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Abstract. Edward Lorenz is best known for one specific three-
dimensional differential equation, but he actually created a variety of
related N -dimensional models. In this paper, we discuss a unifying
principle for these models and put them into an overall mathematical
framework. Because this family of models is so large, we are forced to
choose. We sample the variety of dynamics seen in these models, by
concentrating on a four-dimensional version of the Lorenz models for
which there are three parameters and the norm of the solution vector is
preserved. We can therefore restrict our focus to trajectories on the unit
sphere S3 in R4. Furthermore, we create a type of Poincaré return map.
We choose the Poincaré surface to be the set where one of the variables
is 0, i.e., the Poincaré surface is a two-sphere S2 in R3. Examining dif-
ferent choices of our three parameters, we illustrate the wide variety
of dynamical behaviors, including chaotic attractors, period doubling
cascades, Standard-Map-like structures, and quasiperiodic trajectories.
Note that neither Standard-Map-like structure nor quasiperiodicity has
previously been reported for Lorenz models.

1 Three Lorenz systems

Edward Lorenz introduced polynomial systems of differential equations in a series
of papers [1–7]. These equations all are dissipative, in the sense that all trajectories
eventually end up in a finite size ball. The dynamics are chaotic for some parameter
choices. While Lorenz justified these systems in terms of their being highly simplified
meteorological or fluid-flow models, they are so severely simplified as to have lit-
tle concrete practical use in meteorology. Regardless, in the intervening time, Lorenz
equations have had a significant scientific impact, and their importance resides largely
in their interesting dynamical behaviors. In this paper, we develop an overlying frame-
work for the Lorenz systems which additionally produces a whole family of related
differential equations. We call systems that fit into this framework generalized Lorenz
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Fig. 1. Quasiperiodicity and chaos in the Poincaré Map on S2 for GLE-4 with section X1 =
0. Here we investigate trajectories of the 4-dimensional Generalized Lorenz Equation GLE-4,
(given in Eq. (1) shown in this image for β = 6, ρ = 8, and γ = 0). We use initial conditions
for which ‖X‖ = 1. Since the norm ‖X(t)‖ remains constant, trajectories remain on the unit
sphere, denoted S3. To reduce the dimension by one, we only plot trajectories at those times
when X1(t) = 0, giving us a type of Poincaré map on the two-dimensional sphere S

2 shown
here, given by X22 +X

2
3 +X

2
4 = 1. We plot a Poincaré map point (X2, X3) in a lighter color

(red online) when the derivative X ′1 is positive and darker color (blue online) when negative.
The colors are brighter (red and blue online) on the upper hemisphere X4 > 0 and dull when
X4 < 0. Ten trajectories are shown here, nine of which are quasiperiodic. The full trajectory
of each of the nine is a torus and here we show only the smooth curves where the torus
intersectsX1 = 0. There is also one chaotic trajectory which can be seen wrapping around S

2

where X3 ≈ 0.

equations or Lorenz-like models. We start by developing the family of generalized
Lorenz equations.
A generalized Poincaré map. The trajectories can be viewed using a Poincaré

return map; see Figure 1. Using a Poincaré map reduces the dimension by 1, reducing
the 3-sphere to a 2-sphere when we use the Poincaré surface such as X1 = 0. Of course
it is possible that even if a trajectory has its initial point on this surface, it may never
return to the surface, such as might occur if there is an attractor that does not
intersect the surface. In fact, an example of this phenomenon occurs for Poincaré’s
original return map, which was created for the circular restricted three-body problem.
That surface of section only captures trajectories that cross the line between the two
major bodies. The Lagrange Points L4 and L5 are equilibria that form equilateral
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Fig. 2. Ribbon-like chaotic attractor in Lorenz S3 Map. Both figures depict the same
trajectory of the GLE-4 system (Eq. (1)) with norm 1 in light gray (green online) for t > 0,
where β = 1, ρ = 4.3, and γ = 1. The Poincaré return map trajectory for the surface X1 = 0
is also shown: the trajectory is plotted in a darker color (red or blue online) only when
X1 = 0, where red denotes points for which X

′
1 > 0 and blue X

′
1 < 0. Since we are unable

to graph all four coordinates, we only show the projection of the trajectory to the X2X4-
plane (a) and also to the X1X2-plane (b). This trajectory has a positive Lyapunov exponent
and the light gray (green online) set is a chaotic attractor. Section 3 contains a bifurcation
diagram containing this parameter value in the chaotic region. The attractor has Kaplan-
Yorke dimension 2.11 on S3.

triangles with the two massive bodies. All trajectories that stay close to L4 or L5
never cross the Poincaré surface.
We will then explore the variety of dynamical behaviors exhibited by members

of this family, such as the chaos in Figure 2 and the quasiperiodicity in Figure 3,
and use a Poincaré map to understand the dynamics better (see Fig. 1), with the
caveat that the full family is so rich that we can only explore some examples. In
particular, we restrict our numerics to the following system of equations, which we
will derive in detail in Section 3. We refer to this system as GLE-4, the generalized
Lorenz equations in dimension 4.

X ′1 = X4X2 −X3X4 + β(X2 −X4) + γ(X22 −X4X1)
X ′2 = ρX1X3 −X4X1 + β(X3 −X1) + γ(X23 −X1X2)
X ′3 = X2X4 − ρX1X2 + β(X4 −X2) + γ(X24 −X2X3)
X ′4 = X3X1 −X2X3 + β(X1 −X3) + γ(X21 −X3X4).

(1)

The general form. For a dimension N ≥ 3, let X = (X1, · · · ,XN ), and let

Q(X) =
1

2
‖X‖2 = 1

2

N∑

i=1

X2i . (2)

Lorenz designed a variety of equations such that d
dt
Q(X(t)) < 0 whenever ‖X(t)‖

is sufficiently large. In particular, Lorenz considered quadratic systems with the
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Fig. 3. Quasiperiodic flow in Lorenz S3 Map. The images (a, b) depict different projections
of a trajectory of the GLE-4 system (Eq. (1)) for β = 6, ρ = 1, and γ = 0. The trajectory,
plotted in light gray (green online), has initial condition X1 = X2 = X4 = 0 and X3 = 1.
The dark curve (blue and red online) shows the trajectory points where the trajectory inter-
sects the Poincaré surface X1 = 0. We plot such points in red when X

′
1 > 0 and blue when

X ′1 < 0. The images (c, d) show projections of another single trajectory with initial condition
X1 = 0;X2 = X3 = X4 = 1/

√
3. For both initial conditions, the Poincaré map trajectories

appear to densely fill “topological circles” (i.e., closed curves without self intersections) in
S2 (though these curves can appear to self-intersect), indicating that these are quasiperiodic
trajectories rather than chaotic ones. In fact all Lyapunov exponents (for vectors tangent to
the surface) for both trajectories are 0 (to within expected numerical accuracy).

general form1

dXi

dt
= X ′i = fi(X), where

fi(X) =

N∑

j=1

N∑

k=1

ai,j,kXjXk −
N∑

j=1

bi,jXj + ci, (3)

1 or a minor variation of it in 1963.
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for i, j, k = 1, · · · , N . The indexed lower case letters a, b, and c in our equations indi-
cate constants.
Notice that

Q′(X) :=
d

dt
Q(X(t)) =

N∑

j=1

XjX
′
j =

N∑

j=1

Xjfj(X).

Lorenz 1963. The first equation of this type in which Lorenz reported chaotic
behavior was [1]

X ′ = −σX + σY
Y ′ = −XZ + rX − Y
Z ′ = +XY − bZ

(4)

where the variant of Q that Lorenz used is Q̂ = 1
2 [X

2 + Y 2 + (Z − σ − r)2] and with
σ, b, r > 0. Hence

Q̂′ = −σX2 − Y 2 − bZ2+σbZ + brZ.
In Q̂ from equation (4), the term −XZ in the Y ′ equation, and the +XY term

in the Z ′ equation (the magenta terms in the online color version) yield cubic terms
±XY Z which cancel each other (total to 0) plus some quadratic terms. In summary
the terms −σX2 − Y 2 − bZ2 (in blue online) in Q̂′ are quadratic and negative definite
while the terms +σbZ + brZ (in red online) are linear in Z. Hence far from the origin

the negative quadratic terms dominate so that Q̂′ < 0. As a result trajectories remain
bounded (inside a ball of radius |σ + r|), and there has to be an attractor. Lorenz
used the same ideas in 1984 and 1996.
This equation has been widely referenced as a prototype for chaotic behavior

[8–11]. See for example an application to partial control [13].
In the rest of this paper we restrict attention to the simpler case where Q is given

by equation (2). As noted in Lorenz’s 1963 paper (see his Eq. (28)), we can change

variables above changing Q̂ into Q by letting Ẑ = Z − σ − r so that Q(X,Y, Ẑ) is a
sum of squares. For this choice of Q, the σ and r terms vanish in Q′.
Lorenz 1984. In a later paper [4], Lorenz used the equation

X ′ = −Y 2−Z2 − aX + c
Y ′ = +XY−bXZ − Y + d (5)

Z ′ = +bXY+XZ − Z
with constants a, b, c, d where a > 0. Note that to preserve most of Lorenz’s notation,
we are abusing terminology here so that now X is a scalar. When computing Q̂′ from
equation (5), the pair consisting of −Y 2 in the X ′ equation and +XY in the Y ′
equation (red terms online) yield ±XY 2 and cancel. Similarly, the two terms −Z2 in
the X ′ equation and +XZ in the Z ′ equation (blue terms online) yield ±XZ2 and
cancel. Finally, the terms −bXZ in the Y ′ equation and +bXY in the Z ′ equation
(cyan terms online) yield±bXY Z and cancel. HenceQ′ = −(aX2 + Y 2 + Z2) + cX +
dY. Again the quadratic terms of Q′ dominate the linear ones cX + dY for points
sufficiently far from the origin, so there is again an attractor.
Lorenz 1996 = Lorenz 1998. Lorenz in 1996 [6] and Lorenz-Emanuel in 1998 [7]

proposed an N -dimensional system of equations with symmetry modN . It is the
following very simplified weather model

X ′j = Xj−1Xj+1 −Xj−2Xj−1 − bXj + c(subscripts mod N) (6)
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that has N variables and are invariant under the rotation j �→ j + 1 mod N ; that
is Xj = Xj+N = Xj−N . We sometimes write “subscripts mod N” to represent this
convention. This system has been used to explore the nature of high dimensional
attractors, where the dimension can be computed numerically using the Kaplan-Yorke
formula.2

In the first of these papers [6], Lorenz stated “the variables may be thought of
as values of some atmospheric quantity in N sectors of a latitude circle. The physics
of the atmosphere is present only to the extent that there are external forcing and
internal dissipation, simulated by the constant and linear terms, while the quadratic
terms, simulating advection, together conserve the total energy” (which we call Q).
“We assume that N > 3; the equations are of little interest otherwise. The vari-
ables have been scaled to reduce the coefficients in the quadratic and linear terms to
unity . . . .”
Lorenz makes use of the fact that Q′ derived from equation (6) includes the sum

∑

j

[Xj−1XjXj+1 −Xj−2Xj−1Xj ],

which is a telescoping sum, and since we have assumed that XN−1XNXN+1 =
X−1X0X1, the sum is equal to 0.

2 Generalized Lorenz equations

There is clearly a theme in the nature of the terms in the above equations, so we now
explore generalizations. We can generalize equation (6) to

X ′j =
N∑

i,k=1

ai,k[Xj+iXj+k −Xj+i−kXj−k]

+

N∑

k=1

βk[Xj+k −Xj−k]− bXj + c (subscripts mod N).
(7)

When we set i = −1, k = 1 and a−1,1 = 1 in this equation, the terms Xj−1Xj+1 −
Xj−2Xj−1 (terms in red online) become in equation (6) the ai,k terms (terms in red
online).
The ai,k (red online) terms cancel out in computing Q

′ as do the βk (blue online)
terms. By setting i = 0 in the ai,k (red) terms above, we obtain terms like the −Z2
and +XZ (blue) terms in equation (5) and obtain the terms

N∑

k=1

a0,k[XjXj+k −X2j−k] (subscripts mod N).

Pairs of terms that cancel in Q′. We can choose the coefficients in equa-
tion (7) so that pairs cancel in Q′, as in the following pair of equations. Together they
contribute 0 to Q′ for any function g(X) (which is a constant in the Lorenz models)

X ′i = X
2
j g(X)

X ′j = −XiXjg(X)
(8)

2 See [7], left column of page 403. See also related work on unstable dimension variability
and shadowing for equation (6) in [12].
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Then XiX
′
i +XjX

′
j = 0. Lorenz also adds globally dissipative terms to X

′
i of the form

−aiXi + · · · where ai > 0 so that Q′ has terms
∑
j −ajX2j .

Pairs of terms for i �= j that contribute 0 to Q′ include
X ′i = Xj

X ′j = −Xi.
(9)

Of course a constant multiplier αi,j can be included for each pair of i and j. Similarly:

X ′i = XjXk

X ′j = −XiXk
(10)

where we may allow k = i or k = j but i �= j. For example, for j = k �= i, we pair
square terms X2j with quadratic products −XiXj where i �= j. In addition, for a
4-dimensional system, each equation X ′i can have 3 terms of the form X2j , so there
are 12 possible pairs of terms of the form

X ′i = X
2
j

X ′j = −XiXj .
(11)

An axis of rotation for the quadratic terms. For a more abstract approach
see [14] and references to that paper. They show that if

(i) F (X) = (f1, · · · , fN ) in equation (3) is purely quadratic, i.e., where the coeffi-
cients bi,j and ci are 0; and

(ii) all solutions of the equation X′ = F (X) are bounded,

then there must be some “axis vector” X0 �= 0 for which F (X0) = 0. And of course
then F (X) = 0 for allX on the line containingX0 and the origin. This can be thought
of as an axis of rotation, about which the solutions oscillate.
Whenever X0 �= 0 and F (X0) = λX0 for some λ, (ii) above implies λ must be 0.
Using only the quadratic terms in the three Lorenz equations above, we can ob-

serve that in both the equations. (4), (5) of 1963 and 1984, X0 = (1, 0, 0) is such an
axis vector, while for equation (5) of 1996, X0 = (1, · · · , 1). In general axis vectors
can be found using numerical methods of degree theory; see [15].

3 Our equation GLE-4 on S3

In this section, we consider a subclass of generalized Lorenz equations such that
trajectories are of constant norm. That is, we only choose terms such that Q′ ≡ 0,
so ‖X‖ is constant. Note that since each trajectory is restricted to a sphere of con-
stant norm ‖X‖ = c, in order to make chaos possible requires dimension ≥ 4. In our
4-dimensional generalized Lorenz equation (which we call GLE-4) below, we restrict
to dimension 4, and we consider trajectories such that for the initial condition, and
thus the entire trajectory, Q = ‖X‖2/2 = 1/2, meaning that the dynamics lie on a
unit sphere S3. We can have equations there like

X ′j =[Xj−1Xj+1 −Xj−1Xj−2] + β[Xj+1 −Xj−1]

+ γ[X2j+1 −Xj−1Xj ] (subscripts mod N).
(12)
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In Q′ the following terms occur twice, once positive and once negative, and the
sum of these totals to zero:

N∑

j=1

XjXj−1Xj−2 + βXjXj+1 + γXjX2j+1 (subscripts mod N).

This follows from the fact that we are assuming the subscripts mod N are equal. For
example, XN−1XNXN+1 = X−1X0X1, XNXN+1 = X0X1, and XNX2N+1 = X0X

2
1 .

Thus all the terms of the telescoping sum cancel.
We now concentrate on the following 4-dimensional generalized Lorenz system

such that all trajectories have constant norm. We focus on solutions on the invariant
subset S3 of R4. This leads to our main system of equations, GLE-4 which was given
in the introduction. We repeat it here to avoid the reader needing to flip pages back
and forth.

X ′1 = X4X2 −X3X4 + β(X2 −X4) + γ(X22 −X4X1)
X ′2 = ρX1X3 −X4X1 + β(X3 −X1) + γ(X23 −X1X2)
X ′3 = X2X4 − ρX1X2 + β(X4 −X2) + γ(X24 −X2X3)
X ′4 = X3X1 −X2X3 + β(X1 −X3) + γ(X21 −X3X4).

(13)

While we have included constants β, γ, and ρ, clearly many more could be introduced.
However, three constants are enough to experiment with, and this matches the number
of constants in Lorenz’s original equation (Eq. (4)). If β = 0, all terms are quadratic,
so ifX(t) = (X1,X2,X3,X4)(t) is a solution, then so is ωX(ωt). If instead ρ = 1, there
is coefficient symmetry so the system can be written in the form of equation (1).
Poincaré Return Maps for GLE-4. Henri Poincaré introduced Poincaré return

maps for the restricted three-body problem in order to reduce the dimension of the
system. Instead of a flow on a generalized energy surface in R4, he defined a map
in R2 by plotting trajectories as they crossed some surface such as Xj = 0, plotting
only when the trajectory was passing through with a specified orientation, sayX ′j > 0.
Such a point determined a flow point in R4: because his energy surface was quadratic,
there were two possibilities for X ′j for a specified energy levels, one positive and one
negative, and he chose the one with X ′j > 0.We consider here a Poincaré return map.
However, unlike Poincaré we record all crossings of the Poincaré surface, as we will
explain later is necessary.
The GLE-4 trajectories tend to be highly oscillatory, most often with each variable

Xj oscillating around 0. Hence for any j we can plot the trajectory when Xj = 0
provided X ′j > 0 or better yet we can always plot the trajectory point when Xj = 0
and color code it according to the sign ofX ′j . The surface whereXj = 0 is an “equator”
of S3, which is S2, the two-dimensional sphere. Its projection onto the plane is a
double covering of the unit disk. If we choose j = 1, we plot (X2,X3) and we can

recover X4 = ±
√
1− (X22 +X23 ) from the plotted point (X2,X3) by choosing a plus

sign when the plotted point is bright and minus when it is dull.
In summary, since our figures project the 2-sphere onto a disk, information is

potentially lost as to which hemisphere the point is on, and that information must
be retained if we are to reproduce the trajectory.
As with Figure 1, we sometimes plot Poincaré map points (X2,X3) in two colors,

say red when X ′1 > 0 and blue when X ′1 < 0. The map will be discontinuous in places
where the vector field is tangent to the Poincaré surface, i.e., X ′1 = 0. The boundary
points between red and blue are such points of tangency.
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Table 1. Table of parameters in Figures.

Figure β ρ γ

1 6 8 0
2 1 4.3 1
3 6 1 0
4 6 2, 2, 8, 10 0
5 6 2 0
6 1 4.5, 17 1
7 1,2,3,4 4.5 0
8 0 3.6, 1.0 −0.3, 0.5
9 1 (2, 18) 1

Dynamics of GLE-4.We have made a variety of numerical experiments for var-
ious parameter combinations, and the resulting figures are summarized in Table 1.
For example Figure 1, shows GLE-4 trajectories of a Poincaré return map where
β = 6, ρ = 8, and γ = 0. The Poincaré surface is again given by X1 = 0. The two
different colors show the two different signs of X ′1. Here we show 15 distinct tra-
jectories on the same graph. Some trajectories are topological circles (closed curves
without self-intersections). They are quasiperiodic. However, there is also a trajectory
which appears to fill a region densely and is chaotic (and it has a positive Lyapunov
exponent).
Figure 2 depicts the trajectory of GLE-4 for continuous time t starting at one

initial condition for ρ = 4.3 and β = γ = 1. The Poincaré return map X1 = 0 is also
shown, where red denotes X ′1 > 0 and blue denotes X ′1 < 0. Since we are unable to
graph all four coordinates simultaneously, we only show the projection of the same
trajectory to the X2X4-plane and also to the X1X2-plane. The irregular chaotic
structure of its Poincaré map trajectory gives a strong indication that this trajectory
is chaotic. In fact we have computed its Lyapunov exponents and the attractor has
Kaplan-Yorke dimension 2.11 when the equation is restricted to the three-sphere S3.
(That is, we are ignoring a zero Lyapunov exponent transverse to S3.)
In this and subsequent figures, we show the Poincaré return map trajectories

for the surface defined by X1 = 0. We make the non-standard choice of showing
for the trajectories hitting in both directions X ′1 > 0 and X ′1 < 0. For Poincaré the
two directions consist of two widely separated pieces. However, in our case, the two
directions are often mixed together in a connected set. This means that there is a curve
of tangency points of the trajectory to the subspaceX1 = 0, i.e.,X

′
1 = 0, meaning that

our mapping is almost always discontinuous at these points of tangency as mentioned
above.
Figure 3 depicts the trajectory of GLE-4 for ρ = 1, β = 6, γ = 0 starting at two

different initial conditions (in different subfigures), where the Poincaré return map
X1 = 0 is depicted using the same color scheme as in Figure 2. For two different
sets of initial conditions, we project the same four-dimensional trajectory in two
different ways so as to compare the different views. In contrast to the previous figure,
the trajectory densely fills a smooth curve, indicating that this is a quasiperiodic
trajectory and not a chaotic trajectory.
Figures 4 and 5 show GLE-4 for β = 6, γ = 0. As in Figure 1 above, we only show

the Poincaré return map projected to the X2X3-plane, again for the surface X1 = 0.
Note that since X is on the unit sphere S3 in R4, and the Poincaré map has the
condition X1 = 0, we have that X

2
2 +X

2
3 +X

2
4 = 1, meaning that (X2,X3,X4) is on

the sphere S2 in R3. In this and other figures, we show the sphere S2 so as to depict
the location of the trajectories. In Figure 4, ρ = 2, 8, 10. As ρ increases, the dynamics
moves from purely quasiperiodic for ρ = 2 to a case of coexisting quasiperiodicity and
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Fig. 4. Standard-Map-like dynamics for GLE-4. For the system GLE-4 (Eq. (1)), trajectories
in the unit sphere S3 in R4, we invoke the Poincaré return map for the Poincaré surface
defined by X1 = 0, which is a two-dimensional sphere S

2. The sphere is projected to the
X2X3-plane. Image (a) uses different colors to show 30 distinct quasiperiodic orbits for
β = 6, ρ = 2, γ = 0. In the rest of the figures, we graph ten distinct orbits, all in the same
color. In all four figures, β = 6 and γ = 0, with ρ = 2, 8, 10 in (b,c,d) respectively. (Note
that the parameters values are the same in (a) and (b).) We refer to the behavior seen here,
in which there are coexisting quasiperiodic and chaotic orbits, as “Standard-Map-like”.

chaotic behavior for ρ = 8, 10. We refer to this coexistence as Standard-Map-like,
as it is reminiscent of the coexistence of quasiperiodicity and chaos as seen in the
Standard Map, a well known map on the torus.
Figure 6 depicts orbits for GLE-4 for β = 1, ρ = 4.5, 17, and γ = 1. (See Fig. 9 for

the bifurcation diagram for the corresponding parameter region.) In the ρ = 4.5 case,
we see a ribbon-like chaotic attractor. For ρ = 17, the chaotic attractor still exhibits
Cantor-set like bands, but it is unusually rich in structure.
Figure 7 shows GLE-4 trajectories for β = 1, 2, 3, 4, γ = 0, ρ = 4.5. For β = 1,

there appears to be a dense trajectory. As β grows, the asymptotic behavior becomes
more localized, and for the last three β values, we see Standard-Map-like coexistence
of chaos and quasiperiodicity.
Figure 8 depicts trajectories for the purely quadratic GLE-4 system, namely when

β = 0, which may be of special interest to some readers. In this case, we have found
cases with chaos with complex phase portaits, as shown in.
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Fig. 5. A stereographic view of a quasiperiodic trajectory. For the same values as in Fig-
ures 4a and 4b, we show a trajectory of the system GLE-4 (Eq. (1)) in the three dimensional
space X2X3X4-space. The Poincaré return map points where X1 = 0 are depicted as a dark
curve (in blue online). The trajectory for X1 > 0 is shown in light gray (green online), and
X1 < 0 in a darker color (magenta online). We have displayed two slightly different views
of this torus projected to a three-dimensional space so that the reader can view it from two
slightly different vantage points in order to better understand the complexity of the torus
structure. The piece shown of the trajectory is short, leaving gaps in the torus that would
fill in with more iterates.

Fig. 6. Different varieties of chaotic attractors for GLE-4. This figure depicts the Poincaré
return map X1 = 0 for the GLE-4 system (Eq. (1)). The plot is a projection of the tra-
jectory to the X2X3-plane. There is a Hénon-like chaotic attractor for β = 1, ρ = 4.5,
γ = 1 (a), and a rather odd chaotic attractor at β = 1, ρ = 17, γ = 1 (b).

In Figure 9 we show a bifurcation diagram of the Poincaré return map of GLE-4
for β = γ = 1 and varying ρ. In particular, we plot X2 along the vertical axis and
ρ along the horizontal axis. In the color version online, in blue, we show the return
map for X ′1 > 0, and in red, we plot the return map with X ′1 < 0. Thus for example
from ρ = 2 until approximately ρ = 3, there is a periodic orbit containing only one
red and one blue point of the the Poincaré map. It is clear from this diagram that a
period-doubling cascade occurs en route to chaos for ρ between 2 and 4.3.
Summary. To summarize our findings, in this paper we have developed a general

framework encompassing and extending a series of dissipative differential equation
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Fig. 7. Transition from dense chaotic orbits to Standard-Map-like behavior.
Poincaré return map of trajectories for the GLE-4 system (Eq. (1)) for parameters
β = 1, 2, 3, 4 in (a), (b), (c), (d) resp., and ρ = 4.5, γ = 0. All plots are projected to the
X2X3-plane. We see a change from what appears to be a chaotic orbit that appears to
be dense on the entire sphere – through progression of Standard-Map-like behavior that
combines regions of chaos and quasiperiodicity.

Fig. 8. The purely quadratic case for GLE-4. This figure depicts the Poincaré return map
X1 = 0 for the GLE-4 system (Eq. (1)). The plot is a projection of the trajectory to the
X2X3-plane. Two chaotic attractors for β = 0: in (a) ρ = 3.6, γ = −0.3, and in (b) ρ = 1.0,
γ = 0.5.
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Fig. 9. Bifurcation diagram of the Poincaré return map of GLE-4. X2 values are plotted
when a trajectory of the GLE-4 system (Eq. (1)) crosses X1 = 0 for β = γ = 1. In the color
version online, points are plotted in red when X ′1 > 0 and blue when X

′
1 < 0. Chaos appears

through the period-doubling bifurcation. Figures 2 and 6 show Poincaré maps of trajectories
with parameters shown in this diagram.

systems developed by Edward Lorenz, which we call generalized Lorenz equations.
We have restricted study to a particular subclass of these systems for which the tra-
jectories stay on fixed norm spheres. We further restrict to dimension 4, and norm 1,
meaning that we are considering a map on the three-sphere, and have shown the rich
variety of dynamics to be seen on such a system. In particular, we have seen quasi-
periodicity, and Standard-Map-like coexistence of chaos and quasiperiodicity, neither
of which have been seen for Lorenz systems in the past. Our explorations of this map-
ping on S3 have been somewhat narrowly focused, leaving plenty to be done through
more systematic study.
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