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Abstract. Investigations of quantum and mesoscopic thermodynam-
ics force one to answer two fundamental questions associated with
the foundations of statistical mechanics: (i) how does macroscopic
irreversibility emerge from microscopic reversibility? (ii) how does
the system relax in general to thermal equilibrium with its environ-
ment? The answers to these questions rely on a deep understanding
of nonequilibrium decoherence dynamics of systems interacting with
their environments. Decoherence is also a main concern in develop-
ing quantum information technology. In the past two decades, many
theoretical and experimental investigations have devoted to this topic,
most of these investigations take the Markov (memory-less) approx-
imation. These investigations have provided a partial understanding
to several fundamental issues, such as quantum measurement and the
quantum-to-classical transition, etc. However, experimental implemen-
tations of nanoscale solid-state quantum information processing makes
strong non-Markovian memory effects unavoidable, thus rendering their
study a pressing and vital issue. Through the rigorous derivation of the
exact master equation and a systematical exploration of various non-
Markovian processes for a large class of open quantum systems, we
find that decoherence manifests unexpected complexities. We demon-
strate these general non-Markovian dynamics manifested in different
open quantum systems.

1 Introduction

As it is well-known, any realistic system will inevitably interact with its environment.
For nano-scale quantum devices or more general mesoscopic systems, such interac-
tions are usually not negligible, and thus these objects must be treated as open
systems. Specifically, an open system is defined as the principal system consisting of
only a few relevant dynamical variables in contact with an environment containing
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a huge (infinite) number of degrees of freedom. Understanding the dynamics of open
systems is also one of the most challenging topics in physics, chemistry, biology and
even engineering. In particular, the interactions between the principal system and the
environment can induce various back-reactions between them such that the system
can memory its historical evolution. These memory processes are characterized as
the non-Markovian dynamics in open systems, to distinguish from the memoryless
processes which are named as Markov dynamics in the literature.

Physically, non-Markovian dynamics can be described by different time correla-
tions associated with environment-induced dissipation and fluctuation dynamics in
open systems. To understand the quantum dynamics of open systems, many different
approaches were developed. In principle, the system we care about plus its environ-
ments together form a closed system, which is governed by the Schrödinger equation
in terms of the wave function of the total system or the von Neumann equation in
terms of the total density matrix. Usually the environment is assumed to be ini-
tially in a thermal equilibrium state at a given temperature T , which is a mixed
state. Thus, the Schrödinger picture is no longer applicable. One has to use the von
Neumann equation in terms of the density matrix to solve the dynamics of the total
system. The solution of the density matrix contains all predictions to various physical
observables.

Practically, it is very difficult to solve the von Neumann equation of the total sys-
tem, due to the infinite number of degrees of freedom involved in the environment.
More important, we are only interested in the dynamics of the principal system itself,
rather than the dynamics of its environment. Hence, for a long time, a central issue
in the investigations of the dynamics of open system has been focused on finding the
equation of motion for the reduced density matrix of the principal system. Such an
equation of motion is called as Master equation. Within the framework of von Neu-
mann equation of the total system, the master equation can be derived in principle
from quantum mechanics, as I will attempt to do so in this article. On the other
hand, from the open system point of view, the master equation actually plays an
even more important role for the foundation of statistical mechanics [1], in compari-
son with the Newtonian equation for macroscopic objects, the Maxwell equations for
electrodynamics, and the Schrödinger equation for isolated quantum systems. From
the more fundamental point of view, the Newtonian equation can be derived from the
Lagrangian formalism, the Maxwell equations can be derived from the field theory
of quantum electrodynamics (QED), and the Schrödinger equation is only a nonrel-
ativistic approximation of the Dirac equation which can also be derived from QED,
while it is not clear if there is a fundamental principle to directly determine the master
equation. With this aspect, finding the master equation for open quantum systems
is a big challenge in science. Certainly, if one can find the exact master equation for
arbitrary open systems, many interesting and fundamental problems in open system
dynamics, including non-Markovian memory dynamics I will focus on this in article,
can be easily addressed.

Historically, the first master equation was phenomenologically introduced by Pauli
in 1928 [2], which is now called the Pauli master equation in the literature. In the
past many decades, one has made progresses with various approaches in deriving the
master equation for different open quantum systems. These include the Nakajawa–
Zwanzig master equation [4,5], the Born or Born–Markov master equation [3,6], the
GKS-Lindblad master equation [7,8], etc. However, all these master equations are
either practically unsolvable [4,5] or only applicable for Markov dynamics [3,6–8].
Until 1980s, Caldeira and Leggett systematically derived a master equation for quan-
tum Brownian motion [9], using the Feynman–Vernon influence functional approach
[10] to explicitly and exactly integrate out all the environment degrees of freedom.
Since then, the quantum Brownian motion becomes a prototype example in under-
standing the dynamics of open quantum systems [11]. In reality, however, no many
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systems can be treated with the quantum Brownian motion. There is still a lack of
satisfactory answer to the master equation and to open quantum system dynamics in
general. Indeed, not having a rigorous and more general master equation for a large
class of realistic open quantum systems remains a primary obstacle in understanding
many fundamental problems in physics.

To address physically the more general essence of open quantum system dynamics,
we developed a full non-Markovian decoherence theory [12–17] with the exact master
equation we derived recently for a class of open systems. These open systems linearly
couple to environments but are different from the quantum Brownian motion. More
specifically, the system and the environments are described with Fano–Anderson type
Hamiltonians [18–20] that have wide applications in atomic physics, quantum optics,
condensed matter physics and particle physics [21–23]. Here, both the system and the
environment can be either bosonic or fermionic, and it may also be extendible to spin-
like systems. We find [12–17] that the dissipation and fluctuations coefficients in our
exact master equation are intimately connected with nonequilibrium Green functions
in many-body systems [24–26]. As a result, we show that the nonequilibrium Green
functions that obey the integro-differential convolution equations depict all possible
non-Markovian memory dynamics through the time-convolution integral structures
[12,27–32].

I should emphasize from the very beginning that in the reality, non-Markovian
dynamics is well-defined as memory processes in open systems. Experimentally, non-
Markovian dynamics can be quantified though direct measurements of two-time
correlation functions which demonstrate explicitly memory effects. The fundamental
study of quantum dynamics and the technology development of quantum informa-
tion processing show that it is crucially important to understand general physical
behaviors of non-Markovian dynamics, namely how different energy structures of the
system and the environment, and different couplings between them, including differ-
ent initial state dependences on the system and the environment, determine different
memory effects of open quantum systems. Such understanding could truly help one to
engineeringly control and manipulate decoherence in practical applications in quan-
tum technology, and therefore this is my main concern in the study of non-Markovian
dynamics in open quantum systems.

It may also be worth pointing out that the study of non-Markovian decoher-
ence dynamics in open quantum systems has attracted a great deal of attentions
recently [33]. Most of investigations have been focused on how to mathemat-
ically quantify the degree of non-Markovianity by introducing different con-
cepts, such as divisibility [34,35] and distinguishability of states [36], etc., in
an attempt of mathematically characterizing quantum Markovianity. The results
from these investigations are much definition-dependent and the conclusions often
diverge from each other. It is therefore not the topic I will discuss in this
article.

2 Structures of system-environment couplings

Undoubtedly, dynamics of open quantum systems crucially depend on the structure
of system-environment couplings or interactions. Here, I would like to begin with a
discussion on possible system–environment couplings we may encounter in practical
applications.

A general open quantum system is defined as a principal system of interest inter-
acting with its surroundings as its environments (or reservoirs). The interactions
between the system and its environments are the manifestation of the exchanges of
matters, energies and informations between them. A general Hamiltonian describing
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the coupling between the system and its environments can be formally written as

H = HS +HE +HSE , (1)

where HS and HE are the Hamiltonians of the system and the environment, respec-
tively, and HSE denotes the interaction between them. The explicit form of HSE

depends on the particular system and its environment(s) that we concern.
The simplest realization of such an open quantum system was originally intro-

duced by Feynman and Vernon in the seminal paper in 1963 [10], where Feynman and
Vernon developed a theory named influence functional, based on the path-integral for-
malism [37], to deal with the influence of linear environmental systems acting on the
principal system. In particular, they modeled the linear environmental systems as a
sum of an infinite number of harmonic oscillators. In 1980s, Caldeira and Leggett used
the approach of Feynman–Vernon influence functional to study in details the dynam-
ics of a Brownian particle under the influence of such an environment [9], which is now
called as the Caldeira–Leggett (CL) model in the literature. The significance of the
CL model is the emergence of the classical dissipation motion of a Brownian particle
within the framework of quantum mechanics. The equilibrium fluctuation–dissipation
theorem proposed originally by Einstein is also naturally obtained quantum mechan-
ically from this model. Thus, the CL model becomes a prototype model in the study
of the dynamics of open quantum systems [11].

On the other hand, the rapid developments of new emerging research fields on
nano-technologies and quantum information sciences have stimulated tremendous
interests on decoherence dynamics of tiny quantum devices, due to their invertible
interaction with various environments surrounding. Typical examples include semi-
conductor nanostructures in mesoscopic physics, nanophotonics in photonic crystals
and metamaterials, nanostructured cavity QED, and electrons or nuclear spins inter-
acting with a thermal spin bath, just to name a few. These open quantum systems,
which are currently very popular in the practical applications of nanotechnologies
and quantum information sciences, go much beyond the CL model of the quantum
Brownian motion. The general Hamiltonian for these system–environment couplings
should be analyzed physically in a more realistic manner, as I will discuss in the
following.

Consider first the exchange of matters between the system and its environments.
Since matters are built with fermions, i.e. electrons and nuclei (or more fundamentally,
quarks), we should start with both the system and its environments being made

of fermions. Let ai, a
†
i and bαk, b

†
αk denote the creation and annihilation operators

of fermions of the system and the environment α, respectively, which satisfy the
standard fermionic anti-commutation relationships. Then the most basic process for
the underlying matter exchange between the system and its environments can be
described effectively through the following Hamiltonian:

H(t) =
∑
i

εij(t)a
†
iaj +

∑
αk

εαk(t)b†αkbαk +
∑
αik

(
Viαk(t)a†i bαk + V ∗iαk(t)b†αkai

)
, (2)

where the system-environment coupling, i.e. the last term in the above equation, is
realized through particle tunnelings between the system and its environments. The
index α denotes different environments in contact with the same systems. I let all
the parameters in the Hamiltonian be time-dependent because current nanotech-
nologies are capable to tune these parameters effectively through various external
fields, such as bias and gate voltages in nanoelectronics. The form of equation (2) is
indeed a generalized Fano–Anderson Hamiltonian in condensed matter physics [23],
as it was originally introduced by Anderson [18,19] and Fano [20] independently, to
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describe impurity electrons coupled to continuous states in solid-state physics, and
discrete states embedded in a continuum in atomic spectra, respectively. In the past
two decades, one has started with such Hamiltonians to investigate various electron
transport phenomena and decoherence dynamics in semiconductor nanoelectronics
and spintronics for mesoscopic physics, where the nano-scale electron system is in
contact with two (or more) electrodes which serve as the electronic reservoirs [38,39].

The system interacting with its environments in terms of the Fano–Anderson
Hamiltonian (2) has also been applied to the case where both the system and the envi-
ronments are made of bosons as composite particles of fermions, such as atoms that
Fano originally proposed [20], or more fundamentally made of scalar fields [41]. Cor-

respondingly, the creation and annihilation operators, ai, a
†
i and bαk, b

†
αk, would then

obey bosonic commutation relationships. The generalized Fano–Anderson Hamilto-
nian was also refereed to the multi-level Lee–Friedrich Hamiltonian [40–42] which
models the processes of the quantum mechanical resonances and decays of the dis-
crete state or localized particles with a continuum in different contexts of atomic and
molecular physics, nuclear physics and quantum field theory [21,41,43]. If the system
and its environment are made of massless particles, such as photons, the Hamilto-
nian of equation (2) would describe the photon scattering processes, corresponding to
photon tunnelings between the system and the environment, such as photon loss into
the free space (spontaneous emissions) in quantum optics as well as in the various
new development of nanophotonics [15,22,44].

The next order contribution to the exchanges of matters and energies between
the system and its environments originates from particle–particle interactions. Corre-
spondingly, a coupling Hamiltonian arisen from particle–particle interactions between
the system and its environments should be added to equation (2),

H ′SE =
∑
α,ijkl

(
V

(1)
α,ijkla

†
ia
†
jbαlbαk + V

(2)
α,ijkla

†
i b
†
αlbαkaj + H.c.

)
, (3)

where the first term plus its Hermitian conjugate correspond to particle-pair
exchanges between the system and its environment α, and the second term only
involves energy exchanges (particle–particle scattering interactions) between them.
Including the interacting Hamiltonian of equation (3) makes the system and its envi-
ronments become a typical interacting many-body problem [23]. Except for weak
particle–particle interactions, where the perturbation approach can be applied, the
problem associated with equation (3) cannot be solved exactly in general, just like
the strongly correlated electronic systems in condensed matter physics and the low-
energy quantum chromodynamics (QCD) in particle physics. Related to exact master
equation and non-Markovian dynamics, I have developed a general transport theory
using the closed-time path integral approach and the associated quantum Boltzmann
equation in terms of loop expansions technique within the quantum field theory frame-
work two decades ago [45], but this will not be the main approach I will discuss in
this article.

The above discussions focus on open quantum systems where both the system and
its environments are made of the same type of particles, either fermions or bosons.
However, we also often have the situation where the system is a fermionic system
and its environments are made of bosons. A typical example of this type is the
system coupled to its environment through matter-light interaction [21], where the
system–environment coupling is determined by electron–photon interactions under
the fundamental theory of QED,

He−p = −e
∫
d3xψ†(x)γµψ(x)Aµ(x) =

∑
pq

(
Vpqa

†
p+qapbq + V ∗pqa

†
pap+qb

†
q

)
, (4)



1854 The European Physical Journal Special Topics

where ψ(x) is the electron field, Aµ(x) is the vector potential of the electromagnetic
field, e is the electron charge, and γµ are the Dirac γ-matrices [46]. In the second
equality of equation (4), I have ignored the antiparticle component (positron) of the
electron field because it usually has no contribution in the nonrelativistic regime. The
electron–phonon coupling between the system and its environment in condensed mat-
ter physics shares the same coupling Hamiltonian. The dynamics of the system with
such electron–photon interaction has also been extensively studied in the framework
of perturbation expansions. A two-level system coupled to an electromagnetic field
in quantum optics, i.e. several different kind of spin-boson models that I will discuss
in Section 3, can be in principle reduced from (4). The systematic nonperturbation
approach I developed in [45] can also be applied to the systems of equation (4) but
this is not the exact master equation approach that I will discuss in this article.

As a result of the above analysis, I will concentrate on the dynamics of open
quantum systems with the generalized Fano–Anderson Hamiltonian or multi-level
Lee–Friedrichs Hamiltonian, given explicitly by equation (2). This Hamiltonian
describes the underlying exchanges of matters and/or energies between the sys-
tem and its environments on one hand, and on the other hand, is applicable to
tremendous nano-scale quantum devices in the investigation of nanoelectronics and
nanophotonics, including the new emerging research field of topological phase of
matter.

3 Exact master equation of open quantum systems

Now, I begin with discussion about how to derive the exact master equation of the
open quantum systems described by the Hamiltonian of equation (2), and then review
probably all known exact master equations in the literature. Let us start with the
basic assumption [10,51] that the system and all different environments {α} are ini-
tially decoupled. Extension to the initially entangled state between the system and
the environment has also been partially worked out and I will discussed it later
[16,67,68]. More specifically, let the system be in an arbitrary initial state ρ(t0), and
environment be initially in a thermal state,

ρtot(t0) = ρ(t0)⊗ ρE(t0), ρE(t0) =
1

Z
e−

∑
α βαHαE . (5)

Here, Z =
∏
αk(1 ∓ e−βα(εαk−µα))∓1 is the partition function of the environments.

Different environment α could have different chemical potential µα and different tem-
perature βα = 1/kBTα. The up and down signs of ∓ correspond to the environment
being bosonic and fermionic systems, respectively.

As I have discussed in Section 1, if the initial state of the total system (the system
plus its environments) is not in a pure state, dynamics of the total system is governed
by von Neumann equation, which is still a unitary evolution equation of motion,

i~
dρtot(t)

dt
= [H(t), ρtot(t)]. (6)

The exact time-evolving reduced density matrix of the open system, defined by ρ(t) =
TrE [ρtot(t)], can be obtained after taking the trace over all the environment states,

ρ(t) = TrE [U(t, t0)ρ(t0)⊗ρE(t0)U†(t, t0)], (7)
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where U(t, t0) = T exp{−i
∫ t
t0
dτH(τ)} is the unitary evolution operator of the total

system, T is the time-ordering operator, and H(τ) is the Hamiltonian of equation (2).
As we will see later, after taken the trace over all the environment states, the evolution
of the reduced density matrix becomes in general non-unitary.

Without taking an approximation, one can take trace over the environment states
by integrating out all the environmental degrees of freedom, using the Feynman–
Vernon influence functional. However, because the system and environments are made
of either fermionic or bosonic particles, one must extend the path-integral into the
coherent-state representations, and in particular special attention must be paid on
the initial and final boundary conditions of path-integrals for both fermion and boson
variables, and also on additional antisymmetric property in closed-loop integrals for
fermionic (Grassmann) variables [13–15]. It should also note that Feynman–Vernon
influence functional makes the influence of the environment into an effective action on
the system. It is still far to solve the dynamics of open systems by only integrating out
all the environmental degrees of freedom through the influence functional approach.

In fact, after a cumbersome calculation of the propagating function for the reduced
density matrix in coherent-state path-integral representation, and a consummate
elimination of the initial variable dependence of all paths through a nontrivial trans-
formation (see explicitly, Eq. (29) in Ref. [13] or Eq. (A1) in Appendix A of [14] for
fermion systems and Eq. (27) in Ref. [15] for boson systems), we obtain the following
exact master equation [13–15]:

ρ̇(t) = −i
[
H ′S(t, t0), ρ(t)

]
+
∑
ij

{
γij(t, t0)

[
2ajρ(t)a†i − a

†
iajρ(t)− ρ(t)a†iaj

]
+ γ̃ij(t, t0)

[
a†iρ(t)aj ± ajρ(t)a†i ∓ a

†
iajρ(t)− ρ(t)aja

†
i

]}
, (8)

where the +/− signs correspond to boson/fermion systems. The first term in equa-
tion (8) provides still a unitary evolution of system with the environment-induced

renormalized Hamiltonian H ′S(t, t0) =
∑
ij ε
′
ij(t, t0)a†iaj . The second and third terms

result in non-unitary evolutions for the environment-induced dissipation and fluc-
tuations, respectively. This exact master equation has nonperturbatively taken into
account all the environment-induced back-reactions up to all orders, which are embed-
ded into the renormalized energy matrix of the system εij(t, t0), the dissipation
coefficients γij(t, t0) and the fluctuation coefficients γ̃ij(t, t0).

We found that all these time-dependent coefficients in the master equation are
determined exactly by the nonequilibrium Green’s functions through the following
relations [13–15],

ε′ij(t, t0) =
i

2

[
u̇ (t, t0)u−1 (t, t0)−H.c.

]
ij
, (9a)

γij(t, t0) = −1

2

[
u̇ (t, t0)u−1 (t, t0) + H.c.

]
ij
, (9b)

γ̃ij(t, t0) = v̇ij (t, t)−
[
u̇ (t, t0)u−1 (t, t0)v (t, t) + H.c.

]
ij
. (9c)

The functions u(t, t0) and v(t, t) are the nonequilibrium dissipative propagating
Green function (which may be simply called as the spectrum Green function) and
fluctuated (correlation or Keldysh) Green function (which is related to the lesser
Green function, see more details in Sect. 4), respectively. They obey the following
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integro-differential equations

d

dτ
u(τ, t0) + iε(τ)u(τ, t0) +

∫ τ

t0

dτ ′g(τ, τ ′)u(τ ′, t0) = 0, (10a)

d

dτ
v(τ, t) + iε(τ)v(τ, t) +

∫ τ

t0

dτ ′g(τ, τ ′)v(τ ′, t) =

∫ t

t0

dτ ′g̃(τ, τ ′)u†(τ ′, t0) (10b)

subjected to the boundary conditions u(t0, t0) = 1 and v(t0, t) = 0 with τ ∈ [t0, t].
The energy matrix ε(τ) ≡ { εij(τ) } is the N×N single-particle energy matrix of the
system. The time non-local dissipation and fluctuation kennels in the above integro-
differential equations, g (τ, τ ′) and g̃ (τ, τ ′), are given by

gij(τ, τ
′) =

∑
αk

Viαk(τ ′)V ∗jαk(τ) exp
{
− i
∫ τ ′

τ

dτ1εαk(τ1)
}
, (11a)

g̃ij(τ, τ
′) =

∑
αk

Viαk(τ ′)V ∗jαk(τ)
〈
b†αk(t0)bαk(t0)

〉
E

exp
{
− i
∫ τ ′

τ

dτ1εαk(τ1)
}
. (11b)

The initial environment correlation function,
〈
b†αk(t0)bαk(t0)

〉
E

= f(εαk, Tα), which
is the initial particle distribution of the bosons or fermions in environment α with
the chemical potential µα and the temperature Tα at time t = t0, i.e., f(ε, Tα) =
[e(ε−µα)/kBTα∓1]−1. In the case the energy spectra of the environments and the
system–environment couplings are all time-independent, the time non-local dissi-
pation and fluctuation kennels are reduced to g(τ, τ ′) =

∫
dε
2πJ(ε)e−iε(τ−τ

′), and

g̃ij(τ, τ
′) =

∫
dε
2πJ(ε)f(ε, Tα)e−iε(τ−τ

′), where J(ε) is the spectral density of the open
system,

Jij(ε) ≡ 2π
∑
αk

ViαkV
∗
jαkδ(εαk − ε). (12)

As one note that the exact master equation (8) is time-convolutionless. Because
this exact master equation can unambiguously capture non-Markovian dynamics of
open system, the key point in this theory is that the dissipation coefficients γ(t, t0)
and fluctuation coefficients γ̃(t, t0) in the master equation are determined by the
nonequilibrium Green functions u(t, t0) and v(t, t) which obey the time-convolution
equations of motion. It is this time-convolution structure embedded in its dissipation
and fluctuation coefficients that makes the time-convolutionless master equation (8)
become capable to depict precisely all the possible non-Markovian memory effects. It
is also indeed a necessary condition that any quantum theory of open systems that can
capture non-Markovian dynamics must involve time-convolution equation of motion
in certain manners. Thus, it is straightforward to conclude that the Born-Markovian
type master equation that has widely used in the literature can only describe memo-
ryless Markov processes, because it is time-convolutionless and it also does not involve
any time-convolution structure in the dissipation and fluctuation dynamics.

It may also be worth pointing out that the exact master equation (8) can be
further rewritten in terms of the Lindblad operator form, as we have shown in the
previous work [15]

dρ(t)

dt
=

1

i
[H̃S(t, t0), ρ(t)] +

∑
ij

γ̃ij(t, t0)La†i ,aj
[ρ(t)]

+
∑
ij

[2γij(t, t0)± γ̃ij(t, t0)]Laj ,a†i
[ρ(t)] , (13a)
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where the super-operator Lai,a†j
[ρ(t)] is defined as the standard Lindblad operator

Lai,a†j
[ρ(t)] ≡ aiρ(t)a†j −

1

2
a†jaiρ(t)− 1

2
ρ(t)a†jai . (13b)

However, I must emphasize that the above exact master equation in the Lindblad form
is completely different from the usual Lindblad semigroup master equation derived
from semigroup mapping [7,8]. The Lindblad semigroup master equation neglects
all reservoir memory effects (therefore, it does not involve any time-convolution
structure) so that it is only applicable to Markov dynamics. Here, the master
equation (8), although it can be written formally in a Lindblad form, i.e. equa-
tion (13a), can capture precisely the non-Markovian dynamics, as I have emphasized,
because it is exact and because its dissipation and fluctuation coefficients are deter-
mined by time-convolution equations of motion. It may also be interest to notice
that the Lindblad form of the exact master equation (13a) mixes the dissipation and
fluctuation in the last two non-unitary terms such that the fluctuation–dissipation
theorem is not manifested. In the form of the exact master equation (8), the last
two non-unitary terms describe the dissipation and fluctuations explicitly and sepa-
rately, and the dissipation and fluctuation dynamics are connected remarkably by the
intrinsic nonequilibrium fluctuation–dissipation theorem in the time domain, see the
discussion later. In this sense, the Lindblad form of the master equation used widely
in the literature is physically not so essential in understanding the dissipation and
fluctuation dynamics in open quantum systems.

As it has also been pointed out in Section 2, the earliest master equation derived
from the original Feynman–Vernon influence functional [10] was obtained by Caldeira
and Leggett for the quantum Brownian particle in an Ohmic environment [9]. An
extended exact master equation with general color noise was derived later by Haake
and Reibold [47] using the equation of motion approach, and then is reproduced by
Hu et al. [48] with the Feynman–Vernon influence functional approach again. The
further extension to the exact master equation with more general initial states is also
found by Grabert et al. [49,50]. The exact master equation for the CL Hamiltonian in
[9,47,48,50] looks quite different from the exact master equation (8) we obtained from
equation (2), not only on the different formulation (the former cannot have a Lindblad
form and looks complicated) but also on the different physics given by these two
Hamiltonians. Specifically, in the system–environment Hamiltonian of the CL model,

HSE =
∑
k ckxqk =

∑
k c
′
k(a†bk + ab†k + a†b†k + abk), the last two terms correspond

to the processes of generating or annihilating two quanta of energy out of the blue,
from nothing, which is quantum mechanically unreliable.1 One should be aware that
the CL model is a semi-empirical model. Its physical motivation is to derive the
classical dissipation motion of a Brownian particle from quantum mechanics, where
the contribution from the last two terms is negligible. Thus, removing these paring
terms in the CL Hamiltonian will reduce the CL model into the Fano–Anderson
type model of equation (2). In this situation, the physics described by the master
equation for quantum Brownian motion can also be covered by the master equation
of equation (8).

There are also many attempts to derive the exact master equation for other
open quantum systems, in particular, the spin-boson model [51]: H = ε

2σ+σ− +
∆
2 σx +

∑
k ωkb

†
kbk + σx

∑
k Vk(bk + b†k). The spin-boson model is indeed a particu-

lar realization of the CL model with the particle moving in a double-well potential

1These processes are unreliable because they violate the fundamental principle of energy conser-
vation for each physics process in quantum theory [46]. These processes could occur in interacting
quantum systems as a high-order contribution, but it cannot appear in the bare Hamiltonian in the
quantum regime.
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and coupling to a thermal both, and only considers the particle hops between the
double wells rather a continuous variable [51]. One can use the Feynman–Vernon
influence functional method to completely integrate out the bosonic bath degrees
of freedom, resulting in a closed form of the effective action for spin dissipation
[51]. However, because of the non-commuting spin operators, the spin dissipa-
tion then contains heavy nonlinearity and becomes not exactly solvable, so does
not have a closed exact master equation be found so far [51]. Also, similar to
the original CL model, the spin-boson model also contains quantum mechanically
unreliable processes, i.e. spin can simultaneously emit photons when it is excited
from the ground state to the excited state. Removing these unreliable processes
(corresponding to the so-called rotating-wave approximation in the literature), the
spin-boson model is reduced to the multimode Jaynes–Cummings (JC) model [52]:

H = ε
2σ+σ− + ∆

2 σx +
∑
k ωkb

†
kbk +

∑
k Vk(σ+bk + σ−b

†
k), where the term ∆

2 σx also
plays the role of an external deriving field. Even for this simplified spin-boson model,
no exact master equation has been found.

There are some attempts to derive the exact master equation for this multimode
JC model [53,54], using the Feynman–Vernon influence–functional method, in which
they treat the spin operators as fermion operators and then apply the spin coherent
state with Grassmann variable to perform the spin path integral. This treatment is
mathematically and physically incorrect, as it has also been challenged recently [55].
The incorrectness comes from the fact that spin does not obey fermion statistics, and
the Grassmann variables are introduced only for fermions because of their anticom-
mutation property [56]. Spin coherent state is defined on a sphere with continuous
variables (0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π) [57,58]. Write the spin coherent state with Grass-
mann variables [53,54] only covers a small subspace of the spin Hilbert space such
that it excludes the nonlinearity of spin dynamics induced by the thermal bath (or by
the driving field). This is why the results in [53,54] are incorrect. In fact, the correct

expression of spin operators in terms of fermion operators is S = 1
2a
†
iσijaj . Then

the multimode JC model has the QED Hamiltonian form of equation (4). After inte-
grated out the bosonic bath degrees of freedom, the resulting effective action for the
spin dynamics contains time non-local fermion–fermion interactions that are more
complicated than the interactions in equation (3) and are not solvable in general.
This is why a closed form of the exact master equation for spin-boson systems is so
difficult to be derived.

But there is an exception when the spin is initially in the excited state and couples
to the bath at zero temperature and no driving field (∆ = 0), then the dynamics
of spin involves only one photon, and the nonlinearity of spin dynamics does not
manifest. Only in this special case, the result in [53,54] is accidentally correct due to
the lack of spin nonlinearity. The resulting master equation is

dρ(t)

dt
= −i[ε′(t, t0)s+s−, ρ(t)] + γ(t, t0){σ−ρ(t)σ+ − σ+σ−ρ(t)− ρ(t)σ+σ−}. (14)

This exact master equation can even be easily derived from Schrödinger equation
[59,60]. The spin energy renormalization ε′(t, t0) and the dissipation coefficient γ(t, t0)
are actually determined by the same equation equation (9). In other words, the mas-
ter equation (14) is indeed a special case of equation (8) with the bosonic bath at
zero temperature. For master equation equation (8) at zero temperature, v(t, t) = 0
[see the solution of Eq. (22) with (11b)] so that the fluctuation coefficient vanishes:
γ̃(t, t0) = 0.

The remaining open quantum systems that can be solved exactly in terms of
exact master equation is the pure dephasing models, in which the system–bath cou-
pling commutes with the system Hamiltonian. A typical pure dephasing model is a
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spin coupled to a bosonic thermal bath in such a way that H = εσz +
∑
k ωkb

†
kbk +

σz
∑
k Vk(bk + b†k). The corresponding exact master equation is [61,62],

dρ(t)

dt
= −i[εσz, ρ(t)] + γ(2)(t, t0){σzρ(t)σz − ρ(t)}, (15)

where the dephasing coefficient γ(2)(t, t0) = 2
∫
dωJ(ω) coth

(
ω

2kBT

)
cos(ω(t − t0)),

which corresponds to a second-order perturbation result of γ(t, t0) from equation (9b),
and therefore does not contain non-Markovian dynamics. This makes the exact mas-
ter equation identical with the Markovian master equation, which is an exception
only for the spin with dephasing noise from a bosonic thermal bath [61]. Very
recently, we study the local gate-control-induced change fluctuations to Majorana
zero modes in topological quantum computing [63] which corresponds to a new
kind of pure dephasing noise to the Majorana zero modes in a fermion bath [17],

H =
∑
k εkb

†
kbk +

∑
k Vk(bk + b†k)λ, where λ is the Majorana quasiparticle operator,

λ† = λ, i.e. the particle is also its own antiparticle, and {bk} represent the fermion
bath. The Hamiltonian for Majorana zero modes is zero. The exact master equation
is [17]

dρ(t)

dt
= γ(t, t0){λρ(t)λ− ρ(t)} (16)

which cannot be obtained from the second-order perturbation, where the damp-
ing coefficient γ(t, t0) in equation (16) is still determined by the same equation
equation (9b) (up to all orders) with a slight change to the integral kernel in equa-
tion (10a), g(τ, τ ′)→ g(τ, τ ′) + g(τ ′, τ), due to the particle-hole symmetry. Therefore,
the Majorana decoherence can be very non-Markovian.

There are also other generalized master equations, such as the time-non-local
Nakajawa–Zwanzig master equation [4,5], the time-convolution-less expansion of the
master equation [60,64], the master equation with hierarchical expansion [65], and the
generalized master equation for N -level-bosom models [66], etc., and although these
master equation can be formally exact, they are either intractable or expressed in
terms of infinite series expansions. Further approximations must be made in solving
these master equations for practical applications, and therefore cannot be considered
as exact in practice. In conclusion, equation (8) is the most general exact master
equation of open quantum systems that one can analytically solve, from which the
non-Markovian dynamics of open quantum systems can be universally investigated
by simply solving the equation of the Green function equation (10) [12], as I will
discuss in the next section.

4 General non-Markovian dynamics

Once we have the exact master equation that can precisely capture non-Markovian
dynamics, we are capable to discuss the general properties of non-Markovian dynam-
ics in open quantum systems. As one can see from the last section, the dissipation and
fluctuation coefficients in the exact master equation are completely determined by the
nonequilibrium Green functions of equation (10). Physically, it may be more trans-
parent to express these nonequilibrium Green functions in terms of field operators.
After eliminated the environment degrees of freedom from Heisenberg equation of
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motion, we have the exact quantum Langevin equation from equation (2) [16,67,70],

dai(t)

dt
=
∑
j

{
− iεijaj(t)−

∫ t

t0

dτgij(t, τ)aj(τ)
}

+ fi(t) (17)

where g(t, τ) is given by equation (11a), and fi(t)=− i
∑
αkViαk(t)bαk(t0)e

−i
∫ t
t0
εαk(τ)dτ

is the environment-induced noise operator that depends explicitly on the system-
environment coupling Viαk(t) at the time t and on the initial state of the environment
through the operator bαk(t0).

The linearity of the above quantum Langevin equation leads to the general
solution

ai(t) = uij(t, t0)aj(t0) + Fi(t) , and Fi(t) =
∑
j

∫ t

t0

dτuij(t, t0)fj(τ), (18)

where uij(t, t0) ≡ 〈[a(t), a†(t0)]∓〉 is the propagating (retarded) Green function of

equation (10a), and vij(τ, t) = 〈F †j (t)Fi(τ)〉 is the correlation Green function of

equation (10b) that manifests the nonequilibrium fluctuation–dissipation theorem.
These solutions clearly show how the propagating and correlation Green functions
describe completely the dissipation and fluctuation dynamics of open systems, and
why the dissipation and fluctuation coefficients are determined by these nonequi-
librium Green functions. Moreover, the above results are obtained without the
assumption of the initial decoupled states, namely, they can be applied to the cases
with initial entangled states between the system and environments [16,67,68]. When
the initial states of system and environment are decoupled as that given by equa-
tion (5), we can easily obtain the lesser Green function in Keldysh’s nonequilibrium

Green function technique [24–26], which is defined by −iG<ij(τ, t) ≡ 〈a
†
j(t)ai(τ)〉 =

uil′(τ, t0)〈a†l (t0)al′(t0)〉u†jl(t, t0) + vij(τ, t). Thus, these results give the whole physi-
cal picture of dissipation and fluctuation dynamics in terms of nonequilibrium Green
functions in open quantum systems through the exact master equation formalism of
Section 3. As a result, the general non-Markovian dynamics of open quantum systems
can be fully manifested in terms of nonequilibrium Green functions.

Explicitly, the dissipation dynamics of open systems is determined by its
nonequilibrium propagating Green function u(t, t0), its general solution consists of
nonexponential decays and dissipationless oscillations [12]. For simplicity, we consider
the open system of a single particle in the state with energy εs, in contact with a reser-
voir. Then the general solution of the propagating Green function of equation (10a)
has the form

u(t, t0) =
∑
j

Zbje
−iεbj (t−t0) +

∫
dεDd(ε)e−iε(t−t0). (19)

Here, the first term contains dissipationless oscillations, as the contribution of local-
ized bound states in the system, after taking into account the effect from the
environment. The corresponding localized bound state energy (frequency) εbj and
its amplitude Zbj are determined by the pole of the propagating Green function in
the Fourier or Laplace transform:

εbj − εs −∆(εbj ) = 0 , and Zbj =
1

1− ∂εΣ(ε)|ε=εbj
, (20)
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where Σ(ε) =
∫
dε′

2π
J(ε′)
ε−ε′ is the environment-induced self-energy correction to the

system energy [the Fourier transform of the dissipation kernel in Eq. (10)], and

∆(ε) = P
∫
dε′

2π
J(ε′)
ε−ε′ is the principal value of the integral. The second term in equa-

tion (19) is the continuous part of the spectrum of the single particle moving in the
environment, which leads to the dissipative dynamics (and it is in general a nonex-
ponential damping or decay) of the system. The corresponding dissipation spectrum
Dd(ε) is given by

Dd(ε) =
J(ε)

[ε− εs −∆(ε)]2 + π2J2(ε)
. (21)

It is particularly important to note that the localized bound states [the first term in
Eq. (19)] only exist if the spectral density J(ε) contains band gap(s) or zero energy
points with sharp slopes, while the dissipation spectrum Dd(ε) [proportional to J(ε),
see Eq. (21)] is crucially determined by the spectral density profile, as we have empha-
sized in [12]. In the steady-state limit t = ts →∞, only the dissipationless oscillation

terms remain, u(ts, t0) =
∑
j Zbje

−iεbj (ts−t0). If there is no localized bound state,

u(ts, t0)→ 0 in the steady-state limit, corresponding to a complete relaxation process.
On the other hand, the general solution of the correlation (fluctuating) Green

function v (τ, t) is governed by the non-equilibrium fluctuation–dissipation relation
in the time domain [12,14,15],

v (τ, t) =

∫ τ

t0

dτ1

∫ t

t0

dτ2u (τ, τ1) g̃ (τ1, τ2)u† (t, τ2) , (22)

which is the general solution of equation (10b). Similarly, for the open system with
a single particle in the state with energy εs, we have v(ts, ts) =

∫
dεχ(ε) in the

steady-state limit ts →∞, where [28,29]

χ(ε) = [Db(ε, ts) +Dd(ε)]f(ε, T ), (23)

with Db(ε, ts) =
∑
j,k

J(ε)ZbjZbk
(ε−εbj )(ε−εbk )cos[(εbj − εbk)(ts − t0)] and f(ε, T ) being the

Bose–Einstein or Fermi–Dirac distribution function, depending on the system being
made of bosons or fermions. Equation (23) is the generalized fluctuation–dissipation
theorem modified by the localized bound states of open systems. If there is no local-
ized bound state, Zbj = 0, then χ(ε) = Dd(ε)f(ε, T ). This reproduces the standard
equilibrium fluctuation–dissipation theorem at arbitrary temperature in the particle
number representation.

As a result, the steady-state average particle number in the system is given by

〈a†(ts)a(ts)〉 = |u (ts, t0) |2n(t0) + v (ts, ts) , (24)

where n(t0) is the initial particle number in the system. If there is no localized bound
state, Zbj = 0, the above result is simply reduced to

〈a†(ts)a(ts)〉 = v(ts, ts) =

∫
dωD(ε)f(ε, T ) (25)
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Fig. 1. The non-Markovian dynamics in a bosonic system coupled to a sub-Ohmic reservoir
J(ε) = 2πηε(ε/εc)

s−1e−ε/εc with s = 1/2 [12]. The energy cut-off εc = εs and the initial
reservoir temperature kBT = εs. Here, we have taken t0 = 0 so that we define u(t, t0) = u(t),
γ(t, t0) = γ(t) and γ̃(t, t0) = γ̃(t).

as a manifestation of the equilibrium fluctuation–dissipation theorem [9]. In the
Markovian limit where J(ε) is a constant, which corresponds to the white band limit
(or white noise), we further have [27]

〈a†(ts)a(ts)〉 = v(ts, ts)→ f(εs, T ). (26)

This provides the foundation of statistical mechanics at equilibrium.
With the analytical solutions (19) and (22), one can depict the dissipation and

fluctuation dynamics through the time-dependent dissipation and fluctuation coef-
ficients, γ(t, t0) and γ̃(t, t0) in the master equation (8), from which one can also
find the solution of the reduced density matrix ρ(t) if it is needed. Now we can
give the general answer to the non-Markovian memory dynamics in open quan-
tum systems [12]: the nonexponential decays, the second terms in equation (19),
are induced by the discontinuity in the imaginary part of the environmental-induced
self-energy correction to the system, Σ(ε± i0+) = ∆(ε)∓ iπJ(ε). Depending on the
detailed spectral density structure of J(ω), it could result in damping coefficients
oscillating between positive and negative values in short times, as a short-time non-
Markovian memory effect [30]. The dissipationless oscillations, characterized by the
localized bound states which are mainly arisen from band gaps or a finite band struc-
ture of environment spectral densities, provide a long-time non-Markovian memory
effect. Fluctuation dynamics induces similar non-Markovian dynamics as dissipa-
tion through the generalized nonequilibrium fluctuation–dissipation relations that
are obtained from nonequilibrium correlation Green function of equation (22). As an
example, a bosonic open system in contact with a sub-Ohmic reservoir is shown in
Figure 1, in which various non-Markovian dynamics discussed above show up. Inter-
esting exact numerical results on spin-boson model with sub-Ohmic reservoir may be
found from reference [69].
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We have also introduced a quantitative measure of non-Markovian dynamics in
terms of two-time correlation functions in the same framework [30]:

N (t, τ) =

∣∣∣∣∣ 〈A(t)B(t+ τ)〉√
〈A(t)B(t)〉〈A(t+ τ)B(t+ τ)〉

− 〈A(t)B(t+ τ)〉BM√
〈A(t)B(t)〉BM〈A(t+ τ)B(t+ τ)〉BM

∣∣∣∣∣, (27)

where A and B are two physical observables of the system. The exact two-time corre-
lation function 〈A(t)B(t+ τ)〉 can be obtained either from experiment or theoretical
calculations, and the two-time correlation function 〈A(t)B(t + τ)〉BM can be evalu-
ated through the BM master equation. For example, exact two-time current–current
correlation 〈I(t)I(t+ τ)〉 in nano-electronic systems has been theoretically calculated
[70] and has recently been measured experimentally [71]. The two-time particle num-
ber correlation 〈n(t)n(t + τ)〉 for photonic systems is also experimentally measured
through photon bunching and antibunching experiments [72,73], and the exact the-
oretical calculation is carried out in our recent work [32]. More two-time intensity
correlation functions have been experimentally measured in optical measurements
[74–76]. While, the calculation of two-time correlation function 〈A(t)B(t + τ)〉BM

is rather simple under Born–Markovian approximation. Detailed discussions can be
found from [30]. Thus, a quantitative measure of non-Markovian dynamics can be
given through two-time correlation functions which provide the direct physical picture
of memory dynamics in open quantum systems.

As an illustration, in Figure 2, we present the non-Markovian dynamics mea-
sure through the two-time correlations of the first-order photon coherence function,
〈a†(t)a(t + τ)〉, as it precisely characterizes the long-time memory processes arisen
from localized bound states (η > ηc) and the short-time memory processes resulted
from nonexponential decays (η < ηc). The memoryless processes in the very weak
system-environment coupling regime emerged naturally, and the exact master equa-
tion is then reduced to corresponding Born–Markov master equation [27]. The above
general non-Markovian dynamical properties of open quantum systems have also been
applied to investigate photonic dynamics in photonic crystals [28,31], nonequilibrium
photon statistics [32], nonequilibrium quantum phase transition [77], complexity of
quantum-to-classical transition [29]; decoherence dynamics of Majorana fermion in
topological systems [17], and quantum thermodynamics in zero-dimensional systems
very recently [78]. On the other hand, the exact master equation theory has also
been applied to study various transient quantum transport physics in nanostructures
[14–16,70,79–83].

5 Conclusions

In conclusion, we have developed the exact master equation for a large class of non-
interacting open quantum systems [12], including boson systems [15] and fermion
systems [13,14] as well as topological systems [17]. The extension to spin systems
is also in progress [84]. We established the explicit connection of dissipation and
fluctuation dynamics, described by the dissipation and fluctuation coefficients in the
exact master equation, with nonequilibrium dynamics in terms of nonequilibrium
Green functions. This connection is crucially important because one can then apply
the following conclusion to study non-Markovian dynamics of arbitrary interacting
open systems, as long as the nonequilibrium Green functions are computable. The
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Fig. 2. The measure of non-Markovian dynamics in terms of two-time correlation function
[30] for a bosonic system coupled to a thermal reservoir with Ohmic-type spectral density

J(ε) = 2πηε(ε/εc)
s−1e−ε/εc . The energy cut-off εc = 5εs and the system is initially in Fock

state with n = 1, and t = 0. As it is shown that when the system–reservoir coupling η < ηc,
no localized bound state exists. Correspondingly, the transient two-time correlation function
shows quantitatively that memory effect vanishes when the system approaches to the ther-
mal equilibrium state; while in the strong coupling regime η > ηc, the existence of the
localized bound state prohibits the system to approach to the equilibrium state, and
the non-Markovian dynamics (memory effect) can remain forever.

conclusion on general non-Markovian dynamics is summarized as follows [12]: the gen-
eral non-Markovian dynamics is embedded in the time convolution integro-differential
equation of the nonequilibrium Green functions. In particular, the dissipation dynam-
ics is fully determined by the propagating Green function. The general solution of
the propagating Green function consists of nonexponential decays and dissipationless
oscillations (localized bound states in open quantum systems) [12], which is indeed a
universal property of the propagating Green functions in arbitrary interacting many-
body systems, according to the general principle of quantum field theory [46]. The
non-exponential decays described by time-dependent decay rates oscillate between
positive (dissipation) and negative (back flowing) values in a short time, resulting
in the short-time non-Markovian dynamics [9,30]. The localized bound states give
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dissipationless oscillations that make the states of open systems depend forever to
its initial state, as a long-time non-Markovian dynamics. Correspondingly, the open
system is unable to approach to the thermal equilibrium state of the environment,
a property that initially noticed by Anderson long time ago [18,19] and is recently
justified by us in our exact master equation theory [28,29]. The fluctuating cor-
relation (Keldysh) Green function, determined by the generalized nonequilibrium
fluctuation–dissipation theorem [see Eq. (22)], has the similar behaviors as the dissipa-
tion dynamics, namely it contains both the short-time and long-time non-Markovian
memory effects associated respectively with the continuous spectrum part and the
localized bound state part of open systems. This general picture of non-Markovian
memory dynamics is fully determined by the energy structures of the system and
the environment, and the couplings between them, including also the initial states of
the system and the environment, and is irrelevant to any mathematical definition of
non-Markovianity.
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