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Abstract. We review connections between the cumulant generat-
ing function of full counting statistics of particle number and the
Rényi entanglement entropy. We calculate these quantities based on
the fermionic and bosonic path-integral defined on multiple Keldysh
contours. We relate the Rényi entropy with the information gener-
ating function, from which the probability distribution function of
self-information is obtained in the nonequilibrium steady state. By
exploiting the distribution, we analyze the information content carried
by a single bosonic particle through a narrow-band quantum communi-
cation channel. The ratio of the self-information content to the number
of bosons fluctuates. For a small boson occupation number, the average
and the fluctuation of the ratio are enhanced.

1 Introduction

Measurements of the average current and its fluctuation (noise) have been power-
ful tools to study the quantum transport in mesoscopic systems [1]. The probability
distribution of current can be treated by the theory of full counting statistics [2–4].
Suppose we partition a mesoscopic conductor, i.e., a tunnel junction, into a sub-
system A and a subsystem B (Fig. 1a). By applying bias voltage, electrons flow
from subsystem B to subsystem A. The theory of full counting statistics offers a
method of calculating the probability distribution function of the number of elec-
trons in subsystem A, Pτ (NA) at a given measurement time τ . It is often convenient
to introduce the Fourier transform of the probability distribution function [5], the
characteristic function, Zτ (eiχ) =

∑
NA

Pτ (NA)eiNAχ or its logarithm, the cumulant
generating function, which yields quantities characterizing the profile of the prob-
ability distribution function, kth moments 〈Nk

A〉 = ∂kiχZτ (eiχ)
∣∣
iχ=0

or cumulants

〈〈Nk
A〉〉 = ∂kiχ lnZτ (eiχ)

∣∣
iχ=0

.

The two subsystems can get entangled after exchanging electrons [6]. The amount
of the entanglement between subsystems A and B can be quantified by exploiting the
entropy [7–9]. It is the von Neumann entropy [9] S(ρ̂A) = −TrA [ρ̂A ln ρ̂A] associated
to the reduced density matrix obtained after tracing out degrees of freedom of subsys-
tem B; ρ̂A = TrB ρ̂. In other words, it is the average of the operator of self-information,
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or the entanglement Hamiltonian, ÎA = − ln ρ̂A. The full counting statistics and the
entanglement entropy are related to each other [10–13]. In reference [10], a nontrivial
relation between the current cumulants and the dynamical entanglement entropy [14]
was demonstrated. The entropy quantifying the entanglement can be expressed by
using the current cumulants of even order as [10],

〈〈IA〉〉 =
∞∑
k=1

(−1)k+1(2π)2kB2k〈〈N2k
A 〉〉/(2k)!, (1)

where Bk are Bernoulli numbers (B2 = 1/6, B4 = −1/30, B6 = 1/42, . . .).
The Rényi entropy [8,15] of order M , lnSM/(1 − M), where SM = TrAρ̂

M
A

for quantum cases (hereafter, we call SM the Rényi entropy [16]) is another
tractable measure of entanglement. In reference [11] the following relation was
presented;

lnSM = −eiφ
∫ ∞
−∞

dz ln
[
(1 + eiφz)M − eiφzM

]
µ(z) , (2)

where the phase is φ = 0 for bosons and φ = π for fermions (precisely, the equality
for fermions was presented in Ref. [11]). The spectral density is related to the current
cumulant generating function; µ(z) = e−iφ∂zIm lnZτ (u = 1 + e−iφ/(z + i0))/π.

In this article, we review these two universal relations based on the multicontour
Keldysh technique introduced in reference [16] and developed in references [17–22].
In those previous works, the operator representation was adopted. Here we introduce
path-integral representation. We also present another universal relation between the
Rényi entropy of order M , where M is a positive integer, and the current cumulant
generating function [21,22];

lnSM =
M−1∑
`=0

lnZτ (eiχ`) , χ` =
2π`+ φ

M
− φ . (3)

A similar relation connecting the Rényi entanglement entropy and the partition func-
tion was derived before [23,24]. In the present article, we focus on the ‘dynamical
Rényi entanglement entropy’ in the nonequilibrium steady state realized in the limit
of τ →∞. We also calculate the probability distribution of the self-information and,
to illustrate its usage, analyze the information transmission through a narrow-band
bosonic quantum communication channel [7,8,25].

The structure of the paper is as follows. In Section 2, we review the full
counting statistics for fermions and bosons. In Section 3, we introduce the self-
information of the information theory and explain that it is a random variable.
Then in Section 4, we explain the path-integral approach to the full counting
statistics and the Rényi entanglement entropy. In Section 5, we apply our tech-
nique to an information transmission problem carried by a single bosonic particle.
In Section 6, we summarize this article. Step-by-step derivations are given in
Appendices.
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Fig. 1. (a) Bipartition of a tunnel junction into subsystems A and B. (b) Electron scattering
processes at the interface between subsystems A and B. (c) Probability distribution function
of self-information.

2 Full counting statistics

2.1 Classical picture of transmission of particles

2.1.1 Fermions

Lets us consider electron transmission through the tunnel junction (Fig. 1a). An
electron is injected from subsystem B to subsystem A and is transmitted (reflected)
with the probability q(1) = T (q(0) = R = 1− T ). Suppose during a given measure-
ment time τ , N electrons are injected regularly from subsystem B (Fig. 1b-1). If we
detect the first electron in subsystem A, we set x1 = 1. If not, we set x1 = 0. Suppose
we obtain xn for the nth electron (n = 1, · · · , N). Then we write such a sequence
of events x1x2 · · ·xN , where xn ∈ X = {a1, a2} = {0, 1}, as x. The probability to
find this sequence is qN (x) = q(x1)q(x2) · · · q(xN ). For example, when all electrons
are transmitted (Fig. 1b-2), the probability is qN (11 · · · 1) = q(1)q(1) · · · q(1) = T N .
On the other hand, when all electrons are reflected (Fig. 1b-3), qN (00 · · · 0) =
q(0)q(0) · · · q(0) = RN . The above two events are rare. In a given sequence x,

Npx(a) =
∑N
n=1 δxn,a (a ∈ X ) electrons are transmitted (reflected) for a = 1 (a = 0)

(Fig. 1b-4). The probability to find such a sequence is qN (x) =
∏
a∈X q(a)Npx(a) =

T Npx(1)RNpx(0). Therefore, the probability that NA electrons transmit is,

Pτ (NA) =
∑

x∈XN
qN (x) δNA,Npx(1) =

(
N
NA

)
T NARN−NA ,

(
N
n

)
=

N !

n!(N − n)!
. (4)

This is the binomial distribution. The characteristic function is [2],

Zτ (eiχ) =
∑
NA

Pτ (NA)eiNAχ =
(
R+ T eiχ

)N
. (5)

By taking the derivative of its logarithm, we obtain the first cumulant or moment,
the average, 〈〈NA〉〉 = 〈NA〉 =

∑
NA

NAPτ (NA) = NT corresponding to the peak

position of the binomial distribution. The second cumulant, the noise, is 〈〈N2
A〉〉 =

〈N2
A〉− 〈NA〉2 =

∑
NA

N2
APτ (NA)−

(∑
NA

NAPτ (NA)
)2

= NT R, which corresponds
to the width of the distribution.
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2.1.2 Bosons

Let us consider a linear bosonic channel operating at frequency f within a nar-
row bandwidth B � f . In the duration of the measurement time τ , N = τB modes
are allowed. Suppose the nth mode contains xn ∈ X bosons (X = {a1, a2, a3, . . .} =
{0, 1, 2, . . .}). Such probability is given by the geometric distribution qr(xn) =
(1 − r)rxn , where r = e−βBhf and βB is the inverse temperature of subsys-
tem B. Therefore the probability to find a configuration x1x2 · · ·xN is qN (x) =
qr(x1) · · · qr(xN ). Then the probability to find NA bosons among N modes is given
by the negative binomial distribution as,

Pτ (NA) =
∑

x∈XN
qN (x) δNA,

∑∞
j=1(j−1)Npx(aj) = (1− r)NrNA

(
N − 1 +NA

N − 1

)
. (6)

The characteristic function is,

Zτ (eiχ) =
[
n−B(hf)− n+B(hf)eiχ

]−N
, n−B(hf) = 1 + n+B(hf) , (7)

where n+B(ω) = 1/(eβBω − 1) is the Bose distribution function. The average number

and noise are 〈〈NA〉〉 = n+B and 〈〈N2
A〉〉 = n+B(1 + n+B), respectively.

2.2 Large deviation

Once the cumulant generating function is obtained, the probability distribution func-
tion can be calculated by performing the inverse Fourier transform. In the limit of
long measurement time τ → ∞, the number of particles grows as NA ∝ τ . Then,
within the saddlepoint approximation,

Pτ (NA) =

∫ π

−π

dχ

2π
e−iχNAZτ (eiχ) ≈ exp

[
min
iχ∈R

[
lnZτ (eiχ)− iχNA

)]
, (8)

which is the Legendre–Fenchel transform [26]. The probability distribution
function is,

lnPτ (NA) ≈ −N



(
1− NA

N

)
ln

1− NA
N

R
+
NA
N

ln
NA
N

T
(Fermions)(

1 +
NA
N

)
ln 1+n+

1+
NA
N

+
NA
N

ln
NA
N

n+
(Bosons)

= −ND(p∗‖q) .

(9)

The result is expressed by the relative entropy D(p‖q) =
∑|X |
j=1 p(aj) ln p(aj)/q(aj)

(|X | is the number of elements in the set X ), which measures the difference
between the distributions p and q. The classical picture of the full count-
ing statistics in Section 2.1 is an application of the method of types (Chap-
ter 11 of Ref. [8]). px(a) is called a type, and equation (9) is a consequence
of Sanov’s theorem (Appendix A). The probability distribution p∗ is closest
to q in relative entropy, i.e., it minimizes D(p‖q) subjected to the constraint

NA =
∑|X |
j=1(j − 1)p(aj). For fermions, p∗ and q are Bernoulli distributions,

(p∗(0), p∗(1)) = (1 −NA/N,NA/N) and (q(0), q(1)) = (R, T ). For bosons, they are
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geometric distributions (p∗(0), p∗(1), . . .) = (q1/(1+N/NA)(0), q1/(1+N/NA)(1), . . .) and
(q(0), q(1), . . .) = (qr(0), qr(1), . . .). When p∗ = q, equivalently NA = 〈〈NA〉〉, the peak
of the distribution lnPτ (NA) ≈ 0 is realized.

3 Information as a random variable

We recall the basics of information theory [8,27]. Suppose X = {a1, a2, a3, a4} is
a set of four symbols and the probability of occurrence of each symbol is q(a1) =
1/2, q(a2) = 1/4, and q(a3) = q(a4) = 1/8. If the outcome is a, the self-information
associated with this outcome is,

IA(a) = − log2 q(a) (bit) , IA(a) = − ln q(a) (nat) . (10)

The self-information of each of the four symbols is IA(a1) = 1, IA(a2) = 2, and
IA(a3) = I(a4) = 3 bits. The Shannon entropy is the average of self-information [8];

H(q) =
∑|X |
j=1 q(aj)IA(aj) = −

∑|X |
j=1 q(aj) ln q(aj) = (1/2)× 1 + (1/4)× 2 + (1/8)×

3 + (1/8) × 3 = 7/4 (bit). The measure of information content introduced here is
a random variable, in the sense that it is a value associated to a random event.
Therefore, we can consider the probability distribution of the self-information; see
Chapter 2.7 of reference [27]. The probability distribution of self-information (in

bits) is, P (IA) =
∑|X |
j=1 q(aj)δ(IA − IA(aj)) = (1/2)δ(IA − 1) + (1/4)δ(IA − 2) + 2×

(1/8)δ(IA − 3), which is visualized in Figure 1c. It is clear that the Shannon entropy
is the average of this probability distribution function H = 〈IA〉 =

∫
dIAP (IA)IA.

Let us consider the transmission of particles in Section 2.1. In the follow-
ing, we measure the information content in nats. A sequence x carries the
self-information amount to IA(x) = − ln qN (x). The probability distribution func-
tion of self-information and its Fourier transform, information generating function
[28,29], are,

Pτ (IA) =
∑
x

qN (x)δ(IA − IA(x)), S1−iξ =

∫
dIAe

iξIAPτ (IA) =

 |X |∑
j=1

q(aj)
1−iξ

N

.

(11)

Since there is an apparent formal similarity, in the following we use the terms “infor-
mation generating function” and “Rényi entropy” interchangeably. The information
generating functions for fermions and bosons are,

SM =
(
T M +RM

)N
, SM =

[
n−B(hf)M − n+B(hf)M

]−N
. (12)

The average is the Shannon entropy, 〈〈IA〉〉 = ∂iξ lnS1−iξ|iξ=0 = NH(q) where

H(q) = H2(T ) = −T ln T − (1− T ) ln(1− T ) is the binary entropy for fermions and
H(q) = Hg(n

+
B) = (1 + n+B) ln(1 + n+B)− n+B lnn+B is the entropy for bosons. Similar

to equation (9), the probability distribution is calculated as,

lnPτ (IA) + IA ≈ NH2

(
IA/N + ln T

ln(T /R)

)
, NHg

(
IA/N + ln(1− r)

− ln r

)
. (13)

Let us rewrite equation (11) and check its meaning. For N � 1, typical sequences
are around the peak position 〈〈IA〉〉 = NH(q) of the distribution function Pτ (IA).
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For ε > 0, the intensity around the peak |IA/N −H(q)| ≤ ε is the probability to find

typical sequences;
∫ N(H(q)+ε)

N(H(q)−ε) dIAPτ (IA) =
∑

x∈T (N,ε) q
N (x) where T (N, ε) is a set of

all ε-typical sequences of length N [9] satisfying e−N(H(q)+ε) ≤ qN (x) ≤ e−N(H(q)−ε).

4 Path-integral approach

4.1 Full counting statistics

The Hamiltonian of the tunnel junction is given by, Ĥ = ĤA + ĤB + V̂ . The

Hamiltonians for the leads r = A,B are, Ĥr =
∑
k εr k ĉ

†
rk ĉrk, where ĉrk annihi-

lates a particle in quantum state k in the lead r. The tunnel Hamiltonian is

V̂ = J
∑
k,k′(ĉ

†
Ak ĉBk′ + ĉ†Bk′ ĉAk). Then the probability distribution function of a

particle number in the subsystem A and its characteristic function are

Pτ (NA) = TrA

[
Π̂NA ρ̂A(τ)

]
, Zτ (eiχ) = TrA

[
eiχN̂A ρ̂A(τ)

]
, (14)

where N̂A =
∑
k ĉ
†
Ak ĉAk is the operator of the number of particles in subsys-

tem A and Π̂NA =
∫ π
−π dχe

i(N̂A−NA)χ/(2π) is the projection operator. The phase
χ is called the counting field. The reduced density matrix of subsystem A at
time τ is prepared by the following protocol. Initially at time t = 0, the sub-
systems are decoupled and each subsystem is equilibrated with the inverse tem-
perature βA(B) and the chemical potential µA(B). The equilibrium density matrix

of the subsystem r is, ρ̂eq r = e−βr(Ĥr−µrN̂r)/Zr, where the equilibrium partition

function is Zr = Z(βr, µr) = Trr

[
e−βr(Ĥr−µrN̂r)

]
. The explicit form is, lnZr =

−eiφ
∫
dωρr(ω) ln

(
1− eiφ−βr(ω−µr)

)
, where ρr(ω) =

∑
k δ(ω − εrk) is the DOS of

particles in the lead r. At t = 0, we switch on the coupling V̂ and let the total system
evolve till t = τ . Then the reduced density matrix of the subsystem A at t = τ is,

ρ̂A(τ) = TrB

[
e−iĤτ ρ̂eqAρ̂eqBe

iĤτ
]
. (15)

We introduce the Keldysh path-integral [30–32] representation of the characteris-
tic function Zτ (eiχ) =

∫
D[crk(t)∗crk(t)]eiS(χ)/(ZAZB) (see Appendix B for detailed

derivations), where the action is,

S(χ) = SK({crk(t)∗, crk(t)}) +
∑
r=A,B

Sb.c.(crk(τ±)∗, crk(τ±);λr) . (16)

Here crk is a complex number (Grassmann number) and c∗rk is its complex conjugation
(conjugation) for a bosonic (fermionic) field [33]. The action is defined on the Keldysh
contour K (Fig. 2a),

iSK =
∑
σ=±

iσ

∫ τ

0

dtσ

[∑
rk

crk(tσ)∗(i∂tσ − εrk)crk(tσ)− J
∑
k,k′

(cAk(tσ)∗cBk′(tσ)

+ cBk′(tσ)∗cAk(tσ))

]
+
∑
rk

crk(0+)∗(crk(0−)e−βr(εr−µr) − crk(0+)) , (17)
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Fig. 2. (a) Keldysh contour K consisting of the forward (upper) branch K+ and the back-
ward (lower) branch K−. The shaded box is the initial density matrix. The solid dot at

t = τ indicates the operator eiN̂Aχ. (b) The sequence of M Keldysh contours. Time τ on the
upper branch of mth Keldysh contour Km,+ is connected to time τ on the lower branch of
m+ 1th Keldysh contour Km+1,− (m = 1, · · ·M and KM+1,− = K1,−). (c) M disconnected
Keldysh contours obtained after the discrete Fourier transform. Solid dots at t = τ indicate

operators eiN̂Aχ` (` = 0, . . . ,M − 1).

where time t± is defined on K±. The first term is defined on the forward (upper)
and backward (lower) branches K+ and K−. The second term imposes the boundary
condition at t = 0+ and t = 0−. The action determining the boundary condition at
t = τ+ and t = τ− is,

iSb.c.(crk(τ±)∗, crk(τ±);λr) =
∑
k

crk(τ−)∗(crk(τ+)eiλr − crk(τ−)), (18)

where λA = χ+ φ and λB = φ. Then, after the functional integral, and in the limit
of long measurement time, we obtain

ln
Zτ (eiχ)

Z0(eiχ)
≈ −eiφ τ

2π

∫
dω ln det

[
τ0 − J2τ3gA,χ+φ(ω)τ3gB,φ(ω)

]
, (19)

where τ0 = diag(1, 1) is the identity matrix and τ3 = diag(1,−1) is the Pauli matrix
in the Keldysh space. The 2 × 2 modified Keldysh Green-function matrix (see,
e.g., [4,34–40]) is,

gr,λ(ω) = −2πi ρr(ω)

[
1/2 + n+r,λ(ω) n+r,λ(ω)e−iλ

n−r,λ(ω)eiλ 1/2 + n+r,λ(ω)

]
, (20)

where we neglected the real part. We introduced,

n−r,λ(ω) =
1

1− e−βr(ω−µr)+iλ
, n+r,λ(ω) = e−βr(ω−µr)+iλ n−r,λ(ω) , (21)
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which is the particle distribution function when λ = φ. For φ = 0, the Bose distribu-
tion function n+r,0 = n+r = 1/(eβr(ω−µr) − 1) and n−r,0 = n−r = 1 + n+r are obtained.

For φ = π, the Fermi distribution function n+r,π = −f+r = −1/(eβr(ω−µr) + 1) and

n−r,π = f−r = 1 − f+r are obtained. At τ = 0, the two subsystems are decoupled

and the characteristic function is, lnZ0(eiχ) = lnZ(βA, µA + iχ/βA)/Z(βA, µA) =
−eiφ

∫
dωρA(ω) ln(n−A,φ(ω)− n+A,φ(ω)eiχ).

Further calculations lead to:

ln
Zτ (eiχ)

Z0(eiχ)
= −eiφ τ

2π

∫
dω ln

ñ+A,φ(ω)eiχ − ñ−A,φ(ω)

n+A,φ(ω)eiχ − n−A,φ(ω)
, (22)

where we omitted a constant to satisfy the normalization condition Zτ (1) = 1. We
introduced the effective particle distribution function, ñ±A,φ(ω) = R(ω)n±A,φ(ω) +

T (ω)n±B,φ(ω), where the transmission and reflection probabilities are T (ω) =

1 − R(ω) = 4π2J2ρA(ω)ρB(ω)/[1 + π2J2ρA(ω)ρB(ω)]2. For fermions, φ = π, equa-
tion (5) is obtained from equation (22) by taking the zero temperature limit
βA, βB → ∞ for the energy-independent transmission probability T (ω) = T . The
number of injected fermions is N = τ(µB − µA)/(2π) for µB > µA. For bosons
φ = 0, equation (7) is derived for the narrow-band channel, i.e., the energy fil-
ter T (ω) = hB δ(ω − hf), where the bandwidth B is much smaller than the signal
frequency f , when the subsystem A is empty, n+A,0(hf) = 0.

4.2 Rényi entanglement entropy

The probability distribution function of self-information and the information gener-
ating function are

Pτ (IA) = TrA

[
ρ̂A(τ)δ(IA − ÎA(τ))

]
, S1−iξ = TrA

[
ρ̂A(τ)1−iξ

]
. (23)

The spectrum of the entanglement Hamiltonian ÎA(τ) = − ln ρ̂A(τ), the entan-

glement spectrum [41], is closely related to this distribution; TrA

[
δ(IA − ÎA)

]
=

eIAPτ (IA). This relation implies 〈eIA〉 = rankρ̂A, which is reminiscent of the
Jarzynski equality [42,43]. As an example, let us consider the density matrix ρ̂A =(∑|X |

j=1 q(aj)|j〉〈j|
)⊗N

, where |j〉 is an orthonormal set. Then equation (23) reduces

to the classical case, equation (11). By applying Jensen’s inequality to the Jarzynski
equality 〈eIA〉 = |X |N , we obtain 〈IA〉 ≤ N ln |X |, i.e., N ln |X | is the maximum
entropy.

At τ = 0, when the subsystems are decoupled, the information generating function
is, sM = TrA

[
ρ̂MeqA

]
= Z(MβA, µA)/ZMA . At finite τ , when the coupling induced

the correlations between the two subsystems, the information generating function is
calculated by the replica trick: We first calculate it for a positive integer M and then
perform the analytic continuationM → 1− iξ. The path-integral representation of the
Rényi entropy of a positive integer M order, SM = TrA [ρ̂A(τ) · · · ρ̂A(τ)], is evaluated
by extending the contour K to a sequence of M Keldysh contours [16] (Fig. 2b);
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SM = (ZAZB)−M
∫
D[cmrk(tm)∗cmrk(tm)]eiS̃ , where the action is,

S̃ =
M∑
m=1

SKm({cmrk(tm)∗, cmrk(tm)}) + Sb.c.(cmBk(τm,±)∗, cmBk(τm,±);φ) + Smb.c.A.

(24)

Here, time tm,± is defined on the upper (lower) branch of mth Keldysh contour Km,±.
The fields cmrk and thus the action SKm are defined on the mth Keldysh contour
Km. The definition of the action SKm is the same as equation (17). The action
imposing the boundary condition at t = τm,+ and t = τm,− for the fields of the
subsystem B, Sb.c., is the same as equation (18). For the fields of the subsystem A,
the action Smb.c.A imposes the boundary condition connecting t = τm,+ on the upper
branch of mth Keldysh contour and t = τm+1,− on the lower branch of m + 1th
Keldysh contour;

iSmb.c.A =
∑
k

cm+1Ak(τ−)∗(cmAk(τ+)− cm+1Ak(τ−)) , (25)

where cM+1Ak(τ−) = c1Ak(τ−)e−iφ. This action can be diagonalized by the discrete
Fourier transform;

cmrk(t) =
1√
M

M−1∑
`=0

c`rk(t)e−i(2π`+φ)m/M , (26)

which fulfills the periodic or anti-periodic boundary condition cm+Mrk(t) =
cmrk(t)e−iφ. The resulting action is,

M∑
`=1

Smb.c.A =

M−1∑
`=0

Sb.c.(c`Ak(τ±)∗, c`Ak(τ±);χ` + φ) , χ` =
2π`+ φ

M
− φ . (27)

The discrete Fourier transform introduces a discrete counting field χ` at t = τ . Since
the action defined on the Keldysh contour, equation (17), is quadratic, it is diago-

nal after the Fourier transform;
∑M
m=1 SKm({c∗mrk, cmrk}) =

∑M−1
`=0 SK({c∗`rk, c`rk}).

The action imposing the boundary condition for subsystem B is also diagonal in `;∑M
m=1 Sb.c.(cmBk(τm,±)∗, cmBk(τm,±);φ) =

∑M−1
`=0 Sb.c.(c`Bk(τ±)∗, c`Bk(τ±);φ). In

this way, we separate connected M Keldysh contours (Fig. 2b) into disconnected
M Keldysh contours (Fig. 2c). The action is expressed by using the action of the
cumulant generating function (16),

S̃ =

M−1∑
`=0

S(χ`). (28)

By noticing that the Jacobian of the Fourier transform is 1, we obtain the relation (3).
For further calculations, we define u = eiχ and rewrite the summation over ` as

the contour integral [23,24];

lnSM =

∫
C

du

2πi

M−1∑
`=0

lnZτ (u)

u− eiχ`
=

∫
C

du

2πi
∂u ln

(
uM − eiφ(1−M)

)
lnZτ (u), (29)
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Fig. 3. (a) Contour of integral C encircling singularities at u = ei((2π`+φ)/M−φ) (in this
panel, φ = π and M = 8) denoted by crosses. The dashed line indicates the unit cir-
cle. There is a branch cut connecting two branch points u+ = ñ−

A,φ(ω)/ñ+
A,φ(ω) and

u− = n−
A,φ(ω)/n+

A,φ(ω) on the real axis (in this panel, we assumed u+ > u−). (b) The

contour C and singularities after the variable transform z = −e−iφ/(1− u). The dashed line
indicates Rez = −e−iφ/2.

where the contour C is taken so that it encircles poles at u = eiχ` (` = 0, · · · ,M − 1)
(Fig. 3a). Then we substitute the expression for τ →∞, equation (22). The integrand
has a branch cut on the real axis connecting two branch points u+ = ñ−A,φ(ω)/ñ+A,φ(ω)

and u− = n−A,φ(ω)/n+A,φ(ω). By a variable transform z = −e−iφ/(1−u), which trans-

forms a unit circle to a line Rez = −eiφ/2, and by noticing that the branch cut stays
on the real axis after this transform (Fig. 3b), equation (29) can be transformed into
equation (2). The explicit form of the spectral density associated to equation (22) is,

µ(z) =

∫
dω
[ τ

2π
δ(z − e−iφñ+A,φ(ω)) +

(
ρA(ω)− τ

2π

)
δ(z − e−iφn+A,φ(ω))

]
. (30)

The first term in the square brackets contains the effective distribution function
and thus is related to particle transmission and reflection. The second term is
the bulk thermodynamic entropy of subsystem A and the overcounting term. For
noninteracting fermions, in the limit of zero temperature, equation (30) is the
effective-transparency density [44] and the above discussions are applicable to a
finite τ case since singularities are always on the negative real axis of complex
u-plane [45].

The information generating functions in equation (12) are obtained by substi-
tuting equation (30) into equation (2). For fermions φ = π, again we take the zero
temperature limit βA, βB → ∞ and consider the energy-independent transmission
probability. For bosons φ = 0, we set T (ω) = hB δ(ω − hf) and n+A,0(hf) = 0.

The relation (1) is obtained by expanding the RHS of equation (3) in powers of
χ` and then performing the summation over `;

lnSM =
∞∑
k=1

〈〈Nk
A〉〉
k!

(
2πi

M

)k
×
{

ζ(−k, 1)− ζ(−k,M) (φ = 0)
ζ(−k, 1−M2 )− ζ(−k, 1+M2 ) (φ = π)

. (31)

Here ζ(s, a) =
∑∞
`=0(a + `)−s is the Hurwitz zeta function. By the analytic con-

tinuation M → 1 − iξ and by differentiating in ξ, we obtain equation (1) except
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for the imaginary number −iπ〈〈NA〉〉 for bosons, which may be an artifact and is
neglected.

5 Information transmission through a bosonic quantum channel

It is known that noninteracting bosons cannot be entangled if the initial decoupled
systems are in equilibrium [6,46]. Therefore, our average self-information does not
measure the amount of entanglement for bosons. Here we present that the probability
distribution function of self-information can be used to analyze the performance of a
quantum communication channel [8] by regarding subsystem A as a receiver side and
subsystem B as a transmitter side. Let us consider the single narrow-band bosonic
channel. The transmitter side generates signals, the thermal noise of temperature
β−1B , with average power PA = hfBn+B . We set βA → ∞ to suppress the detector
noise. Then we ask a question addressed in reference [25]: How much information can
be transmitted by a single boson? The quantity we consider is the ratio of the self-
information content to the number of bosonic particles, η = IA/NA. It is a random
variable, since both the numerator and the denominator are random variables. It is
also an analog of the efficiency, the ratio of output to input, whose fluctuations have
been addressed recently [47–51]. In the limit of long measurement time τ →∞, the
average approaches 〈η〉 ≈ 〈IA〉/〈NA〉 = Hg(n

+
B)/n+B as predicted in reference [25].

In order to analyze the probability distribution of η, we introduce the
self-information associated with a state after the projective measurement of
the particle number NA in the subsystem A; Î ′A = − ln ρ̂′A, where ρ̂′A =∑
NA

Π̂NA ρ̂AΠ̂NA . The joint probability distribution of I ′A and NA is Pτ (I ′A, NA) =

TrA

[
Π̂NA ρ̂AΠ̂NAδ (I ′A + ln ρ̂′A)

]
. The information generating function is,

S1−iξ(χ) =

∫
dI ′A

∑
NA

eiNAχ+iI
′
AξPτ (I ′A, NA) = TrA

[(
eiN̂Aχ/(1−iξ)ρ̂A

)1−iξ]
, (32)

where we used the local particle number super-selection [6,22,52,53], which

ensures [ρ̂A, N̂A] = 0 [22]. Then for the narrow-band channel when the detec-
tor noise is absent βA → ∞, the characteristic function is lnSM (χ) =
−N ln[n−B(hf)M − eiχn+B(hf)M ]. The joint probability distribution is then,
P (I ′A, NA) = Pτ (NA)δ

(
I ′A + ln(1− r)NrNA

)
, where Pτ (NA) is given by equation (6).

The probability distribution is,

Pτ (η) =
∞∑

NA=1

∫
dI ′APτ (I ′A, NA)δ(η − I ′A/NA) ≈ |N∗A|2 P (N∗A)/(η + ln r), (33)

where N∗A/N = − ln(1− r)/(η + ln r). From the condition N∗A ≥ 0, we observe that
the fluctuation of η is bounded below η > − ln r = βBhf . In the limit of τ → ∞,
we can adopt equation (9) and see that the peak position is at 1/(1 + N/N∗A) = r
equivalently η = 〈η〉.

Figure 4a shows the boson occupation number n+B dependence of the average

value. In the limit of small boson occupation number n+B � 1 it goes to infinity 〈η〉 ≈
− lnn+B , as predicted in reference [25]. Figure 4b shows the probability distributions
for various boson occupation numbers. For large η, the probability decays in power
law fashion Pτ (η) ≈ (1 + n+B)−N/η3. This implies that, for a small boson occupation
number, the information carried by a single particle fluctuates strongly. It can be
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Fig. 4. (a) The information content carried by a single boson particle. (b) The probability
distribution of ratio η = IA/NA. Dashed lines indicate −N lnn−

B .

understood by the following: a sequence x satisfying NA =
∑∞
j=1(j − 1)Npx(aj)

carries the self-information IA = − ln qN (x) = −NA ln r−N ln(1−r). For small n+B =

r/(1− r)� 1, the ratio for this particular sequence is η ≈ − lnn+B +Nn+B/NA. The
first term is the average value and the second term is the fluctuation. The fluctuation
is strongly enhanced for a sequence, in which the number of bosons is much smaller
than the average number of signal quanta NA � Nn+B = τPA/(hf).

For fermions, the probability distribution of the ratio was analyzed in refer-
ence [22].

6 Summary

In summary, we present the fermionic and bosonic path integral for the full count-
ing statistics and the Rényi entanglement entropy. The key relation (3) holds for
the quadratic action, i.e., noninteracting particles. We analyzed the ratio of self-
information to the number of bosons transmitting through a narrow-band quantum
channel. For small occupation number of bosons, the average of the ratio diverges.
At the same time, for an event in which the number of bosons is much smaller than
the average number of signal quanta of a given signal power, the fluctuation of the
ratio is enhanced.

We thank H. Okada for discussions. This work was supported by JSPS KAKENHI 17K05575
and JP26220711. Y.U. performed calculations and wrote the manuscript.

Appendix A: Short derivation of Sanov’s theorem

Let X = {a1, . . . , a|X |} and consider the distribution q on X . Let X1, . . . , XN be a
sequence of random variables drawn i.i.d. according to q(x). The probability that the
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sample average of g(X) is equal to α is,

P

(
N∑
n=1

g(xn) = Nα

)
=
∑

x∈XN
qN (x) δ

(
N∑
n=1

g(xn)−Nα

)
. (A.1)

By using the multinomial coefficient, it is written as,

P ≈ N |X |
∫
dp1 · · · dp|X |

(
N

Np1 · · · Np|X |

)
q(a1)Np1 · · · q(a|X |)Np|X|

× δ

N
 |X |∑
j=1

pjg(aj)− α

 δ

N
 |X |∑
j=1

pj − 1

 . (A.2)

By rewriting the delta function as, e.g., δ(x) =
∫
dξe−iξx/(2π) and by using

Stirling’s approximation, we obtain P ≈ exp
(
−N min{pj},iξ,iλ∈R J(p, ξ, λ)

)
within

the saddlepoint approximation, where J = D(p‖q) + iξ
(∑|X |

j=1 pjg(aj)− α
)

+

iλ
(∑|X |

j=1 pj − 1
)

. For the precise derivation, see reference [8].

The result is rephrased as P ≈ e−ND(p∗‖q) where p∗ is the closest to q in relative

entropy under the constraint
∑|X |
j=1 pjg(aj) = α and

∑|X |
j=1 pj = 1. For our problems,

we set aj = j − 1 and |X | = 2(∞) for fermions (bosons). Equation (9) is obtained by
setting α = NA/N and g(aj) = j− 1. Equation (13) is obtained by setting α = IA/N
and g(aj) = − ln q(aj).

Appendix B: Path integral on multiple Keldysh contours

We adopt the time-slicing technique [32,54–58] to introduce the path-integral

representation of equation (32); SM (χ) = TrA

[(
eiN̂Aχ/M ρ̂A(τ)

)M]
. This is the

characteristic function for M = 1, S1(χ) = Zτ (eiχ), equation (14), and the Rényi
entanglement entropy for χ = 0, SM = SM (0), equation (23). Initially, when the two

subsystems are decoupled, it is sM (χ) = TrA

[(
eiN̂Aχ/M ρ̂eqA

)M]
= Z(MβA, µA +

iχ/(MβA))/Z(βA, µA)M . For simplicity, we consider one quantum state in each

subsystem, and thus the Hamiltonians are, ĤA = εAâ
†â, ĤB = εB b̂

†b̂, and V̂ =

J(â†b̂ + b̂†â). To obtain the path-integral representation, we discretize each branch
of M Keldysh contours into N − 1 time steps (Fig. B1) The step size is dτ =
τ/(N − 1). A discrete time on the lower branch of the mth Keldysh contour is tm,j =
(N − j)dτ for j = 1, . . . , N and that on the upper branch is tm,j = (j − N − 1)dτ
for j = N + 1, . . . , 2N . Then, at time tm,j , we insert the closure relation, e.g.,

1̂ =
∫
da∗m,jdam,je

−a∗m,jam,j |am,j〉〈am,j |/N , where N = 1(2πi) for fermions (bosons)

(we follow the convention of the textbook [33]) and â†|am,j〉 = am,j |am,j〉 is the
coherent state.

By inserting closure relations for subsystem A at τm,+ = tm,2N and τm,− = tm,1
and using the trace expression, TrAÔ =

∫
da∗1,1da1,1e

−a∗1,1a1,1〈e−iφa1,1|Ô|a1,1〉/N ,
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Fig. B1. Discrete time points on the mth Keldysh contour.

the Rényi entropy becomes,

SM (χ) = TrA

[
eiN̂Aχ/M ρ̂A(τ) · · · eiN̂Aχ/M ρ̂A(τ)

]
=

∫
da∗M,2NdaM,2N

N

∫
da∗M,1daM,1

N

· · ·
∫
da∗1,2Nda1,2N

N

∫
da∗1,1da1,1

N
e−

∑M
m=1(a

∗
m,2Nam,2N+a∗m,1am,1)

×〈e−iφa1,1|eiN̂Aχ/M |aM,2N 〉〈aM,2N |ρ̂A(τ)|aM,1〉〈aM,1|eiN̂Aχ/M |aM−1,2N 〉 · · ·

×〈a2,2N |ρ̂A(τ)|a2,1〉〈a2,1|eiN̂Aχ/M |a1,2N 〉〈a1,2N |ρ̂A(τ)|a1,1〉. (B.1)

Then by using the relation, 〈a|eiN̂Aχ/M |a′〉 = ea
∗a′eiχ/M , we obtain,

SM (χ) =
M∏
m=1

∫
da∗m,2Ndam,2Nda

∗
m,1dam,1

N 2
ρA(am,2N , am,1; τ)e

∑M
m=1 iS

m
b.c.A , (B.2)

The action, iSmb.c.A = a∗m+1,1

(
am,2Ne

iχ/M − am+1,1

)
where aM+1,1 = e−iφa1,1, corre-

sponds to equation (25) and imposes the boundary condition of the field a at τm,+ and

τm+1,−. ρA(am,2N , am,1; τ) = 〈am,2N |ρ̂A(τ)|am,1〉e−a
∗
m,2Nam,2N is the reduced density

matrix expressed by the double path-integral [30,31,59].

ρA(a2N , a1; τ) =
2N−1∏
j=2

∫
da∗jdaj

N

2N∏
j=1

∫
db∗jdbj

N
eiSK+iSb.c.(b1(2N),b

∗
1(2N);φ)

ZAZB
, (B.3)

where we omitted the replica index m. The action corresponding to equation (17) is,

iSK ≈

 2N−1∑
j=N+1

+
N−1∑
j=1

[−a∗j+1(aj+1 − aj)− b∗j+1(bj+1 − bj)

− i sgn(j −N)H(a∗j+1, b
∗
j+1, aj , bj) dτ

]
+ a∗N+1

(
aNe

−βA(εA−µA) − aN+1

)
+ b∗N+1

(
bNe

−βB(εB−µB) − bN+1

)
. (B.4)

The action iSb.c.(bm,1(2N), b
∗
m,1(2N);φ) = b∗m,1

(
bm,2Ne

iφ − bm,1
)

corresponds to equa-

tion (18) and imposes the boundary condition of the field b at τm,±. Summarizing
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above,

SM (χ) = lim
N→∞

M∏
m=1

2N∏
j=1

∫
da∗m,jdam,j

N

∫
db∗m,jdbm,j

N
eiS̃ , (B.5)

where the action is,

S̃ =
M∑
m=1

SKm({am,j(bm,j), a∗m,j(b∗m,j)}) + Sb.c.(bm,1(2N), b
∗
m,1(2N);φ) + Smb.c.A. (B.6)

In the following, we perform the functional integral. The matrix form of the
action is,

S̃ = a†g−1A,Ma + b†
(
1M ⊗ g−1B,φ

)
b− iJdτ

[
a† (1M ⊗P)b + b† (1M ⊗P)a

]
, (B.7)

where 1M is M ×M identity matrix and ⊗ stands for the Kronecker product. Vectors
a and b consist of 2NM components of fields, e.g., aT = (aT1 , · · · ,aTM ) where am =
(am,1, · · · , am,2N )T . The inverse Green function of subsystem A is a block (skew)
circulant for φ = 0 (φ = π) and that of subsystem B is block diagonal. They are, e.g.,
for M = 3,

ig−1A,M =

 XA 0 eiχ/M+iφY
eiχ/MY XA 0

0 eiχ/MY XA

 , (B.8)

1M ⊗ ig−1B,φ =

 ig−1B,φ 0 0

0 ig−1B,φ 0

0 0 ig−1B,φ

 , ig−1B,φ = XB + eiφY . (B.9)

2N × 2N submatrices are, P = τ3 ⊗ pN,−, Y = τ+ ⊗ pN,+ and

Xr = τ0 ⊗ (−1N + pN,−) + τ †+ ⊗ pN,+e
−βr(εr−µr) + idτεrτ3 ⊗ pN,−, (B.10)

where τ+ = p2,+ is a 2 × 2 matrix. pN,± are N × N matrices, and their (i, j)-
components are [pN,+]ij = δi,1δj,N and [pN,−]ij = δi,j+1. Explicit forms are, e.g.,
for N = 3,

pN,+ =

[
0 0 1
0 0 0
0 0 0

]
, pN,− =

[
0 0 0
1 0 0
0 1 0

]
. (B.11)

The block (skew) circulant matrix g−1A,M can be block-diagonalized by

using the discrete Fourier transform corresponding to equation (26), am =∑M−1
`=0 a`e

−i(2π`+φ)m/M/
√
M . Then, by introducing 2N × 2N sub-matrix

ig−1A,χ`+χ/M+φ = XA + ei(2π`+φ+χ)/MY, the action becomes,

iS̃ =
M−1∑
`=0

[
a†`ig

−1
A,χ`+χ/M+φa` + b†`ig

−1
B,φb` − iJdτ

(
a†`Pb` + b†`Pa`

)]
. (B.12)
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This action corresponds to equation (16) for M = 1 and to equation (28) for χ = 0.
Since the Jacobian of the discrete Fourier transform is 1, by exploiting the Gauss inte-

gral, ln
∫ ∏2N

j=1(da∗jdaj/N )e−a
†Ma = −eiφ ln detM, where M is a 2N × 2N matrix,

the Rényi entropy is calculated as,

ln
SM (χ)

sM (χ)
= −eiφ

M−1∑
`=0

ln det
[
12N − (Jdτ)2gB,φPgA,χ`+χ/M+φP

]
. (B.13)

Here the Green function is,

[gr,λ]ij = −i



n−r,λe
−iεr(j−i)dτ (1 < j < i < N)

n+r,λe
−iλ+iεr(2N−i−j+1)dτ (1 < j < N,N + 1 ≤ i ≤ 2N)

n−r,λe
−iεr(i−j)dτ (N + 1 < j < i < 2N)

n+r,λe
−iεr(j−i)dτ (1 < i < j < N)

n−r,λe
iλ−iεr(2N−i−j+1)dτ (1 < i < N,N + 1 < j < 2N)

n+r,λe
−iεr(i−j)dτ (N + 1 < i < j < 2N)

. (B.14)

In the time-continuous limit dτ → 0, we set t = ti and t′ = tj . It is
ti = (N − i)dτ ∈ K− for 1 ≤ i ≤ N and ti = (i−N − 1)dτ ∈ K+ for N + 1 ≤ i ≤ 2N .
Then, in the 2× 2 Keldysh Green function matrix form,

gr,λ(t, t′) =

[
gr,λ(t ∈ K+, t

′ ∈ K+) gr,λ(t ∈ K+, t
′ ∈ K−)

gr,λ(t ∈ K−, t′ ∈ K+) gr,λ(t ∈ K−, t′ ∈ K−)

]
= −ie−iεr(t−t

′)

×
[
n−r,λθ(t− t′) + n+r,λθ(t

′ − t) n+r,λe
−iλ

n−r,λe
iλ n−r,λθ(t

′ − t) + n+r,λθ(t− t′)

]
. (B.15)

In the limit of τ →∞, the logarithm in equation (B.13) is expanded as,

ln det[· · · ] = −J2

∫ τ

0

dt2dt1Tr
[
τ3gB,φ(t1, t2)τ3gA,χ`+χ/M+φ(t2, t1)

]
+ · · ·

≈ − τ

2π
J2

∫
dωTr

[
τ3gB,φ(ω)τ3gA,χ`+χ/M+φ(ω)

]
+ · · ·

=
τ

2π

∫
dωTr ln

[
τ0 − J2τ3gA,χ`+χ/M+φ(ω)τ3gB,φ(ω)

]
, (B.16)

where the Fourier transform of equation (B.15) is,

gr,λ(ω) = P
1

ω − εr
τ3 − 2πi δ(ω − εr)

[
1/2 + n+r,λ(ω) n+r,λ(ω)e−iλ

n−r,λ(ω)eiλ 1/2 + n+r,λ(ω)

]
. (B.17)

P stands for the Cauchy principal value. The above calculations can be readily
extended to many states εr → εrk, and then equation (20) is gr,λ(ω) =

∑
k grk,λ(ω).

By combining equations (B.13) and (B.16), we obtain,

ln
SM (χ)

sM (χ)
≈ −eiφ

M−1∑
`=0

τ

2π

∫
dωTr ln

[
τ0 − J2τ3gA,χ`+χ/M+φ(ω)τ3gB,φ(ω)

]
, (B.18)

which corresponds to equation (19) for M = 1 and to equation (3) for χ = 0.
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