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Abstract. In this paper, we have modified one of the simplest multi-
level cellular automata – a hodgepodge machine, so as to represent
the best match for the chemical trajectory observed in the Belousov–
Zhabotinsky reaction (BZR) in a thin layered planar setting. By
introducing a noise term into the model, we were able to transform the
central regular structure into the circular target pattern. We further
analyze influences of the neighborhood (diffusion process) and inter-
nal excitation type of noise. We find that the configurations of ignition
points, which give the target patterns, occur only in the interval of the
neighborhood excitation noise from 30% to 34% and at the internal
excitation noise of 12%. We argue that the BZR occurs on a semi-
regular grid – a chemical analogy to a Bénard cell in the viscous fluid,
and we discuss the size of the relevant elementary cell. In this way, the
BZR is a quintessential example of mesoscopic process, in particular,
it does follow neither the deterministic rules of the microscopic sys-
tem nor the tenet of Boltzmannian statistic physics that only the most
frequent events are observed.

1 Introduction

Properties of multi-level cellular automata [1,2] have been examined so far only spo-
radically. What is known, however, is that their state trajectory critically depends
on the number of available levels [3] and that they can be divided into a few-level
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automata and true multilevel automata [4]. The border between a few and true mul-
tilevel automata was examined only for the so-called square Moore neighborhood
and was found to be around 24 levels [3]. Such automata have apparently a sufficient
number of levels which allows the system to behave only according to the internal
evolution rule (e.g., ratio of constants) independently of the number of levels itself [4].

The hodgepodge machine [5] is a type of multi-level cellular automaton which mim-
ics well the final phase of the Belousov–Zhabotinsky reaction (BZR). The hodgepodge
machine is the simplest of the models which intends to mimic qualitatively the fea-
tures observed when the BZR is performed in a thin layer. In the context of this
paper it is important to mention the simulation of Garcia-Ojarvo and Schimansky-
Geier [6] who used the FitzHugh-Nagumo model [7,8] for description of the rise and
decay of the excitation. The simulation was performed on a square lattice and may
be thus directly compared to the hodgepodge machine. When an adequate level of
the Gaussian noise was added, the coexistence of spirals and waves, similar to that in
the hodgepodge machine, was observed. The FitzHugh-Nagumo model was originally
developed for description of the electrical pulse in the neural system but may be also
interpreted in terms of a chemical simplified reaction-diffusion system of chemical
transformations.

In our simulations, we modified the model so that it was possible to start from
a few ignition points – situation observed in realistic experiments [4]. This enabled
us to examine influences of the ignition points as well as the early phases of the
trajectory. Eventually, we achieved such a behavior of the hodgepodge machine which
is qualitatively compatible with the BZR and consists from an early phase of large
center structures – octagons filled by complicated cross-like structures – and ends
with a mixture of spirals and waves [4]. The latter suggests that it could be some
conceptual overlap between our model and the discrete dynamic networks paradigm
proposed in [9].

Our aim here is to promote the idea that the BZR as a typical demonstration
of mesoscopic dynamics, i.e., it is neither microscopic, i.e. fully deterministic, nor
macroscopic, i.e. represented only by the most probable microstate. The paper is
structured as follows: In Section 2, we examine influences of noise on the outputs
from the noise-enriched hodgepodge machine (NHM) and discuss the relevance it
bears on the BZR. In Section 3, we present results of our simulations and show
that the conventional, i.e., “noise-free” hodgepodge machine is in fact a hidden-noise
cellular automaton. We also show that many details of the NHM find their direct
analogues in the BZR. We further explain the lag phase in the beginning of the
BZR using a chemical mechanism analogous to the formation of a regular grid by
a Bénard–Rayleigh convection process [10]. Various remarks and generalizations are
addressed in Section 4.

2 Materials and methods

2.1 Performance of the chemical reaction

The experiments were performed using the BZR recipe [11]. The reaction mixture
included 0.34-M sodium bromate, 0.2-M sulphuric acid, 0.057-M sodium bromide (all
from Penta), 0.11-M malonic acid (Sigma-Aldrich) as substrates and a redox indicator
and 0.12-M 1,10-phenanthroline ferrous complex (Penta) as a catalyst. All reagents
were mixed by hand directly in a 200-mm Petri dish in the sequence mentioned above
for 1 min. A special thermostat, which was constructed from a Plexiglas aquarium
and a low-temperature circulating water bath-chiller, fixed a reaction temperature
at 26 ◦C.
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The chemical waves were recorded by a Nikon D90 camera in the regime of Time
lapse (10 s/snapshot) with exposure compensation +2/3 EV, ISO 320, aperture f/18,
and shutter speed 1/10 s. The original 12-bit NEF raw image format was losslessly
transformed to the 12-bit PNG format. The complete courses of the experiment are
provided in Videos S1 and S2.

The experiment on a re-started BZR was performed by a manual re-shaking of
the reaction vessel after reaching the state of dense waves. The photos of course of
the experiment were taken in the time interval of 2 s and consists of 9 cycles of the
lengths of 48, 25, 44, 24, 25, 18, 11, 15, and 32 images, respectively.

2.2 Noisy hodgepodge machine model

The NHM of the BZR is essentially the same as in [4] but with the addition of a noise
term. We adjusted Wilensky’s NetLogo model [12]: The model was run on a square
1-Mpx grid. Ignition centers in state(t = 0) ∈ [0,maxstate] were randomly set on the
grid as

state(t = 0) = random-exponential[meanPosition(maxstate + 1)] , (1)

where maxstate is the maximally achievable number of levels of the cell state. Mul-
tiplication of each cell state by the meanPosition of the exponential distribution
ensured that the simulation started with a small number of the ignition points. Each
time step t proceeded in four possible ways:

– When a cell was at the state(t) = 0, so-called quiescent, it was “infected” by
surrounding cells according to the equation

state(t + 1) = (1 + PTN)

[
prec

(
a

k1

)
+ prec

(
b

k2

)]
, (2)

where a and b is a number of cells at the state ∈ (0,maxstate) and state =
maxstate, respectively, k1 and k2 are characteristic constants of the process.

– When a cell was at the state(t) ∈ (0,maxstate), its new state was calculated
as

state(t + 1) = prec

[
state(t) +

∑8
n=1 staten(t)

a + b + 1
(1 + IEN) + g(1 + EEN)

]
,(3)

where staten(t) is a state of the nth cell in the Moore neighborhood, which
directly surrounds the examined cell, and g = 28 is another arbitrary constant.

– When a cell was at the state(t) > maxstate, then

state(t + 1) = maxstate . (4)

– When a cell achieved the state(t) = maxstate, then

state(t + 1) = 0 . (5)

In equations (1) and (2), the numerical precision (prec) of 10 decimal points allowed
us to realize up to 9× 1012 states. The individual white noises in equations (1) and
(2) were named
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– the phase transition noise (PTN): it affects the transition from the state 0 to
the first non-zero state,

– the internal excitation noise (IEN): it affects the change of the state due to
processes inside the cell, i.e., it influences the constant g [4], and

– the neighborhood (external) excitation noise (EEN): it affects processes related
to the values of neighboring cells.

The influences of these kinds of noise were tested by systematic changes of their values.
Examples of qualitatively different cases are described in some detail in the following
section and shown in Videos S3–S8. The full model is provided in Material S1.

3 Results

3.1 Modeling the Belousov–Zhabotinsky reaction in excitable media
and the constructive role of noise

The BZR behavior is not easily comprehensible in terms of the standard Law of Mass
Action (which represents the “canonical method” for interpretation of the chemical
reactivity) due to the fact that the reaction space is separated into regularly evolv-
ing/traveling structures and, thus, one has to consider a large number of interlocked
chemical processes. In this work, we report a new stochastic model of the BZR based
on the cellular automaton. The model retains some of the key features of the multi-
level hodgepodge machine but outperforms this hodgepodge machine in the ability to
faithfully mimic the onset stage of the BZR and in the potential to correctly describe
the morphology of the evolving wave-spiral patterns.

Figure 1a compares a late (ergodic) stage of the BZR (full data are accessible via
S1 Video) at our least spatially constrained (a 200-mm Petri dish) and roil (gentle
mixing at 1400 rpm using an orbital mixer) conditions with one of our Wilensky-like
model. The structures of the model, which are astonishingly similar to the experiment,
arise only at the particular ratio of the model constants independently of the height
of the noise. (The most regular spirals and waves, best comparable to the model, are
expected to arise in a very gently pre-mixed, homogenous solution of a thin layer in
a vessel of the unlimited size which does not spatially constrain evolving waves.) In
order to achieve this morphological similarity between the BZR and our simulation,
we implemented the following changes into the Wilensky model:

– the enlargement of the cellular grid to 1000× 1000,

– start from a very few points which enabled to analyze the behavior of individual
centers of emanation,

– a sequence of switching the values of cell states from natural to decimal numbers
which extended the span of each cellular state,

– the addition of a uniform white noise to each automaton step which compen-
sated for our limited knowledge of precise underlying mechanism, and

– the extension of the number of achievable states maxstate and rate of the
internal cell excitation g up to 2000 and 280, respectively, to smooth the model
waves.

The first modification – usage of the larger grid – suppressed to some extent the
influence of the non-idealities of the periodic boundaries on the evolution of the model
system.
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Fig. 1. Illustration of the key aspects of the B–Z model. (a) Comparison of the BZR (i)
with the simulation with the levels of noise 9%, 14% and 30% for process 1, 2a, and 2b,
respectively, and k1 = 3 and k2 = 3 (ii). Images were expanded so as to have comparable
widths of traveling waves. (b) Starting points of the simulations (steps 2, 4, 14, 16). The
noise-free simulation with natural number states, k1 = 3 and k2 = 3 in step 2000 (i), the
noise-free simulation with natural number states, k1 = 2 and k2 = 2 in step 2596 (ii) and
the process described under a in step 18 400 (iii). (c) Final states (limit sets) of processes
defined in b. For all processes, g = 28 and maxstate = 200. In the simulation, the black and
white corresponds to 0 and maxstate, respectively. Original datasets are supplied in S1 File.
The unquestionably inspection of the data has to be done using the original data matrices
as demonstrated in Figure 1.

The second intervention into the Wilensky model was performed through a
random-exponential function for generation of the starting (ignition) points. This
modification, which was originally implemented to start the process from these few
centers (ignition points), quite surprisingly increased the morphological similarity
between the BZRs and the simulation. The results are depicted in Figures 1b and 1c.
In Figure 1b, we present early simulation steps 2, 4, 14, and 16 in process 1 after the
ignition. For k1 = 3 and k2 = 3, at least two non-zero points in a proper configuration
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a, b were required for the evolution of the waves in the simulation, since at least one
addend in process 1 has to be equal to 1. In this case, the early evolution yielded
octagons (Fig. 1b, i), while the final state was populated by spirals (Fig. 1c, i). In
contrast, if k1 = 2 and k2 = 2, then, e.g. state(t+ 1) = round( 1

2 ) + round( 0
2 ) = 1 and

the non-zero cell was surrounded by evolving wave of 8 cells in state(t + 1) = 1. This
early evolution resulted in squares with central circular objects (Fig. 1b, ii) which
further led to the filamentous structures (Fig. 1c, ii).

The next step softened the definition of the state by allowing 1 decimal place
in equations (1) and (2). This modification, however, neglected the condition of the
asymmetry for the ignition process and, as a consequence, the development of tra-
jectories could start from any non-zero. Thus, as such, this modification leads only
to fuzzy distribution of points. Indeed, increase of the number of decimal places did
not have any further effect.

In other words, the implementation of white noise compensated for the need of
multiple neighboring points for the realization of the waves’ ignition. The different
options for setting the ignition points occur randomly and are thus the noise them-
selves. By the term noise we understand a process with its own internal mechanism
which occurs at a rate faster than the rate of the main process (i.e., waves’ formation)
which it affects. Thus, the original hodgepodge machine was an unrecognized noisy
cellular automaton.

The only effect of higher number of decimal points were smoother edges in the
spiral shape.

The detailed comparison of the models and experiment is given in Figure 2a. The
sequence of simulated structures is the following:

– The simulation grid is filled with systems of square dense waves. This has not
been observed in the experiment and we interpret it as a lag phase, which
precedes the observed formation of circular waves.

– Circular structures emanate from the center of square waves.

– At the certain state, the simulation grid is nearly covered by large circular struc-
tures. A few spirals occur at places where the regular wavefront was distorted
and break into a first generation of spirals.

– The final state is similar to that in the simulation where the states are natural
numbers, k1 = 3, and k2 = 3, however, the waves are about 2 grid elements
thicker.

Let us mention further key similarities between our simulation and actual
experiments (Figs. 2b and 2c):

– The chemical waves do not interfere like material waves but merge.

– The chemical waves do not maintain the shape (as, e.g., solitons [13]).

– The morphology of interacting patterns (merger of patterns) in simulations has
comparable traits as in real experiments.

– Quantitative features of the limit sets, i.e., the last evolutionary stage of the
wave-spiral patterns can be set as close as possible to actual experimental data
by an appropriate choice of the parameter range.

3.2 Influence of the noise

In Figure 3, we show a sketch of the research on the increase of neighborhood and
internal kinds of excitation noise. Most cases gave a typical trajectory as shown in
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Fig. 2. Similarities between the trajectories of the simulation and of the BZR. (a) Selected
states of the simulation (i) and corresponding images from the course of the experiment (ii).
The early stage of the experiment corresponds to the lag phase of the experiment when no
waves evolve. For the later stages of the simulation, corresponding structures were found in
the experiment. (b) Sections of images which show wave merging. Similar behavior has not
been found for material waves and another wavelike structures and indicates that threshold-
range cellular automata (i) are proper models for phenomena observed in the BZR (ii).
(c) States in formation of spirals. In the simulation (i), the distortion of the dense waves
leads to their merging which is the source of formation of spirals. In the experiment (ii),
the source of the distortion is often a bubble of carbon dioxide. Otherwise, the formation of
spirals is similar to the experiment. For all processes, g = 28, maxstate = 200, k1 = 3 and
k2 = 3. In the simulation, the black and white corresponds to 0 and maxstate, respectively.

Figure 1. Images in Figure 3 show sections of the 1600th step of the simulation,
where the spiral-based structures prevail over the central circular target pattern. We
observed some remnants of the circular structures followed by spirals and waves evolv-
ing around them. However, both central circular structures and systems of spirals and
waves slightly differ. The exception occurred at neighborhood and internal excitation
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Fig. 3. Sections of steps 1600 of the simulations at different levels of external (the first
number) and internal (the second number) excitation noise. The Roman numeral II (bottom
middle) denotes the second experiment. Only at the internal and external (neighborhood)
excitation noise of 30% and 12% (bottom left), respectively, mutual geometries of initial
ignition points for which no spirals were formed were found. At any higher density of ignition
points and different geometries, spirals were formed even at these combinations of noises.

noise of 30% and 12%, respectively (bottom left and bottom middle), where, in some
cases, we did not observe any spirals. In contrast, the combination of neighborhood
and internal excitation noise of 30% and 16% (bottom right) resulted in the fast
evolution of spirals and waves which prevented the formation of circular waves.

3.3 Re-shaking experiment

Figure 4 shows the course of the experiment on the re-started BZR. The process
(cycle 1 ) started by the evolution of circular waves. Each sub-experiment was stopped
after reaching a phase of dense waves and the reaction vessel was re-shaken. This
process was repeated 9 times. Upon re-shaking, the waves gradually lost regularity
and became thicker, the diameters of target patterns increased (cycle 3 ) and the waves
evolved mainly at the vessel’s border (cycle 4 ). Similar phenomena were observed in a
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Fig. 4. Re-start of the B-Z reaction (9 cycles). The number ratio X/Y means the Xth image
from a Y-image series.

Petri dish of a smaller diameter. Further thickening of waves (cycle 5 ) led eventually
to merging of circular waves (cycle 6 ) up to a complete filling of circular waves’ centres
(cycle 9 ). The next mixing did not lead to re-formation of the red-colored state.

In the early phase and, namely, upon gentle mixing (as shown in Fig. 1) the circular
waves are highly regular. At later stages, upon re-shaking, the wavefronts became
undulated and more similar to those observed in the NHM simulation. Finally, the
waves thickened to the extent that the formation of structures was no more possible.

This experiment demonstrates that the depletion of reactants does not change
the shape of observed waves and their course (order) but causes thickening of the
traveling waves and shortens time to reaching the ergodic state. The ergodic state,
both in the experiment and in the model, is characterized by a coexistence of spirals
and waves.

3.4 Mesoscopicity and the size of the elementary spatial unit

When noise matters, an observed process is typically mesoscopic. It does follow nei-
ther the deterministic rules of the microscopic (or purely mechanical) system nor the
statistical-physics tenet of Boltzmannian statistic physics that only the most frequent
events are observed. The success of the simulation described in this article is based
on the existence of the minimal spatial element to which all processes are referred.
Indeed the simplest explanation is that the space is segregated into elementary units
similar to those observed in viscous fluids at temperature gradients, i.e., to the Bénard
cells [10]. With this hypothesis, we have examined the size of the elementary unit.

Figure 5 shows the analysis of wave profiles in the hodgepodge model. Figure 5a
shows the influence of the g/maxstate ratio on the final phase of the model in the
noise-free and discrete system when no decimal numbers are allowed. The g/maxstate
ratio corresponds to the number of timesteps of the simulation at which the maximal
excitation was achieved. The timestep may be also understood as a measure of the
ratio between a ”diffusive” process (the first term in Eq. (3)) and a zero-order chemical
reaction (the second term in Eq. (3)) when the first term is always realized in one
timestep. A low g/maxstate ratio, i.e., a fast reaction process in comparison to the
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Fig. 5. Ratio of processes 2a and 2b determines the size of elementary unit and the type
of state trajectory. (a) Images of later states of simulation at different g/maxstate ratios,
k1 = 3, k2 = 3 and noise = 0. At g/maxstate = 1000/2000 (i), spirals evolve into forms
of ram’s horns. To the opposite, g/maxstate = 10/2000 (ii) does not form spirals. At
g/maxstate = 1/2000 (iv), the process is fully diffusive. At g/maxstate = 280/2000 (iii),
the trajectory is almost identical to the experimental trajectory. (b) The intensity profiles of
waves at different g/maxstate ratios. Decrease of the g/maxstate ratio leads to the broad-
ening of waves. The intensity profile of the circular structure is very noisy. In the simulation,
the black and white corresponds to 0 and maxstate, respectively.
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diffusive one, leads to narrow waves and short spirals (e.g., Fig. 5a-iii). At a very low
g/maxstate ratio, waves do not fully develop and spirals do not arise (e.g., Fig. 5a-iv).

Figure 5b depicts several profiles of waves taken in the direction orthogonal to the
wave development. As shown, the formation of wave in the system with and without
the introduced noise, respectively, takes different times. In the noise-free processes
(e.g., at the g/maxstate of 28/200 and 280/2000, upper), the wave is fully formed in
10 steps, while, in the simulation when noise is induced (see g/maxstate = 28/200),
the formation of the wave takes 13 steps. At g/maxstate = 100/2000 (lower left),
the waves are as broad so that they do not fully separate. For comparison, Figure 5b
includes the profile of the early circular wave (lower right).

The striking similarity of the simulation to real experiment intensity profiles of
dense waves (Figs. 1, 5 and 6) motivated us to guess the number of molecules per an
elementary spatial unit (i.e., the pixel of experimental wave). The number of elemen-
tary units per the width of the wave was in the range of 10–20. Since the average width
of the wave was 1.5 mm, the elementary unit had 0.07–0.15 mm. The solution above
the elementary unit had thickness and volume of 0.5 mm and 10−2 mm3, respectively.
Then, the solution contained ca. 3×1013 and 1010 molecules of water and reactants
per elementary unit, respectively. This number lies within the thermodynamic limit.
The source of the mesoscopicity has to be sought in the physico–chemical dynamics.
It means that only a few energetic/re-organizational events occur within a given time.
Since an elementary spatial unit contains roughly 1010 molecules of reactants, it is
likely that we are dealing with a phase separation which gives rise to structures of an
analogous type as, e.g., in liquid crystals [13].

4 Conclusions

In the BZR, the target circular waves are always overcome by dense waves and spirals.
Dense waves are typically evolving at the border of a Petri dish due to the non-
idealities of the spatial geometry, while spirals evolve from the origin located at the
center from micro-bubbles (again from a spatial inhomogeneities).

The re-shaken experiment excludes any simple chemical interpretation of the
decay of observed structures. It is not the depletion of chemicals which leads to
the transformation of circular waves – target patterns – to dense waves and, finally,
to the mixture of spirals and dense waves. In the wide range of concentrations, when
the thickness of waves is not broader than the diameter of the Petri dish, the general
behavior of the BZR is qualitatively identical. The self-organization in the BZR is a
process which is separated from a concrete chemical reaction. This fact justifies the
search for a model of self-organization which would describe the reaction and ignore
the actual chemical process.

In the numerical simulations presented in this article, it has been found that,
at certain configurations of ignition points, there is a lower and upper limit of the
noise at which the whole simulation grid is filled with circular structures – target
patterns – and the spirals-waves phase never occurs. This happens when combination
of neighborhood (external) excitation noise (EEN) is from 30% to 34% with the
internal excitation noise (IEN) of 12%. The spatial inhomogeneity which lead to the
evolution of spirals and waves at unfavorable conditions is not properly described
by this model. However, at certain combinations of the geometry of ignition points,
spirals are formed even in this case.

The spirals are formed also in the original hodgepodge machine. This can be
observed in cases when the ignition constants k1 and k2 are bigger than 2. Our
interpretation of this fact is that the multitude of possible realizations of the ignition
points serves as a kind of noise. Thus, for the formation of spirals and waves, the
noise is a necessary condition. This noise is in fact the phase transition noise (PTN)
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Fig. 6. Analysis of traveling waves in the Belousov–Zhabotinsky experiment. (a) Figure
with identified wave profiles. (b) Intensity profile of the early circular wave (1) and later
dense wave (2). Three colors represent camera channels.

but of a very specific spatial distribution. In our numerical simulations this PTN was
mimicked by a combination of the proper IEN and EEN .

Differences in structures and dynamics shown in the re-shaking experiment
(Fig. 4) – the undulation of circular waves, thickening, doubling of wavefront, etc.
– indicate that there exist numerous individual processes which play a rôle in the
formation of the patterns in the BZR. All these processes have rates comparable to
the bottleneck process which determines the characteristic reaction time. Unfortu-
nately, at present it does not exist experimental procedure for identification of these
processes. We know a lot of chemicals but we do not know which breakage of indi-
vidual chemical bond or diffusion constant corresponds to the bottleneck process.
As described in [4], this is analogous to the thickening of the wave observed in the
“noise-free” hodgepodge machine due to the decrease of the g/maxstate ratio. Thus,
the model has a potential to explain this aspect of the experiment as well.

We conclude that the noisy hodgepodge machine – NHM – is one of the simplest
(if not the simplest) approximations to all natural processes occurring in a plane
and leading to formation of coexistence of spirals and waves as well as to diffusive
structures. It provides all basic stages observed in the experiment and indicates (and
restricts) possible geometrical and kinetic rules. The ratio of two slowest processes
close to 7:2 and the g/maxstate value 1:7 lead to the best approximation of observed
reality [4]. In the experiment, we observe the dominant “hodgepodge” process com-
bined with a number of individual processes. The competing processes, occurring at
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a slower but comparable rate, have the character of noise which may be even spa-
tially non-isotropic. They are only roughly simulated by the white noise used in the
NHM. Using the different kinds of noise, the circular waves are stabilized and several
frequencies are observed.

In any case, the dynamical co-existence of spirals and dense waves is the ergodic
state in all observed cases. It is clear that the ergodic state is not a state of chemical
equilibrium. Even the homogenously blue color observed at the end of the re-shaking
experiment is not the chemical equilibrium state. It is still a dynamic state where the
blue waves cannot be observed. The true chemical equilibrium occurs only when all

Fe2+ ions are oxidized and precipitated in the form of iron(III) oxide.
In summary, this article supports the hypothesis that the BZR consists of an

initial (lag) phase in which a regular grid of spatial cells is formed. Within this grid,
the process of chemical “communication” occurs due to diffusion between these cells.
Inside each of the cell develops a process whose chemical character may be, perhaps,
described by one of the schemes developed for oscillating process in the mixed vessel.

The earlier observation of Garcia-Ojarvo and Schimansky-Geier [6] who showed
that noise induces the formation of spirals in the FitzHugh-Nagumo model on a
regular grid was at least qualitatively identical to our observation of spirals and waves
at the late ergodic stage of the BZR. Possibly, the same mechanism of generation of
spirals and waves may be applied to the whole class of similar real excitable media
operating in “two-dimensional” conditions, e.g., in a sufficiently thin layer or in a
living cell monolayer. The ergodic pattern in the final phase of the systems of the
excitable media can be thus achieved either as a result of “noise” generated due to
two or more non-zero cells in the vicinity of the ignition point, or by introduction
of two different levels of flat (white) noise into “reaction” and “diffusion” element
of the excitable medium, respectively, or by the application of the Gaussian noise to
the resulted value. This fact that the same final ergodic state is achieved by three
different way demonstrates that the coexistence of spiral and waves is a final state
for a wide spectrum of noisy excitable media.

The stringent correspondence of the simulation on a discrete grid to the chemi-
cal experiment strongly supports the hypothesis on the formation of a grid of cells
analogous to the Bénard cells in viscous liquid [10] or to elementary cells in liq-
uid crystals [13]. This observation opens numerous new questions, namely, to which
extent the continuous differential equations are appropriate tools for description of
natural processes, at least those which lead to spirals or turbulences.
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