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Abstract. Robust chaos is an important idea in the study of piecewise
smooth maps. The different techniques used to prove the existence of
robust chaos are reviewed and a new genericity condition for the classic
example is established. The theoretical conditions for the existence of
robust chaos are verified numerically providing additional evidence for
robust chaos in some examples. This provides a new set of tools for the
investigation of robust chaos.

1 Introduction

In a seminal paper, Banerjee, Yorke and Grebogi [4] introduced the idea of robust
chaos in the context of piecewise linear maps of the plane. The idea has been useful
in the analysis of many examples of piecewise smooth systems, but there is still some
uncertainty about precisely what has been established. In their book on the bifurca-
tions of piecewise smooth systems di Bernardo et al. note that ‘... additional (possibly
generic) conditions must be true in order to guarantee that such a scenario definitely
occurs, and the precise enumeration of the parameter region in which the chaotic
attractor occurs remains an open problem.’ ([5], pp. 157–158.) It seems remarkable
that despite the influence of the original papers very little appears to have been done
to determine what is known. The aim of this article is to consider the different ap-
proaches to robust chaos and to discuss the extent to which the mechanisms are fully
understood and in particular (Lemma 2) another generic condition required for the
arguments of Banerjee et al. [3,4] to hold is identified. This will involve revisiting not
only the work of Banerjee et al. [3,4], but also important contributions from Misi-
urewicz [16] and Young [24]. These provide rigorous results that can be applied to
examples, and in the final sections of this paper we adapt these to obtain numerical
confirmation of the assumptions of Young’s Theorem, and hence establish (up to the
accuracy of the numerics) the existence of robust chaos by other means.
Contrary to common practice in mathematics papers I will discuss what I do

not understand as well as what I do understand. This means that some questions
arising in the former cases may be due to my own lack of imagination rather than a
broader lack of understanding. This approach has some dangers, but I hope that it
will highlight interesting questions for future research.
It is probably not useful to over-define the concept of robust chaos. Roughly

speaking a family of dynamical systems has robust chaos if the existence of a chaotic
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attractor is persistent as the parameters vary. In other words, a map in an m-
parameter family of maps is said to have robust chaos if it has a chaotic attractor and
all sufficiently small changes in the m parameters yield maps with a chaotic attractor.
Sometimes it is useful to add the condition that the chaotic attractor is the unique
attractor of the system.
Of course, the question of how the parametrization is defined was not addressed

and so the ‘definition’ above is liable to abuse. It is easy to define a family in which
all members of the family are conjugate via a linear transformation, and hence the
dynamics of every member of the family is equivalent. This is not in the spirit of [3,4],
though it has been used, and van Strien [21] addresses this point quite effectively.
Robust chaos was originally defined in the context of the border collision normal

form [17]. Let z = (x, y)T then the border collision normal form, with the notation
of [4], is the continuous map

zn+1 = F (zn) =

{
JLzn +m if xn < 0

JRzn +m if xn ≥ 0 , (1)

where

Jk =

(
τk 1
−δk 0

)
, k = L,R, and m =

(
μ
0

)
. (2)

The parameters τk and δk are generally taken to be fixed, and μ is the bifurcation
parameter. Following [4] we will concentrate on parameters with μ > 0 and hence
without loss of generality μ = 1 (by rescaling the variables) and

0 < δk ≤ 1, k = L,R, τL > 1 + δL, τR < −(1 + δR). (3)

We will denote the set of border collision normal forms (1), (2) with μ = 1 and (3)
as BCNFRC .
These maps arise naturally in the study of the local bifurcations of piecewise

smooth maps [17]. Consider a general family of piecewise smooth maps of the plane
and suppose that at some critical value of the parameter, μ = 0 say, the map has a
fixed point on a switching surface. By a change of coordinates the switching surface
can (generically) be transformed to x = 0 and the fixed point to the origin. Continuity
across the switching surface implies that the second columns of the Jacobian matrices
of the map on each side of the switching surface evaluated at the fixed point are equal,
and by a further linear transformation this can (generically again) be taken to be 1
and 0 as in (2). Assuming that the curve of fixed points intersects the switching
surface transversally as the parameter is varied, the leading order constant term can
be chosen to be (μ, 0)T by rescaling the parameter and a further translation of the
y-variable if necessary. The result is (1) if nonlinear terms of the general map are
ignored. Since this is the generic description of the local behaviour when a fixed point
runs into the switching surface (or border), this is called the border collision normal
form.
If F ∈ BCNFRC then F has two fixed points, X in x > 0 and Y in x < 0, with

X =

(
1

1 + δR − τR ,−
δR

1 + δR − τR

)
, Y =

(
− 1

τL − 1− δL ,
δL

τL − 1− δL

)
. (4)

Both are saddles: the Jacobian matrix at Y , JL, has one eigenvalue greater than
one and the other (also positive) less than one whilst the Jacobian matrix at X,
JR, has one eigenvalue less than −1 and the other between −1 and zero. Note that
since δk > 0, k = L,R, F is a homeomorphism and the image of the half-plane with
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x < 0 is the half-plane with y > 0 whilst the image of the half-plane with x > 0 is
the half-plane with y < 0. Note also that the x-axis is the image of the y-axis. These
observations will be useful later.
Banerjee et al. [3,4] use arguments based on the geometry of the stable and unsta-

ble manifolds of X and Y to suggest that border collision normal forms in BCNFRC
have robust chaos. These arguments are discussed in Section 2, where we highlight
some issues in the sketch proof presented in [4]. The issues do not imply that the state-
ment is incorrect, but some of the arguments do appear to be incomplete (as is normal
in a sketch proof). In Section 3 we indicate how Misiurewicz [16] resolves some of the
issues raised if the determinants δk are negative. In Section 4 we describe Young’s
approach to the problem [24], and in Section 5 the application of this approach to
the border collision normal form is discussed. In Sections 6 and 7 these ideas are
applied to the negative determinant case of Misiurewicz and the classic parameters
of (3) respectively, showing how the conditions of Young’s Theorem can be verified
numerically. Finally, in Section 8 recent results on robust chaos for expanding maps
are given. In this case it is possible to have fully two-dimensional attractors for open
sets of parameters, whilst those of the classic robust chaos are quasi-one-dimensional
with a fractal structure in the second dimension.
This article concentrates on the questions arising from the important observations

in [4]. There are many other approaches to piecewise smooth systems (e.g. [1]), and
although, as sketched above, the border collision normal form was derived in the
context of the bifurcations of piecewise smooth maps in 1992 [17], its simplicity of
form and intriguing complexity of dynamics had already been recognised (e.g. [8,14]).
A full historical discussion of the approaches to, and observations of, complicated
dynamics for these maps is beyond the scope of this article. See [19] for a more
detailed account.
It is worth emphasising that the close scrutiny of the sketch proof in [4] is worth-

while because of the importance of the idea of robust chaos in the study of piecewise
smooth systems. In other words, whilst the discussion of Section 2 presents a critique
of [4], it is not intended in any way to be critical of the fundamental insights of that
paper.

2 Geometry of the stable and unstable manifolds

The analysis of [4] involves three steps. First the stable and unstable manifolds of Y
(the fixed point in x < 0) are used to define a trapping region, i.e. a polygon such that
all initial conditions starting within the polygon remain in the polygon for all time.
This implies that there is at least one attractor in the polygon. Second, it is shown
that there is a transverse intersection between the stable and unstable manifolds of X
(the fixed point in x > 0), and hence that there is ‘a chaotic orbit’ [4]. Finally, these
two observations together with the existence of a heteroclinic connection between the
unstable manifold of Y and the stable manifold ofX are used to show that the ‘chaotic
orbit’ is the unique attractor in the polygon. Banerjee et al. [4] also use the (stated)
continuity of Lyapunov exponents to argue that the attractor is robust, though this is
unnecessary since if the previous three steps are correct then there is a unique chaotic
attractor at each parameter value identified and no further work is required to prove
that the attractor is robust.
To show that there must be some issues about the proof consider the attractor

of Figure 1, which is a numerical extension of the example in [5] but with non-
zero values of the determinants, a similar idea can be found in [15]. The parameters
satisfy the conditions of the statements from [4], but in Figure 1b the attractor has
two components which are bounded away from the fixed point X which lies between
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Fig. 1. 10000 iterates of the initial condition (0.2,−0, 1) of the border collision normal form
showing the fixed point X and strange attractors with one and two components respectively.
(a) τL = 1.8, τR = −1.7, δL = 0.3, δR = 0.2, so X ≈ (0.3448,−0.0690). For these values of
the parameter the left hand side of (5) is approximately 0.1865, so Lemma 1 holds, and
the left hand side of (9) is approximately 1.6757 so Lemma 2 also holds. (b) τL = 1.4,
τR = −1.4, δL = 0.3, δR = 0.2, so X ≈ (0.3846,−0.0769). For these values of the parameter
the left hand side of (5) is approximately 0.0582, so Lemma 1 holds, and the left hand side
of (9) is approximately −0.1140 so Lemma 2 does not hold.

the two components. Assuming that the chaotic orbit referred to in [4] is a chaotic
set associated with the transverse homoclinic orbit to X, then X is in the closure of
the chaotic set and hence in the attractor. This is clearly not the case here, so some
element of the sketch proof will need modification. For a more detailed description of
the homoclinic bifurcations in piecewise-smooth systems see [15,20,22].

Lemma 1. Suppose that F ∈ BCNFRC and denote the eigenvalues of JL by λkL,
k = 1, 2 with 0 < λ2L < 1 < λ1L. If

τLδL − δ2L − δLλ2L − δLδR + τRδLλ1L + δRλ2L − τRδL > 0 (5)

then there exists a closed polygonal region D such that z ∈ D implies F (z) ∈ D.
Note that (5) is precisely equation (5) of [4]. Of course, the fact that z ∈ D implies

F (z) ∈ D means that Fn(z) ∈ D for all n = 1, 2, 3, . . . .
Proof of Lemma 1: Let X = (X1,X2)

T and similarly for other points. The geom-
etry of the stable and unstable manifolds of Y is shown in Figure 2a. The eigenvalues
λkL are the solutions of λ

2 − τLλ+ δL = 0 and the corresponding eigenvectors are
(−λkL, δL)T . Using this it is straightforward to calculate the intersection D of the
local unstable manifold of Y with the x-axis and the intersection S of the local stable
manifold of Y with the y-axis:

D =

(
λ1L − 1
τL − 1− δL , 0

)T
S =

(
0,− λ1L − δL
τL − 1− δL

)T
. (6)

It is straightforward to show that (3) implies that D1 > 1. The stable manifold of Y
bends on the y-axis and the continuation of the branch Y S intersect the x-axis at C
where

C =

(
δL(τL − δL − λ2L)

(τL − 1− δL)(δRλ2L − τRδL) , 0
)T
. (7)

Now suppose that D1 ≤ C1, and so 1 < D1 < C1. Then the x-axis with 0 < x < C1
maps to the line segment L connecting (1, 0)T to F (C) and this line contains F (1, 0) =
(τR + 1,−δR)T . Since τR < −1 this lies in x < 0 and so the ‘rest’ of the line L does
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Fig. 2. Geometry of the invariant manifolds. (a) For the fixed point Y ; (b) for the fixed
point X showing a homoclinic point, H.

too, in particular F (C) lies in x < 0. (This is important – it is necessary to ensure that
the point C is actually on the stable manifold of Y and not simply on the extension
of this line.) Since F (C) is by definition on the line Y S, this also shows that F (D) is
on the line segment connecting F (C) and (1, 0)T .
Now consider the region D = Y DCS. By construction the image of the boundary

of D is in D and hence F (D) ⊆ D.
Now consider the geometry of the stable and unstable manifolds of X (see

Fig. 2b). The eigenvalues of JR are λkR, k = 1, 2 satisfying λ
2 − τRλ+ δR = 0 and (3)

implies that they can be labelled so that λ1R < −1 < λ2R < 0. Both the local stable
and unstable manifolds have positive slopes, the steeper being the stable manifold.
The local unstable manifold is the line segment TF (T ) where T is the intersection of
the unstable manifold with the x-axis:

T =

(
1− λ1R
1 + δR − τR , 0

)
(8)

(remember τR < −1). A short algebraic manipulation shows that 0 < T1 < 1. The
extension of the unstable manifold from T into y > 0 will be the image of the line
segment F (T )F−1(T ), i.e. the image of the part of the local unstable manifold that
is in x < 0. This is a line segment F 2(T )T and since F (T ) is in x < 0 then F 2(T )
is in y > 0 as shown. Thus there will be a homoclinic intersection between the local
stable manifold of X and this extension of the unstable manifold of X provided F 2(T )
lies to the left of the local stable manifold as indicated in Figure 2b resulting in the
homoclinic intersection point H.

Lemma 2. Suppose that F ∈ BCNFRC and denote the eigenvalues of JR by λkR,
k = 1, 2, with λ1R < −1 < λ2R < 0. If

(τLτR − δR)λ1R +
(
δL

δR
+ δL − 1

)
λ2R − τRδL − τLδR + τR − τL > 0, (9)

then the stable and unstable manifolds of X intersect transversely.

Proof: By brute force calculation F 2(T ) lies on the stable manifold of X if the left
hand side of (9) is zero.

I am not aware of the condition (9) in the literature, although as we shall see
it explains the apparently anomalous behaviour of Figure 1. To see that (9) is not
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a consequence of the existence of the bounding region D it is easier to consider the
special case

δL = δR = b, τL = −τR = a. (10)

In this case (5) becomes

2a− 2b− λ2L − aλ1L + λ2L > 0
and as b→ 0, λ1L → a and λ2L → 0 so the condition is simply 2− a > 0 or a < 2.
Similarly (9) becomes

−2a(1− b) + bλ2R − (a2 + b)λ1R > 0
and as b→ 0, λ1R → −a and λ2R → 0 so the condition is simply −2a+ a3 > 0 or
a >
√
2. This shows that if (5) holds then for some parameters (9) holds whilst for

others it does not. Moreover, the thresholds in the limit b→ 0 make a connection
with one-dimensional tent maps (unimodal maps x→ 1− a|x| with slope of modulus
a, 1 < a ≤ 2) blindingly obvious – though I confess I did not think of it until I had
gone through this analysis. If

√
2 < a ≤ 2 then the attractor of the tent map is an

interval and the non-trivial fixed point (the fixed point on the side that the map

has negative slope) has a homoclinic connection, whilst if 1 < s <
√
2 there is no

homoclinic connection to the non-trivial fixed point and the attractor is contained in
the union of two disjoint intervals. This is essentially the explanation for Figure 1:
there is no homoclinic connection to X, though presumably there is a transverse
homoclinic orbit to an unstable orbit of period two since the attractor appears to
have two components.
Having clarified the conditions for the existence of a transverse homoclinic inter-

section between the stable and unstable manifolds of X, the next step is to argue
that there is a unique chaotic attractor assuming that (5) and (9) are satisfied. Note
that if (9) is not satisfied then there can still be robust chaos involving homoclinic
connections to orbits other than the fixed point X, but we will concentrate here on
the argument of [4].
There are two natural conjectures arising from the discussion above.

Conjecture 3 The set of F ∈ BCNFRC such that (5) holds has robust chaos.
This is the original statement of [4] and [3]. Lemma 2 shows that the argument

of [4] based on transverse intersections of the stable and unstable manifolds of X

do not hold here, although it is quite possible that by replacing F by F 2
k

for some
k ≥ 1 in different regions of the parameter space there might be a way to extend
their argument over the whole of this parameter space. Indeed, my guess is that this
conjecture is true; all I am pointing out is that the received argument is not sufficient
to establish it.

Conjecture 4 The set of F ∈ BCNFRC such that (5) and (9) hold has robust chaos.
For the parameter values of Conjecture 4 there is a trapping region and hence at

least one attractor (Lemma 1) and a transverse intersection between the stable and
unstable manifolds of X (Lemma 2), and so the geometry is as described in [4].
The argument of [4] involves an application (uncontroversial) of the Lambda

Lemma [2,18]. Putting the two parts of Figure 2 together we see that there is a
transverse intersection between the local unstable manifold of Y and the local stable
manifold of X, at a heteroclinic point T say. By definition F k(T )→ X and F k(T )
lies in x > 0 for all k > 0. Hence given any η > 0 there is a small part of the unstable
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manifold of Y through T which is within η of the local unstable manifold of X after
some number of iterations in x > 0. Let Wu(X) denote the unstable manifold of X.
Since the unstable manifold of X is the union of images of any sufficiently small part
of the local unstable manifold of X containing X, the continuity of F implies that
given any point x ∈Wu(X) and ε > 0 then by choosing η small enough there will be
a point on the image of the unstable manifold of Y close to T that maps within ε of
x. Hence for all x ∈Wu(X) and ε > 0 there exists y ∈Wu(Y ) such that |x− y| < ε.
Banerjee et al. now argue [4] that this, together with the observations made above,

is enough to establish Conjecture 4. Their (sketch) demonstration, with the notation
above, is [4]: Since Wu(Y ) comes arbitrarily close to Wu(X), the attractor must span
Wu(Y ) in one side of the heteroclinic point. Since all initial conditions in x < 0 tend
to Wu(Y ) and all initial conditions in x > 0 converge to Wu(X), and since there are
points in Wu(Y ) in every neighbourhood of Wu(X), we conclude that the attractor
is unique. Precisely the same wording is used in the expanded version [3] so we learn
nothing new there.
The first sentence is not easy to understand; it is possible that the following

argument is intended. The chaotic set comes arbitrarily close to the unstable manifold
of X and hence, as the chaotic set is recurrent and F is a homeomorphism, arbitrarily
close to preimages of this set, and since at least one side of the unstable manifold of
Y through T comes arbitrarily close to the local unstable manifold of X, then the
attractor is arbitrarily close to (at least) one side of the unstable manifold of Y in a
neighbourhood of T . However, the use of the word span suggests something stronger,
that every point on the unstable manifold of X close to T and on one side of T is
arbitrarily close to the attractor, and this is not clear from the description of the
chaotic orbit.
The argument behind the second sentence is also unclear. It is true that under

iteration in x < 0 (resp. x > 0) orbits tend to the local unstable manifold of Y (resp.
X). However, this does not imply contraction towards an arbitrary point on the global
unstable manifolds. Indeed, the separation of two points in Wu(X) with x < 0 (and
y < 0) that lie on a line segment parallel to the unstable manifold of Y is increased by
iteration in x < 0. However, points separated by a vector in the stable eigendirections
(e.g. the eigenvector of λ2L in x < 0) are contracted so provided such points exist
locally, or exist sufficiently frequently locally, the an argument like this should hold.
The point of the previous two paragraphs is that although Banerjee et al [3,4] have

described an important and real phenomenon, it is worth challenging the community
to work harder on the precise statements and arguments that justify their conclusions.
This is not simply a mathematical nicety; I feel that this understanding would help
understand other features of piecewise smooth systems too.
Establishing the status of the two conjectures above is left as an open problem

(and I hope I am not being stupid for not seeing the full argument). Let me help (or
muddy the waters) by adding another conjecture which makes the possible status of
‘the chaotic orbit’ of [4] more explicit. Reasons for believing this conjecture are given
in the next section, Section 3.

Conjecture 5 For F ∈ BCNFRC there is an open set of parameter values such that
(5) and (9) hold, the sytem has robust chaos, and the attractor is the closure of
Wu(X).

3 Misiurewicz’s Theorem and Lozi maps

Lozi [14] introduced the maps

L(x, y) = (1− a|x|+ y, bx) (11)
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as a piecewise linear model of the (smooth) Hénon map [12]. The hope was that
the lack, for typical parameters, of a critical set on which the Jacobian has a zero
eigenvalue would make it possible to prove the existence of strange attractors in this
model problem, where the existence of strange attractors for the Hénon map was
proving remarkably hard to establish rigorously. The Lozi map is a subclass of the
border collision normal form with

−τR = τL = a, δL = δR = −b, μ = 1. (12)

If b > 0 (i.e. δL and δR both equal and negative), a > 0 and a+ 1− b > 0 then there
is a fixed point fixed point X in x > 0,

X =

(
1

a+ 1− b ,
b

a+ 1− b
)T
. (13)

This is a saddle, with eigenvalues λ2R < −1 < 0 < λ1R < 1 if

a > 1− b. (14)

In 1980 Misiurewicz showed that provided some further conditions hold there is indeed
robust chaos, although his result pre-dates the definition of [4]. A subset A of R2 is
topologically transitive if for all open Uk k = 0, 1 with Uk ∩ A 	= ∅ there exists n such
that Fn(U0) ∩ U1 	= ∅.
Theorem 1. (Misiurewicz [16]) Suppose that

a > 0 and 0 < b < min

{
4− 2a, a√2− 2, a

2 − 1
2a+ 1

}
. (15)

Then the attractor of the Lozi map (11) is the closure of Wu(X) and the map is
topologically transitive on this set.

Note that (14) is implied by the conditions of the theorem. Parts of the proof
are similar to those rehearsed in Section 2, but simplified reflecting the fact that the
stable and unstable manifolds of a fixed point in x < 0 are not needed. Thus Conjec-
ture 5 holds in this negative determinant case. In the case of positive determinants
considered in Section 2 the extra flipping due to the fact that the stable eigenvalue at
X is negative complicates the geometry. We leave it as a (second) challenge to modify
Misiurewicz’s construction to obtain a proof in a similar style.

4 Invariant measures and Young’s Theorem

Very little has been written about the existence of invariant measures for the dynamics
of the normal form within the border collision community. However, Lozi maps and
their generalizations have been considered in this light [7,13,24] and this provides
a theoretical framework within which the existence of measures can be established.
The key to this is Young’s Theorem [24]. The existence of an invariant measure with
non-trivial support shows that there is an attractor on which the dynamics acts as a
sort of probability distribution asymptotically. We will not go into details here and
the reader unfamiliar with invariant measures should simply think of this as a way
of describing chaos (although not all invariant measures are chaotic). See [13] for a
readable introduction.
Young [24] provides a result that can be used to prove the existence of chaotic

attractors in a wide class of maps that include the border collision normal form. Let



Recent Advances in Nonlinear Dynamics and Complex Structures 1729

R = [0, 1]× [0, 1] and let S = {a1, . . . , ak} × [0, 1] be a set of vertical switching sur-
faces with 0 < a1 < · · · < ak < 1. Then f : R→ R is a Young map if f is continuous,
f and its inverse are C2 on R\S and f = (f1, f2)T satisfies the expansion properties
(H1)–(H3) below on R\S.

(H1) inf

{(∣∣∣∂f1
∂x

∣∣∣− ∣∣∣∂f1
∂y

∣∣∣)− (∣∣∣∂f2
∂x

∣∣∣− ∣∣∣∂f2
∂y

∣∣∣)} ≥ 0,

(H2) inf

(∣∣∣∂f1
∂x

∣∣∣− ∣∣∣∂f1
∂y

∣∣∣) = u > 1, and

(H3) sup

{(∣∣∣∂f1
∂y

∣∣∣+ ∣∣∣∂f2
∂y

∣∣∣)(∣∣∣∂f1
∂x

∣∣∣− ∣∣∣∂f1
∂y

∣∣∣)−2
}
< 1.

Young’s Theorem describes measures that project nicely onto one-dimensions.
Technically this is expressed as having absolutely continuous conditional measures
on unstable manifolds. Intuitively this means that locally the measure projects nicely
onto one dimension.
Let Jac(f) denote the Jacobian matrix of f and recall that u is defined in (H2).

Theorem 2. (Young [24]) If f is a Young map, |Jac(f)| < 1 for x ∈ R\S, and there
exists N ≥ 1 such that uN > 2 and fk(S) ∩ S = ∅, 1 ≤ k ≤ N , then f has an invariant
probability measure that has absolutely continuous conditional measures on unstable
manifolds.

Since the result is for piecewise C2 maps and the conditions only depend on
derivatives this result has the important corollary that results for the piecewise lin-
ear border collision normal form, which should more correctly be called a truncated
normal form, persist when small nonlinear terms are added.
In the piecewise linear context, consider a general piecewise affine continuous map

of the form (1) but with linear parts JR and JL defined by

Jk =

(
Ak B
Ck D

)
, (16)

k = R,L and with a general constantm ∈ R2. Then the assumptions (H1)–(H3) above
become

(|Ak| − |B|)− (|Ck| − |D|) ≥ 0, k = R,L
|Ak| − |B| > 1, k = R,L

(|B|+ |D|)/(|Ak| − |B|)2 < 1, k = R,L.
(17)

Corollary 6 Let F : R2 → R2 be a map of the form (1) with arbitrary m ∈ R2 and
matrices Jk, k = R,L given by (16) with coefficients which satisfy (17). Suppose that
the map takes some rectangle D = [a, b]× [c, d] with a < 0 < b into itself and let S =
{0} × [c, d] (the segment of the y-axis in D). Let u = mink=R,L(|Ak| − |B|). If there
exists an integer N > 0 such that uN > 2 and F p(S) ∩ S = ∅ for 1 ≤ p ≤ N then F
has an attractor with an invariant probability measure that has absolutely continuous
conditional measures on unstable manifolds.

N describes how many iterates of the map are applied before returning to the
critical set, and hence provides a bound on the horizontal expansion of segments.
This implies that Young’s Theorem can be slightly rewritten in a stronger form.
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Conjecture 7 (Modified Young’s Theorem) Theorem 2 remains true if the final con-
dition is replaced by ‘there exists an integer N ≥ 1 such that uN > 2 and fp(S) ∩ S =
∅ for 1 ≤ p < N ’.
This conjecture implies a similar reformulation of Corollary 6. The only difference

between Young’s Theorem (Theorem 2) and Conjecture 7 is that the inequality on p
is replaced by strict inequality. Note that Young herself remarks that if N = 1 then
the condition is empty (which is the case for the strict inequality of Conjecture 7
but not for the inequality of Theorem 2) and has an illustration with f(S) ∩ S 	= ∅
claiming this is allowed, which is not the case if equality holds. This, together with
the remark that the importance of N is that the proof of the theorem can be repeated
with fN instead of f in this case, strongly suggests that the less than or equals sign
is a typographical error and that Conjecture 7 is correct, though I do not consider
myself a strong enough ergodic theorist to state this categorically1. However, all the
numerical results below assume this modified result. If it is not correct then the regions
identified need modification but the general structure of the numerical programmes
is unaltered.
For the border collision normal form where the matrices JR and JL are(

τk 1
−δk 0

)
, α = L,R,

see (2), so the conditions (17) become

|τk| − 1− |δk| ≥ 0, k = R,L
|τk| > 2, k = R,L

1/(|τk| − 1)2 < 1, k = R,L.
(18)

The third of these equations is implied by the second, so only the first two of these
equations act as conditions. Unfortunately the second condition is restrictive in a
way which means that (for example) the Lozi map with parameters defined by (15)
cannot be considered directly because a (which is effectively τk) is less than two. But,
as Young herself points out, this problem can be avoided by a simple scaling. Two
other problems need to be addressed before the result can be applied: the rectangular
region R must be identified and then the exponent N computed. The first of these
problems needs some thought, and it is easier to use a non-rectangular region with a
view to minimizing N (the proof of Theorem 2 is unaffected provided the switching
surfaces have slopes with modulus greater than one). The problem of determining N
is where computer simulations come into their own. These three factors: scaling, the
existence of a trapping region and the calculation of the exponent N are the subject
of the next section.

5 Young’s Theorem and the border collision normal form

Given ε > 0 let y = εz, then in terms of the new coordinates (x, z) the border collision
normal form F ∈ BCNFRC is(

xn+1
zn+1

)
=

(
τk ε
−δk/ε 0

)(
xn
zn

)
+

(
1
0

)
(19)

1 I have also had informal confirmation of this from a researcher working directly in this
area.
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with k = R if xn ≥ 0 and k = L if xn ≤ 0. Young’s conditions on the derivatives, (17),
therefore become

ε(|τk| − ε)− |δk| ≥ 0, k = R,L
|τk| − ε > 1, k = R,L

ε/(|τk| − ε)2 < 1, k = R,L.
(20)

If ε ∈ (0, 1) and |δk| < ε then the second inequality, |τk| > 1 + ε, implies both the first
and the third.
Suppose D is a trapping region for the border collision normal form in the standard

coordinates (1), and D′ is the corresponding region in the new coordinates (x, z).
Then clearly D′ is a trapping region, and the intersection, C, of D with the critical
line x = 0 is mapped by the coordinate transformation to the intersection, C′, of
the transformed critical line (still x = 0) with D′. Since the map (x, y)→ (x, z) is a
differentiable conjugacy for the dynamics if ε 	= 0, the geometric condition of Young’s
Theorem can either be written in the old coordinates or the new coordinates, and we
will choose to continue to work in the new coordinates.
In the statement of Young’s Theorem the trapping region is a rectangle, but the

proof relies only on the expansion properties of near-horizontal segments, and so
works for any invariant region which intersects the critical line and its images nicely.
In particular we may take a convex trapping region that intersects vertical lines in at
most one connected component instead of R. These comments lead to the following
reformulation of Young’s Theorem for the border collision normal form.

Theorem 3. Let F : R2 → R2 be the border collision normal form (1) and suppose
F has a convex trapping region D which intersects the critical line {x = 0} in a
closed, non-empty line segment C. If Conjecture 7 holds and there exists ε > 0 and
N ≥ 1 such that inequalities (20) hold, and (|τk| − ε)N > 2 with F p(C) ∩ C = ∅ for
1 ≤ p < N , then F has an attractor with an invariant probability measure that has
absolutely continuous conditional measures on unstable manifolds.

As before, note that if N = 1 then we interpret the final condition to be automat-
ically true (as a property of the empty set) and the condition becomes simply that
inequalities (20) hold and |τk| − ε > 2. We shall use the conditions from Theorem 3
to verify the existence of invariant measures for the border collision normal form.

Corollary 8 Suppose that F ∈ BCNFRC , F has a trapping region D which is
mapped strictly inside itself, and Conjecture 7 holds for F . Let vε be a continuous
function on D such that F + vε and its inverse are C2 on D\C, and v and its first
derivatives have modulus less than ε on D\C. Then for all ε > 0 sufficiently small,
F + vε has an attractor with an invariant probability measure that has absolutely con-
tinuous conditional measures on unstable manifolds.

Proof: For sufficiently small ε > 0, D is a trapping region for F + v since F (D)
is strictly contained in D. Similarly, the assumptions of Young’s Theorem hold for
F + v hold if ε is sufficiently small by the continuity of F + v and its first derivatives
in D\C.

6 The Lozi map revisited

Detailed analysis of the geometry of invariant sets in these piecewise linear examples
frequently flounders on the rocks of infeasibly long algebraic expressions and their
interpretation. It is however often possible to express conditions implicitly in terms
that a computer can verify using only the four elementary operations of addition,
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S

Fig. 3. Geometry of the trapping region for parameters which satisfy (15) of Theorem 1.
(a) F 2(Q) to the left of the y-axis; (b) F 2(Q) to the right of the y-axis. F−1(Q) is the
intersection of the line segment QF (Q) with the y-axis.

subtraction, multiplication and division. In this section we will combine the theoretical
approach of the previous section with, where appropriate, numerical confirmation of
the algebraic conditions that apply. To emphasise that this approach has been taken
we add the caveat (Numerical) to all the theorems stated, and in the proofs the places
where computer verification has been used is indicated by italics.
Our first result in this section applies Theorem 3 to the region of parameters

identified in Misiurewicz’s Theorem (Theorem 1).

Theorem 4. (Numerical) If Conjecture 7 holds then the attractor of the Lozi map
described in Theorem 1 has an invariant probability measure that has absolutely con-
tinuous conditional measures on unstable manifolds.

Proof: Let Q be the intersection of the unstable manifold of the fixed point X
with the x-axis. Then for parameters satisfying (15) F (Q) is in x < 0 and the triangle
QF (Q)F 2(Q) is a trapping region [16]. The point F 2(Q) may be in x < 0 or x > 0;
the geometry is sketched in Figure 3.
The intersection of this trapping triangle with the critical line (the y-axis) is a

vertical line segment SF−1(Q), where S is the intersection of F 2(Q)Q with the y-axis
if F 2(Q) is in x < 0 as shown in Figure 3a, or the intersection of F (Q)F 2(Q) with the
y-axis if F 2(Q) is in x > 0 as in Figure 3b. If F 2(Q) is on the y-axis then S = F 2(Z).
To apply Young’s Theorem in the form of Theorem 3 let ε = b in (19). Then the

three inequalities (20) are all satisfied provided

a > 1 + b (21)

since 0 < b < 1. It is easy to prove analytically that (21) holds for all parameters in
(15) and that in fact a− b > v where

v = 14− 9√2 ≈ 1.272. (22)

(This is derived by considering a− b at the intersection the lines b = 4− 2a and
b =
√
2a− 2, which lies just outside the region defined by (15) and gives a lower value

for a− b than any other point.) By direct calculation v2 < 1 but v3 ≈ 2.058 > 2.
Thus the line segment F−1(Q)S = C represents the critical line in the trapping tri-

angle, so we can apply Theorem 3 with N = 3 and u = v provided F (C) and F 2(C) are
both disjoint from C. Now, F (C) = QF (S) which is in x > 0, and F 2(C) = F (Q)F 2(S)
which lies in x < 0 provided F 2(S) lies in x < 0. The condition that F 2(S)1 < 0 can
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0.5

0
21.5 a

b

Fig. 4. Parameter space for the Lozi map: there is an attractor with a ‘nice’ invariant

measure for parameters in the shaded region which lies below the line b = a− 2 13 indicated
in bold. This line leaves the shaded region just to the left of the local maximum in b. The
right hand shaded region has an invariant region with F 2(Q) to the right of the y-axis, the
left hand region has an invariant region with F 2(Q) on the left of the y-axis.

easily (but painfully) be calculated and yields a polynomial inequality, but we have
checked numerically that F 2(S) is in x < 0 for all parameters defined by (15) and
hence Theorem 3 can be applied to show the existence of an invariant measure as
stated.

The numerical verification referred to in this proof is neither sophisticated nor
exhaustive: a 100× 100 grid was set up in parameter space containing the region
defined by (15) and the position of F 2(S) was calculated on this grid, checking that
F 2(S)1 < 0. Much more sophisticated approaches could clearly be used, but the im-
portance of the result does not seem to merit that degree of effort!
It is also possible to consider parameter values outside the region considered by

Misiurewicz (see Theorem 1). The triangleQF (Q)F 2(Q) described above is a trapping
region over a much larger range of parameter values than the set defined by (15) in
Theorem 1. Indeed, the results of Young [24] show the existence of a ‘nice’ invariant
measure for all parameters in the shaded region of Figure 4 which lie below the
line (a− b)3 = 2. This, and the significance of the different shading in Figure 4, are
explained below.

Theorem 5. Suppose that a Lozi map has a convex trapping region D which inter-
sects the critical line x = 0 on a line segment C. If Conjecture 7 holds, 0 < b < 1, and
there exists N > 0 such that

(a− b)N > 2 (23)

and F k(C) ∩ C = ∅, 1 ≤ k < N , then F has an attractor in D with an invariant
probability measure that has absolutely continuous conditional measures on unstable
manifolds.
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Proof: If (a− b)N > 2 then a− b > 1 and so the inequalities (20) are satisfied with
ε = b < 1. This, together with (23) and the self-intersection condition for C imply that
the conditions of Theorem 3 are satisfied and the result follows.

Corollary 9 Suppose that a > 1 + b, 0 < b < 1 and define S and Q as in the
proof of Theorem 4. If Conjecture 7 holds and QF (Q)F 2(Q) is a trapping region,
(a− b)3 > 2, F (S) lies in x > 0 and both F 2(S) lies in x < 0, then F has an invariant
probability measure that has absolutely continuous conditional measures on unstable
manifolds.

Proof: Since C, the critical line in the trapping region, is the line segment F−1(Q)S,
F (C) = QF (S) and since Q is in x > 0, F (C) is in x > 0 provided F (S) is in x > 0.
Similarly, as F 2(C) = F (Q)F 2(S) and F (Q) is in x < 0, the interval F 2(C) lies in
x < 0 if F 2(S) is also in x < 0.

Regions on which the assumptions of Theorem 9 hold are easy to calculate nu-
merically and an example is shown in Figure 4. Note that (a− b)3 > 2 is the same
as b < a− 2 13 ; the straight line in Figure 4 is the boundary of this region. The right
hand boundary of the shaded region below the line b = a− 2 13 is the line 2a+ b = 4
as near as can be judged numerically. This is part of the boundary of the region
defined by Misiurewicz [16], see Theorem 1. The line b = a− 2 13 is an improvement
on Misiurewicz, who uses the line b = a

√
2− 2.

The issue to be determined numerically is whether QF (Q)F 2(Q) is a trapping
region. Since the map is piecewise linear in each half-plane this is a simple ques-
tion about whether the images of the points Q, F (Q), F−1(Q), F 2(Q) and S. Since
the images of the first three of these points are known and in the closed triangle
QF (Q)F 2(Q) only the images of the latter two points need to be checked. In the left
hand shaded region QF (Q)F 2(Q) is a trapping region with F 2(Q) in x > 0 with the
conditions on F (S) and F 2(S) satisfied, and the right hand shaded region is the same
but with F 2(Q) in x < 0.
Thus Figure 4 is effectively itself a theorem. The structure of the computer pro-

gramme used to generate it is as follows. For each parameter (a, b) covering a given
region of parameter space (e.g. in Figure 4 a 200× 200 grid with 1.2 < a ≤ 2 and
0 < b ≤ 0.8 was used).

– Calculate Q from its theoretical value, then F (Q), F 2(Q) and F 3(Q) by itera-
tion.

– Calculate the points U and V on the (extended) lines F (Q)F 2(Q) and F 2(Q)Q
respectively, which have y-coordinates equal to [F 3(Q)]2.

– If F 3(Q)1 < U1 and/or F
3(Q)1 > V1 then go to the next value of (a, b) as the

triangle QF (Q)F 2(Q) is not a trapping region. Otherwise:
– If F 2(Q)1 < 0 then calculate the point S on the intersection of F

2(Q)Q with
the y-axis.

– If F 2(Q)1 > 0 then calculate the point S on the intersection of F
2(Q)F (Q)

with the y-axis.
– Calculate the iterates F (S) and F 2(S).
– If F (S)1 > 0 and F

2(S)1 < 0 then plot the point (a, b) as these are on the
same side of the y-axis as F (O) and F 2(O) respectively, and hence the first two
images of the critical line OS do not intersect OS.

– Repeat for the next value of (a, b).

Attention has been restricted here to the Lozi map studied by Misiurewicz [16]
described in Section 3, but analogous statements hold for the more general border
collision normal form with negative determinants, δk < 0.
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7 Attractors for robust chaos

Although Lemma 1 provides a trapping region for the border collision normal form,
this region is by no means optimal in general, and to maximize the value of N in
Young’s Theorem (Theorem 2) it helps to minimize the size of the critical line that
needs to be considered.
Recall the geometry of the stable and unstable manifolds of Y shown in Figure 2a

used to construct the trapping region of Lemma 1. The local unstable manifold of Y
has a fold on the x-axis at the point D and (if F ∈ BCNFRC) D1 > 1 and so (as
τR < −1), F (D) lies in x < 0 with y < 0. Let U be the intersection of the line DF (D)
with the (negative) y-axis, and let V be the intersection of the extension of this line
with the local stable manifold of Y , so V lies to the left of the switching surface in
y < 0.

Lemma 10. If F ∈ BCNFRC satisfies (5) the closed triangle Y DV is a trapping
region.

Proof: Note that F (D) lies to the right of V (inside the original trapping region,
which exists by Lemma 1), Y is a saddle and JL has positive eigenvalues. The tri-
angle Y DV is the union of two parts, Y OUV in x < 0 and ODU in x > 0, where O
represents the origin.
Consider the image of the region Y OUV . F (U) lies on the x-axis to the left of D

and the right of the local stable manifold of Y , F (O) = (1, 0)T which is to the left
of D as well, and F (V ) is on the line V Y as it is on the local stable manifold of Y .
Thus the images of Y , O, U and V lie in Y DV and so F (Y OUV ) ⊆ Y DV .
Now consider the image of ODU . The previous paragraph establishes that F (O)

and F (U) are in Y DV and F (D) is in ODV by definition as it is on the line DV .
Hence, as F is affine in x ≥ 0 F (ODV ) ⊂ Y DV .
Theorem 6. Suppose F ∈ BCNFRC and (5) holds, and let ε = max{δR, δL}. If there
exists N ≥ 1 such that

(|τk| − ε)N > 2, k = R,L, (24)

both F k(O) and F k(U) lie on the same side of the critical line x = 0 for 1 ≤ k < N ,
and Conjecture 7 holds, then F has an attractor with an invariant probability measure
that has absolutely continuous conditional measures on unstable manifolds.

Proof: By Lemma 10, Y DV is a trapping region and we can restrict attention to
this set.
Suppose that δL ≥ δR. Let ε = δL and consider the change of variable in Sec-

tion 5 which leads to (19). Equation (24) implies that |τk| − ε > 1, k = R,L, and so
the second of inequalities (20) is satisfied. Since ε < 1 the first and third inequalities
of (20) are automatically satisfied. Hence the inequalities (20) hold and the theo-
rem follows from the statement of Theorem 3. The argument is entirely analogous
if δR > δL.

Figure 5 shows the numerically computed regions where the conditions of this
Theorem apply for N = 3, 4, 5, 6 (the regions exist for decreasing τR). The structure
of the computer programme used to generate this figure is essentially the same as the
programme described at the end of Section 6. Where more than one value of N can
be chosen we shade it in keeping with the lower value of N . The right hand boundary
corresponds to equality in (5). Note that for larger |τR| our application of Young’s
Theorem does not even cover the whole of this boundary in the case δR = δL = 0.5
illustrated in Figure 5a. It would be interesting to know how far the results could be
extended.
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Fig. 5. (τL, τR)-parameter space for robust: there is a convex trapping region for parameters
in the shaded areas, and the additional shading close to the boundary between shaded and
non-shaded areas indicates those regions for which an invariant measure can be proved
to exist with N = 3, 4, 5, 6 moving down the figures. In (a) δR = δL = 0.5, so the issue of
choosing ε to be the larger of δL and δR creates no restrictions; in (b) δL = 0.5 and δR = 0.2
so we need to take ε = δL.

8 Robust chaos with two-dimensional attractors

If at least one of the determinants δk has modulus greater than one a new possibility
arises: the existence of strange attractors that have orbits dense in a two-dimensional
region. If both determinants have modulus greater than one then the strong expansion
means that to have attractors some folding is necessary and so the map cannot be a
homeomorphism and δLδR < 0.
Using the theoretical work of Buzzi [6] and Tsujii [23] it can be shown that there

is an open set of parameters for the border collision normal form for which there
is a two-dimensional strange attractor [9,10]. Moreover, there are open sets of the
parameters (τk, δk), k = L,R, such that if μ < 0 the border collision normal form has
a stable fixed point, whilst if μ > 0 it has a two-dimensional (robust chaos) chaotic
attractor [11]. A numerical simulation of a two-dimensional attractor is shown in
Figure 6.

0
y

-2

-1

-1 10 x
Fig. 6. 30000 iterations of an orbit on attractor computed numerically with δL = −0.85,
δR = 1.95, τL = 0.06, τR = 0.07.
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This poses an interesting question about the quasi-one-dimensional attractors for
the area contracting cases described here: is it possible to have robust chaos in μ > 0
and a simple stable periodic orbit in μ < 0? If μ < 0 then a map F ∈ BCNFRC has
no fixed points, so there can be no equivalent of the fixed point to two-dimensional
attractor result. However, can there be stable periodic orbits in μ < 0 at the parameter
values having robust chaos?

9 Conclusion

The concept of robust chaos provides an important way of looking at the attractors
of piecewise smooth maps. Since it was introduced in [4] it has been applied many
times, but there are still questions about the mathematical status of the examples
cited (though no dispute about the phenomenon). In this paper I have tried to sum-
marise what is known, adding an extra condition which is necessary, but may not
be sufficient, for the phenomenon to occur in the border collision normal form via
homoclinic intersections. I have also described other work that helps to understand
the phenomenon, notably [16] and [24].
I have added a conjectured refinement to Young’s Theorem as stated in [24] and

verified the conditions of this Modified Young’s Theorem on the computer, therefore
(up to one’s confidence in the algebraic evaluation of computers, the consistency of
computer programmes, and Conjecture 7) confirmed the existence of robust chaos
over a range of parameter values. I have also described how recent work on expanding
maps implies the existence of robust chaos with two-dimensional attractors [9–11].
Inevitably when discussing open problems there is an element of personal prej-

udice here. I have tried to be clear about what I understand and what I do not
understand, leaving some questions open for future work. I think effort on this prob-
lem is worthwhile. The phenomenon is real and interesting. A more thorough (or at
least transparent) set of results would help our understanding of a broad range of
problems in piecewise smooth dynamical systems.

This work was partially funded by EPSRC grant EP/E050441/1. I am grateful to the Simons
Foundation for support during a stay at CRM, Barcelona, in 2016 where part of this work
was done.
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