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Abstract. We study the interconversion between photons and phonons
coupled via radiation pressure in artificial Dirac materials realized by
a honeycomb array of optomechanical cells. In particular, we analyze
the chiral tunneling of (photon–phonon) polaritons through an oscillat-
ing planar barrier. While a static barrier accommodates constructively
interfering optical or mechanical waves leading to photon or phonon
transmission, an oscillating barrier allows for inelastic scattering that
causes sideband excitations and interference effects which, in turn, may
suppress or revive the light–sound interconversion.

1 Introduction

In optomechanical graphene, that is, a honeycomb array of optomechanical cells
driven by a laser with frequency ωl, co-localized cavity photon (eigenfrequency ωo)
and phonon (eigenfrequency ωm) modes interact (linearly) via radiation pressure. The
latter is tunable by the laser power. Recently, the scattering and conversion process
between photons and phonons, triggered by static laser-induced planar [1] and circu-
lar quantum barriers [2], has been worked out within an effective Dirac–Weyl theory,
and the emergence of optomechanical Dirac physics has been demonstrated. Because
of the chiral nature of the quasiparticles, having a Dirac-like bandstructure, the trans-
port phenomena show similarities to those of low-energy electrons in graphene, but
are more subtle due to the photon–phonon coupling in the barrier, leading to the for-
mation of polariton (photon–phonon) states. Moreover, for perpendicular incidence
of the photon wave, Klein tunneling appears, that is, the unimpeded transmission
of the particle regardless of the height or width of the barrier. Interestingly, in the
limit of low photon energies or high coupling strengths, when the barrier acts as a
kind of Fabry-Pérot interferometer, a perfect interconversion between photons and
phonons takes place, as a result of a constructive interference of standing optical and
mechanical waves, respectively.

In this contribution, we extend these investigations by analyzing the passage of
Dirac–Weyl quasiparticles in optomechanical graphene through a harmonically oscil-
lating (driven) potential barrier, i.e., we consider the significant case where the energy
is not conserved. To this end, we solve the time-periodic scattering problem for a per-
pendicularly impinging plane photon wave of energy E (injected by a probe laser),
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and discuss how a quantum barrier that oscillates in time with frequency Ω affects
the tunneling process. Since Klein tunneling persists for oscillating barriers due to the
conservation of helicity, we expect that the transport through the barrier is mainly
determined by the conversion rate between photons and phonons.

2 Theoretical approach

For sufficiently low energies, if the barrier is smooth on the lattice scale but sharp
on the de Broglie wavelength, umklapp scattering is suppressed and the continuum
approximation applies. Then, the system under consideration can be described by
the optomechanical Dirac–Weyl Hamiltonian

H =

(
v +

1

2
δv τz

)
σ · k − g (x, t) τx , (1)

given in units of ~ after rescaling H → H − ~ωm [1,2]. Here, v = (vo + vm)/2,
δv = vo − vm, with vo,m as the Fermi velocities of the optical/mechanical modes,
τ and σ are Pauli matrices, k (r) gives the wavevector (position vector) of the Dirac
wave, and g (x, t) parametrizes the time-dependent photon–phonon coupling. Note
that the single-valley Dirac–Hamiltonian (1) is obtained within the rotating-wave
approximation, i.e., in a frame rotating with the laser frequency, in the red-detuned
moderate-driving regime, ∆ = ωl−ωo = −ωm. In order to make the scattering inelas-
tic, we assume that the laser amplitude is modulated by a frequency much smaller
than the eigenfrequency of the laser and the mechanical mode, Ω � ωl, ωm (other-
wise the rotating-wave approximation is not granted). Furthermore, to stay within
the continuum approximation, Ω should be much smaller than the typical mechanical
hopping in the array, i.e. Ω � 2vm/3a with a as the lattice constant [1]. Then the
coupling strength within the barrier of width w is given by

g (x, t) = [g0 + g1 cos (Ωt)] [Θ (x)−Θ (x− w)] , (2)

where g0,1 is assumed to be constant and g1 ≤ g0.
For the tunneling problem, we consider the incoming photon to be in a plane wave

state at energy E and use the time-independent eigensolutions of (1) for x < 0, ψin ∼
|o〉 exp(ikox − iEt), with ko,m = E/vo,m being the optical/mechanical wavenumber
and |o,m〉 the bare optical/mechanical eigenstate of τz. In case of perpendicular
photon incidence and a barrier potential that is translational invariant in y-direction,
the scattering problem becomes one-dimensional. Then, the helicity, σx · kx/|kx|, is
a conserved quantity with eigenvalue +1 (this quantum number is therefore omitted
in the following). For this reason, no reflected waves appear and Klein tunneling
takes place. As a result of the optomechanical coupling, behind the barrier x > w,
the transmitted wave consists of optical and mechanical modes ψt = ψt;o + ψt;m,
ψt;o,m ∼

∑
n t

o,m
n |o,m〉 exp(iko,mn x − iEnt). Here, energy states with En = E + nΩ

and ko,mn = En/vo,m, n ∈ Z, are superimposed, since the oscillating barrier can give
(take) energy to (away from) photons and phonons. The wave inside the barrier

is ψb = ψb;+ + ψb;−, ψb;± ∼
∑

n,n′ b±n [co;±nn′ |o〉 + cm;±
nn′ |m〉]exp(iq±n x − iEn−n′t), with

Fourier coefficients co,m;±
nn′ and wavenumbers q±n obtained from Floquet theory [3,4].

It matches with the incident and transmitted wavefunction at the boundaries, which
defines an infinite system of coupled linear equations for the scattering coefficients to,mn
and b±n . From its numerical solution we obtain the current density of the transmitted
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wave:

jt;o,m (x/vo,m − t) = vo,m
∑
n,n′

(to,mn′ )∗to,mn exp [i (n− n′) Ω (x/vo,m − t)] . (3)

Then the equation of continuity gives the time-averaged transmission probability

T
o/m

= (vo,m/vo)
∑

n |to,mn |2, with T
o

+ T
m

= 1 (no backscattering). Because there

are no phonon waves impinging on the barrier, the transmission probability Tm can
be understood as photon–phonon conversion probability.

3 Results

In what follows, we adopt vm = 0.1vo and employ units such that vo = 1. Moreover,
since the scattering problem is invariant under the transformation [E, g0,1,Ω, w

−1]→
γ[E, g0,1,Ω, w

−1] with γ ∈ R, we use units such that Ω = 1.
For a static barrier, g1 = 0, we can analytically calculate the transmission

probability of the mechanical mode,

Tm
st = [1 + (ko)2v2o (vo − vm)

2
/
(
4vmvog

2
0

)
]−1 sin2

(
(q+st − q−st)w/2

)
, (4)

with wavenumbers q±st obtained from the static energy dispersion [2]. Since T o
st =

1 − Tm
st , in Figure 1 (upper panels) only Tm

st is plotted in the E/g0-wg0 plane.
As a result of the optomechanical coupling, the incoming photon can be con-
verted into phonons, i.e., Tm

st > 0. For energies larger than the barrier height (right
panel), Tm

st reveals a stripe structure with low intensity, where for E/g0 & 2 the
photon–phonon conversion is strongly suppressed since vm � vo [2]. For energies
smaller than the barrier height (left panel), the stripes in Tm

st are much more pro-
nounced, especially in the limit of small energies (high coupling strengths) E/g0 → 0.
Then the two polaritonic waves inside the barrier have antiparallel wavenumbers
±g0/

√
vovm = ±qst and interfere in such a way that the wave function simplifies to

ψb ∝ cos(qstx)g0 |o〉+ ivoqst sin(qstx) |m〉. In this way, in a semiclassical perspective,
the barrier acts as a kind of Fabry–Pérot interferometer accommodating standing
optical and mechanical waves, respectively. If the optical (mechanical) wave inter-
feres constructively with itself, the transmission becomes purely photonic (phononic),
Tm
st = 0 (Tm

st = 1), where the resonance condition is wg0 =
√
vovmnπ/2 ' 0.5n with

n even (odd) natural number.
An oscillating barrier may cause inelastic scattering by excitation of states with

energies shifted by multiples of the oscillation frequency, En = E+nΩ. In addition to
the central band, sidebands now yield a significant contribution to the transmission
of polaritons. The number of sidebands involved in the tunneling process is mainly
determined by the ratio g1/Ω. Even for weak couplings g1 (high oscillation frequen-
cies Ω), i.e., in the antiadiabatic limit g1/Ω � 1, the transmission pattern of Tm

st
is modified by a few sidebands only, see Figure 1 (lower panels). At very low pho-
ton energies, E/g0 � 1, for certain widths of the barrier the transmission becomes
purely photonic. By contrast, at photon energies close to resonance, E ∼ Ω (in Fig. 1
at E/g0 ≈ 3.48), the transmission of phonons may be significantly increased.

To elucidate the underlying mechanism, Figure 2 shows the quasienergies obtained
from Floquet theory as a function of q for the parameters used in Figure 1. Due to
the optical and mechanical degrees of freedom, the quasienergies are two-fold degen-
erate. This leads to avoided crossings, appearing at energies E = 0 and E = ±Ω
for the considered value of g0, which are the reason for the drastic modification of
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Fig. 1. Transmission probability of the phonon in the E/g0-wg0 plane for a static barrier
(g1 = 0; top panels) and for an oscillating barrier (g1 = 0.073Ω, g0 = 0.287Ω; Ω/g0 ≈ 3.48;
bottom panels). The transmission probability of the photon is T o

st = 1−Tm
st (T

o
= 1−T

m
).
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Fig. 2. Floquet quasienergies ε± as a function of wavenumber q for the parameter values of
Figure 1, lower panels. The quasienergies are defined in such a way that they coincide with
the energy dispersion of the static case for q → 0. Avoided crossings occur between ε± and
ε∓ ± Ω (further quasienergy bands are marked in gray).

the transmission pattern that becomes visible in the lower panels of Figure 1. The
avoided crossings are displayed in Figure 3a in more detail, together with the energy
dispersion for the static case. We observe that the oscillating barrier influences the
scattering process the greater the wavenumbers q0,1 deviate from the static wavenum-
bers qst. The difference is largest in the vicinity of the avoided crossings. As a result,
for an incoming photon with energy E ' 0, the entire transmission by the optical
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Fig. 3. Scattering characteristics for photon energy E ' 0. (a) Quasienergies ε± as a func-
tion of q for the cases (i) and (ii) of Figure 2. Drawn in are the energies of the central
band E0 and the first sideband E1 (red lines). Marked are wavenumbers q = q0,1, for which
ε±(q) = E0,1. For comparison the two polariton branches of the dispersion of the static case,
E∓(q) (solid) and E±(q) ∓ Ω (dashed) are shown (brown) with wavenumber qst. Avoided
crossings appear in the vicinity of points, where the two static polariton branches cross each
other. (b) Transmission probability for optical/mechanical central bands n = 0 (red/black)
and first excited optical sideband n = ±1 (orange) as a function of wg0 (here, |tmn |2 is multi-
plied by vm/vo). (c) Fourier spectrum of F [|tmn=0|2](q) [for comparison the Fourier spectrum
of Tm

st is included (brown line)]. (d) Time evolution of the optical/mechanical current density
jt;o,m (red/black) and the corresponding time-averaged current density (dashed) at x = w
for wg0 = 2.346 [crossing of red and orange lines (b)]. In all panels, g0 = 0.287Ω, g1 = 0.073Ω
(corresponding to E/g0 = 10−3 in Fig. 1).

and mechanical central bands is transferred to the first optical sidebands n = ±1
(periodically in wg0); see Figure 3b and lower left panel in Figure 1 at E/g0 = 10−3.
Since the situation is symmetric for the given parameter values, the wavenumbers
obtained from the two quasienergies ε± have equal magnitudes but are antiparallel
to each other, cf. Figure 3a. Consequently, the interference of the central band and
the sideband leads to standing optical and mechanical waves of different frequency.
This becomes visible in the Fourier transform F [|tm0 |

2
](q), see Figure 3c. The interfer-

ence effects are also reflected in the periodic time-evolution of the probability current
density shown in Figure 3d. This is most strikingly demonstrated by the photonic
current (red solid line), which disappears periodically because of destructive inter-
ference. The higher harmonic with frequency 2Ω is due to the interference of the
sidebands n = ±1.

A similar scenario arises for a photon at resonance energy E = Ω (in Fig. 1
at E/g0 ≈ 3.48). Whereas for a static barrier, g1 = 0, the transmission becomes
almost purely photonic (cf. Fig. 1, upper right panel) a small perturbation g1 =
0.073Ω is sufficient to excite the sideband n = −1 (see Fig. 4a). Again, interference
of the central bands and the sidebands leads to periodic transmission probabilities
as a function of wg0, especially for the mechanical sideband, see Figure 4b. The
Fourier transformation of the mechanical mode depicted in Figure 4c reveals which
wavenumbers are involved in the scattering process. Just as for the photon current
in Figure 3d, the interference of the mechanical side and central band leads to the
suppression of the current density of the phonon periodically in time, see Figure 4d.
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Fig. 4. Scattering characteristics for photon energy E = Ω. Notations are the same as in
Figure 3. Note that in panel (a) for case (iii), due to avoided crossings, the wavenumber
q−4 is obtained at E4 (here, the static dispersion merges with the quasienergy). In panels
(b) and (c), the blue lines correspond to the mechanical sideband n = −1. In panel (d),
wg0 = 0.929 [crossing of black and blue lines in panel (b)]. Again, g0 = 0.287Ω, g1 = 0.073Ω
with E = Ω (corresponding to E/g0 = 3.48 in Fig. 1).

4 Conclusions

In optomechanical Dirac materials scattering (tunneling) of plane photon waves by
(through) laser-induced oscillating planar barriers becomes inelastic. Finite trans-
mission probabilities for the optical and mechanical sidebands lead to a suppression
or revival of light–sound interconversion for photon energies close to multiple inte-
gers of the oscillation frequency. Using parameter values of recent experiments [1,5],
these effects will appear even for weak couplings with oscillation frequencies of about
0.5 MHz. Therefore, our work could be of particular interest for future (quantum)
optical applications, especially for the experimental realization of an interface between
microwave photons and phonons using laser barriers. The present study can be
extended to finite, circular quantum dot geometries, which give rise to a much more
complex, angle-dependent scattering and tunneling behavior [6].
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