to the quantum regime represents a most delicate
point of the theory, and perhaps the most difficult one to grasp, clearly still in want
of a more detailed study and deeper understanding.

6 Concluding remarks

By taking an entirely classical approach to the problem of a charged particle in a box
immersed in the ZPF, we have found that the ensuing accompanying de Broglie wave
– which, correspondingly, is of electromagnetic nature, as anticipated in reference [33]
– has the effect of producing an uneven distribution of matter inside the box, with
alternating maxima and minima characterizing the stationary states, in consonance
with the quantum case. The quantization of the mean speed of the particle (and
hence of its associated kinetic energy) emerges as a consequence of periodicity and
simple symmetry properties of the stationary state.

The quantum-like behavior obtained refers to the slow motion; the rapid oscil-
lations that appear as a nonrelativistic zitterbewegung are ignored in this coarse
approximate description, just as in nonrelativistic quantum mechanics. Moreover, we
have not addressed here the complex dynamics of the evolution towards stationarity,
nor did we prove that energy balance is attained in the asymptotic limit. We simply
assumed that the system has reached a stationary state, and that the ZPF has not
been affected by its interaction with the particle (except by fixing the value of the
phase ϕ).

The main purpose of the present analysis has been the elucidation, by means of a
simple example, of the extent to which a classical approach involving the ZPF is able
to explain the origin of some core elements of the characteristic quantum behavior.
This exercise has served the purpose, by proving that the silence of QM can be
transcended to reveal a physics that remains concealed in the usual descriptions.

9In reference [13], the theory so constructed is shown to correctly predict the atomic lifetimes,
the Lamb shift and other results that are proper of QED and fall beyond usual QM. More recently
it has been possible to demonstrate that the spin of the electron is a further quantum property that
emerges from the interaction with the ZPF [32].
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However, another and no less important outcome of the exercise is that it confirms
that CSED (which is just the original form of SED referred to in the introduction)
and usual QM, are different theories, although in specific cases they may lead to
similar or coincident results.

The authors gratefully acknowledge valuable comments from Dr. Jaime Avendaño. This work
has been supported by DGAPA-UNAM through projects PAPIIT IN104816 and IA101918.
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