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Abstract. Systems of disordered interacting bosons with particle-
hole symmetry can undergo a quantum phase transition between the
superfluid phase and the Mott glass phase which is a gapless incom-
pressible insulator. We employ large-scale Monte Carlo simulations of
a two-dimensional site-diluted quantum rotor model to investigate the
properties of the superfluid density and the compressibility at this tran-
sition. We find that both quantities feature power-law critical behavior
with exponents governed by generalized Josephson relations.

1 Introduction

The physics of systems as diverse as cold atoms in disordered optical lattices
[1–3], superconducting thin films [4,5], Josephson junction arrays [6,7], helium
absorbed in vycor [8,9], and doped quantum magnets in large magnetic fields [10–12]
can be described by models of disordered and interacting bosons. These systems
can undergo zero-temperature quantum phase transitions between superfluid and
insulating ground states.

Because of the disorder, the conventional bulk phases, viz., superfluid and Mott
insulator, are separated by a quantum Griffiths phase [13–16] in which superfluid
“puddles” exist in an insulating matrix. Depending on the symmetries, this Griffiths
phase can either be a Bose glass or a Mott glass. The Bose glass phase, a compressible
gapless insulator, occurs for generic disorder without particle-hole symmetry [17–19].
If the disordered Hamiltonian is particle-hole symmetric, the glassy phase between
the superfluid and the Mott insulator is the incompressible, gapless, and insulating
Mott glass (sometimes also called random-rod glass) [20,21].

The zero-temperature quantum phase transition between superfluid and Mott
glass was recently investigated by large-scale Monte Carlo simulations [22,23], resolv-
ing contradictions between earlier predictions [24–26]. Employing finite-size scaling of
the order parameter as well as the correlation length and time, the critical behavior
was found to be of conventional power-law type, with universal critical exponents.
This agrees with the general classification of phase transitions in disordered systems
based on the effective dimensionality of the defects [15,16,27].
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In the present paper, we focus on the behavior of two experimentally important
quantities, the superfluid density ρs and the compressibility κ, at this quantum phase
transition. By means of Monte Carlo simulations, we establish that both quantities
feature power-law critical behavior. The corresponding critical exponents fulfill gen-
eralized Josephson relations [18]. The paper is organized as follows: In Section 2, we
define the model and the quantities under consideration. The Monte Carlo simulation
results are presented in Section 3. We conclude in Section 4.

2 Quantum rotor model, superfluid density, and compressibility

We consider a square-lattice site-diluted quantum rotor model defined by the
Hamiltonian

H =
U

2

∑
i

εin̂
2
i − J

∑
〈ij〉

εiεj cos(φ̂i − φ̂j) . (1)

Here, n̂i denotes the number operator of lattice site i and φ̂i the canonically conju-
gate phase operator. U and J are the charging energy and the Josephson coupling,
respectively, and 〈ij〉 denotes pairs of nearest neighbor sites. The site dilution is
implemented via the independent quenched random variables εi that can take the
values 0 (vacancy) with probability p and 1 (occupied site) with probability 1− p. If
the filling, i.e., the average particle number 〈n〉, is an integer, then the Hamiltonian
is particle-hole symmetric, which is the case we focus on in the following. The qual-
itative behavior of the rotor model (1) is easily understood: If the charging energy
dominates, U � J , the ground state is Mott-insulating. For U � J and dilutions
below the percolation threshold, the ground state is superfluid.

We now map the quantum rotor Hamiltonian (1) onto a classical (2+1)-
dimensional XY model [28] with columnar defects:

Hcl = −Js
∑
〈i,j〉,t

εiεjSi,t · Sj,t − Jτ
∑
i,t

εiSi,t · Si,t+1. (2)

Here i denotes a position in two-dimensional real space, and t is the “imaginary time”
coordinate. Si,t is an O(2) unit vector. The values of the classical interactions Js/T
and Jτ/T depend on the parameters of the quantum Hamiltonian (1). The classical
temperature T differs from the real physical temperature TQ which is zero at the
quantum phase transition. As the critical behavior is expected to be universal, we fix
Js = Jτ = 1 and tune the transitions by varying the classical temperature T .

Under the quantum-to-classical mapping, the compressibility κ = ∂〈n〉/∂µ of the
quantum rotor Hamiltonian (1) maps onto the spinwave stiffness in the imaginary
time direction

ρcl,τ = L2
τ (∂2f/∂Θ2)Θ=0 (3)

of the XY model (2) (up to constant factors). Here, Lτ is the system size in imaginary
time direction, and f is the free energy density for twisted boundary conditions (the
XY spins Si,t at t = 0 make an angle of Θ with those at t = Lτ ). Analogously, the
superfluid density ρs of the quantum rotor model maps onto the spinwave stiffness

ρcl,s = L2(∂2f/∂Θ2)Θ=0 (4)
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in the space direction of the XY model, with L being the spatial linear system size.
(The twisted boundary conditions are now applied in x or y direction.)

3 Monte Carlo simulations

We perform Monte Carlo simulations of the classical XY model (2) combining Wolff
[29] and Metropolis updates [30]. Wolff cluster updates greatly reduce critical slowing
down while Metropolis single-spin updates help equilibrate disconnected clusters that
occur in a diluted lattice. We study a dilution of p = 1/3 because it was found to lead
to small corrections to scaling at the disordered critical point [22]. For comparison,
we also analyze the clean case, p = 0. System sizes range from L = 10 to 84 in the
space directions and from Lτ = 14 to 348 in imaginary time direction. All data are
averaged over 10,000 disorder configurations. The equilibration period is 200 Monte
Carlo sweeps for each sample, and the measurement period is 500 sweeps, with a
measurement taken after each sweep. (Performing short Monte Carlo runs for a large
number of disorder configurations reduces the overall statistical error [31–35].)

We compute the temporal and spatial stiffnesses ρcl,τ and ρcl,s by employing
numerical estimators that can be evaluated in conventional Monte Carlo runs without
actually having to apply twisted boundary conditions [36]. To test our algorithms, we
first analyze the clean case, p = 0, using systems with up to 2243 sites. As the clean
system is isotropic, ρcl,τ and ρcl,s agree with each other. At the critical temperature,
Tc = 2.201844 [22], they decay as L−1 with system size, as predicted by the Josephson
scaling relation ρcl ∼ L2−dcl [37]. Here, dcl = d+ 1 = 3 is the total dimensionality of
the classical XY model (2).

We now turn to the main results of this paper, viz., the behavior of ρcl,τ and
ρcl,s in the disordered case, p = 1/3. As the disorder breaks the symmetry between
space and imaginary time, L and Lτ are not equivalent, and we need to perform
anisotropic finite-size scaling. The optimal sample shapes for the present simulations
as well as the value of the critical temperature, Tc = 1.577, are taken from reference
[22]. The left panel of Figure 1 presents an overview of the temporal stiffness ρcl,τ
for several system sizes. As expected, ρcl,τ approaches a nonzero value for T < Tc
(superfluid phase) while it decays towards zero for T > Tc (Mott glass phase). The
spatial stiffness ρcl,s behaves in a similar fashion.

To determine the critical behavior of the stiffnesses ρcl,τ and ρcl,s quantitatively,
we analyze their system-size dependence at the critical temperature Tc = 1.577 in
Figure 2. The figure demonstrates that both stiffnesses feature power-law behav-
ior, ρcl,τ ∼ L−yτ and ρcl,s ∼ L−ys where yτ and ys are the scale dimensions of the
stiffnesses. Power-law fits yield the values yτ = 0.53(5) and ys = 1.47(6). The errors
(indicated by the numbers in parentheses) mostly stem from the uncertainty of Tc; the
statistical errors are much smaller. According to the generalized Josephson relations
[18], yτ and ys should fulfill the exponent equalities yτ = d − z and ys = d + z − 2.
Using d = 2 and the estimate z = 1.52(3) from reference [22], we see that both
relations are fulfilled within their error bars.

A more complete analysis of the critical behavior is provided by testing the scaling
behavior of the stiffnesses. The scaling form of the temporal stiffness reads

ρcl,τ (r, L) = L−yτ Xτ (rL1/ν), (5)

where ν = 1.16 [22] is the correlation length exponent, r = T −Tc denotes the distance
from criticality, and Xτ is a universal scaling function. The right panel of Figure 1
shows that our data fulfill the scaling form with high accuracy. The spatial stiffness
can be analyzed in a similar manner.
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Fig. 1. Left: stiffness ρcl,τ in imaginary time direction vs. classical temperature T for various
systems sizes. The dilution is p = 1/3. The statistical errors of the data are smaller than the
symbol size. Right: scaling plot of ρcl,τ according to equation (5).
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Fig. 2. Double logarithmic plot of the spinwave stiffnesses ρcl,τ and ρcl,s at the critical
temperature Tc = 1.577 as functions of the spatial linear system size L. The solid lines are
power-law fits to ρcl,τ ∼ L−yτ and ρcl,s ∼ L−ys .

4 Conclusions

Couched in terms of the original disordered boson problem, i.e., the quantum rotor
Hamiltonian (1), our findings can be summarized as follows: Close to the superfluid-
Mott glass quantum phase transition, the compressibility and the superfluid density
display power-law critical behavior, κ ∼ L−yτ and ρs ∼ L−ys . The scale dimensions
yτ = 0.53(5) and ys = 1.47(6) fulfill the generalized Josephson relations, yτ = d− z
and ys = d+ z − 2, within their error bars.

Combining these results with the critical exponents determined in reference [22],
we can write down the full scaling forms of κ and ρs as functions of the distance r
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from criticality, temperature TQ, and system size L:

κ(r, TQ, L) = b−yτ κ(rb1/ν , TQb
z, Lb−1) , (6)

ρs(r, TQ, L) = b−ys ρs(rb
1/ν , TQb

z, Lb−1) . (7)

Here, b is an arbitrary length scale factor. (Recall that TQ is the physical temperature
of the quantum system, not the classical temperature T appearing in the mapped
classical XY model.)

Potential experimental realizations of Mott glass physics can be found, e.g., in
granular superconductors, ultracold atoms, and certain magnetic systems [38,39].
The last example is particularly promising as the necessary particle-hole symmetry
arises naturally in the absence of a magnetic field.

This work was supported in part by the NSF under Grant Nos. DMR-1506152 and
PHY-1125915. T.V. is grateful for the hospitality of the Kavli Institute for Theoretical
Physics, Santa Barbara, where part of the work was performed.
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