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Abstract. A physically realizable nonautonomous system of ring struc-
ture is considered, which manifests a robust strange nonchaotic attrac-
tor (SNA), similar to the attractor in the map on a torus proposed
earlier by Hunt and Ott. Numerical simulation of the dynamics for the
corresponding non-autonomous set of differential equations with quasi-
periodic coefficients is provided. It is demonstrated that in terms of
appropriately chosen phase variables the dynamics is consistent with
the topology of the mapping of Hunt and Ott on the characteristic pe-
riod. It has been shown that the occurrence of SNA agrees with the
criterion of Pikovsky and Feudel. Also, the computations confirm that
the Fourier spectrum in sustained SNA mode is of intermediate class
between the continuous and discrete spectra (the singular continuous
spectrum).

1 Introduction

Nonlinear systems operating in presence of time-dependent external driving are signif-
icant in science and technology. When subjected even to a simple harmonic external
action, a nonlinear system may behave in a nontrivial way; for example, manifest tran-
sitions from regular motions to chaos. If we consider quasi-periodic driving, say, with
a superposition of two harmonic signals with irrational frequency ratio, the variety of
phenomena broadens, and new phenomena as strange nonchaotic attractors (SNA)
can arise. Attractors of this type are not chaotic in the sense that phase trajectories
belonging to them do not manifest exponential sensitivity to initial conditions, i.e.,
they have no positive Lyapunov exponents, but at the same time the attractor struc-
ture in the phase space is characterized by fractal properties [1,2]. For the first time
such objects were introduced in consideration in 1984 [1]. Since that time, attractors
of this type were found to be quite widespread in quasi-periodically driven systems
and studied theoretically and numerically [3–18], and experimentally [19–28]. Despite
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Fig. 1. Schematic representation of a single iteration of the map (1) illustrating the trans-
formation of a closed curve C to the curve C′ (a) and phase portrait of SNA in the map (1)
with F (ϕ, θ) = sin 2ϕ, ρ = (

√
5− 1)/2, η = 0.5 (b).

this, it is necessary to note, that there is still not offered a completely satisfactory
method to diagnose the presence of SNA in numerical calculations definitively. In
fact, all known numerical approaches do not guarantee rigorously that the attractor
is strange, that is, retains a fractal structure in arbitrarily small scales.
Usually, the structure of SNA is very sensitive to parameter variations, as they

occur close to the boundary between regular and chaotic dynamics [2]. The corre-
sponding regions in parameter space have complicated structure, and small changes
in the control parameter may be accompanied with transformation of the SNA into
a smooth torus or into a strange chaotic attractor.
In this context, of special interest is a particular kind of SNA introduced by Hunt

and Ott [15,16]. Originally, it relates to a discrete-time dynamical system represented
by a quasi-periodically driven map on the torus with certain topological properties. In
this case it appears to be possible to prove rigorously assertions on the nature of the
attractor as SNA. Moreover, assuming a fixed irrational ratio of the basic frequencies,
the attractor is characterized by the property of robustness, that is, the dynamics are
not sensitive to the specific choice of parameter values, and a concrete form of the
map.
The model proposed by Hunt and Ott [15] is defined by the equations

ϕn+1 = ϕn + θn + ηF (ϕn, θn) (mod2π),

θn+1 = θn + 2πρ (mod2π),
(1)

where F (ϕn, θn) is a continuous smooth function having period 2π in both argu-
ments, η is parameter of nonlinearity, ρ is an irrational parameter characterizing the
frequency ratio of the external driving to the natural unit frequency of rhythm of
the discrete-time iterations. As a particular example, consider the map (1) with non-
linear function F (ϕ, θ) = sin 2ϕ and define the frequency parameter by an irrational

ρ = (
√
5− 1)/2 (the inverse golden mean). According to analysis of Hunt and Ott,

the fundamental reason for occurrence of the robust SNA is the topological nature of
the map on the two-dimensional torus (Fig. 1a). Namely, if the pre-image curve C by-
passes the torus around the parallel, under the effect of the mapping it is transformed
to the image C’, which performs one complete revolution around the meridian and
one complete revolution around the parallel. With each successive map application,
the number of turns of the image around the meridian increases by one; in the limit of
large number of the steps this number goes to infinity. Presence of the nonlinear term
in the first equation provides the invariant measure on the attractor to be of fractal
nature; it can be visualized as shown in Figure 1b, which presents a set of points on
the attractor in the plane of variables (θ, ϕ) as obtained numerically at η = 0.3.
The Hunt–Ott map itself is an abstract construction, and a possibility of occur-

rence of SNA of this type in realistic systems governed by differential equations is
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Fig. 2. Block diagram of the system under consideration. The blocks marked ω0 and 2ω0
are linear second-order filters tuned on the respective frequencies; output signal from the
nonlinear element and amplifier (depicted as the triangle) is modulated by period-T pulses
of signal of frequency ω0; also the transmission coefficient of the feedback loop is modulated
with the frequency slightly detuned by Δω = π(

√
5− 1)/T .

non-trivial. A unique specific example is a non-autonomous system composed of two
alternately excited self-oscillating elements proposed and investigated numerically in
the work of Kuznetsov and Jalnine [29]. In this paper we consider another implemen-
tation of the robust SNA of Hunt and Ott type in a ring system composed of two
linear second-order filters and a non-linear amplifying element operating in presence
of quasi-periodic modulation of the transmission coefficients with incommensurable
frequencies.

2 Description of the system

Consider a system of two linear second-order filters of operating frequencies ω0 and
2ω0, which are coupled via a nonlinear element and amplifier modulated by periodic
pulses of driving signal and closed in a ring with a feedback circuit, providing mixing
with external driving signal of frequency slightly shifted comparing to ω0 (Fig. 2).
The model equations of the system are of the form:

ẍ+ γẋ+ ω20x = εα
2 d

dt
[y sin(ω0t+ θ)] ,

ÿ + γẏ + 4ω20y = ε
d

dt

x
√
1 + x2

g(t) sinω0t,

θ̇ =
2πρ

T
, ρ =

√
5− 1
2
.

(2)

In equations (2) ω0 is a natural frequency of the first oscillator, while the second has
the doubled natural frequency 2ω0; γ is the attenuation coefficient, ε is parameter
of coupling, α is gain coefficient of the active element of the circuit. Parameter ρ
is defined as the irrational golden mean number as it is traditional in studies of
quasi-periodic dynamics; a reason is a convenience of theoretical analysis because of
simplicity of presentation of the number by the continued fraction (composed of 1s
exclusively).
The effect of the first oscillator to the second is provided by a term represented by

a derivative of a product of the non-linear function x√
1+x2

with a reference periodic

signal sinω0t, and a periodic function of modulation g(t) defined as

g(t) =

{
1, nT ≤ t < nT + τ,
0, nT + τ ≤ t < (n+ 1)T. (3)

It is supposed that both the period T and the pulse duration τ contain integer numbers
of periods of the reference high-frequency signal: T = 2πN/ω0, τ = 2πM/ω0.
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The second oscillator affects the first one via the term in the first equation defined
as a product of the signal produced by the second oscillator and the reference signal
with a frequency shifted (comparing to ω0) by a constant been in irrational ratio with

the modulation frequency Δω = 2πρ/T = ρω0/N , ρ = (
√
5− 1)/2.

Consider briefly the operation principle of the system. Let’s start with a time in-
terval, when g(t) = 0, supposing the second oscillator to be not excited, while the first
oscillator provides damped oscillations at the natural frequency ω0 with the phase
ϕ: x ∝ sin(ω0t+ ϕ). After a while, the factor g(t) becomes nonzero, the second os-
cillator begins to undergo excitation at the doubled frequency, and the phase shift
ϕ will be transferred as the excitation is determined by the resonant component of
the combination sin(ω0t+ ϕ) sinω0t = − 12 cos(2ω0t+ ϕ) + . . . Next, when the initial
oscillations of the frequency ω0 damp in the first oscillator to a negligible level, the
second oscillator gets already a sufficiently large amplitude. Now, the first oscillator
will accept excitation determined by the product of the signal of the second oscilla-
tor and of the reference signal cos(2ω0t+ ϕ) sin(ω0t+ θ) =

1
2 cos(ω0t+ ϕ− θ) + . . .,

where the resonant component has the phase ϕ− θ. In fact, the phase ϕ will accept
generally an additional shift (not accounting by the above simple reasoning) deter-
mined by some 2π-periodic function of the original phase f(ϕ). As to the phase θ,
on the period T it obviously gets a shift 2πρ. Thus, for the complete period of the
external driving T the mapping for the phases will be

ϕn+1 = ϕn − θn + f(ϕn) mod 2π,
θn+1 = θn + 2πρ mod 2π,

(4)

and it just corresponds to the form of the Hunt and Ott map (1) (up to non-relevant
sign change at θ in the first equation).

3 Results of numerical simulation

Equations (2) alternatively may be rewritten as a set of equations of the first order:

ẋ = u+ εy(cos θ sin ω0t+ sin θ cos ω0t),

u̇ = −γẋ− ω20x,
ẏ = v + εα2

x
√
1 + x2

g(t) sinω0t,

v̇ = −γẏ − 4ω20y,

θ̇ =
2πρ

T
, ρ =

√
5− 1
2
.

(5)

Figure 3 shows the time dependencies x(t), y(t) on 10 modulation periods ob-
tained from numerical integration of the system (5) by the Runge–Kutta 4th order
method for two sustained oscillatory regimes corresponding to the gain parameters
α = 5 and 10. Other parameters are fixed:

ω0 = 6π, τ = 3, T = 6, γ = 0.25, ε = 0.7. (6)

Using the data of the numerical simulation, we can verify that the evolution of
the phases corresponds to mapping of the same topological class as the model of
Hunt and Ott [15,16]. To do this, in the process of the numerical integration we
evaluate the phase ϕn of the first oscillator for a discrete sequence of time instants
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Fig. 3. Time dependences of signals x and y produced, respectively, by the first and the
second oscillators at a = 5 (a) and a = 10 (b) and other parameters assigned according to (6).

Fig. 4. Numerically obtained illustration of the basic topological properties of phases at
a = 5 (a) and a = 10 (b). Other parameters correspond to (6).

tn = nT as ϕn = arg(x(tn) + iω
−1
0 u(tn)). Simultaneously, we calculate the values of

θn = θ(tn) (mod2π). If the obtained ϕn falls into a certain range (of arbitrarily chosen
width π/10), we plot the point θn, ϕn on the diagram, and also mark the point θn+1,
ϕn+1 relating to the instant of time T later. The resulting picture may be interpreted
as the torus sweep assuming that the upper and lower sides of the rectangular are
identified with the left and right sides, respectively.
Figure 4 shows the results of the numerical data processing for the phases for

a = 5 and 10 with other parameters (6). In the figure a strip C is seen, formed by the
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Fig. 5. Charts of dynamical regimes for rational approximations of the frequency ratio ρk:
(a) 3/5; (b) 5/8; (c) 8/13; (d) 13/21. Periods of the dynamical regimes are indicated inside
of the colored domains in the charts in units of period T .

points θn, ϕn, and the strip C’ is composed of the points θn+1, ϕn+1. The location of
these strips indeed corresponds to what expected for a map of the Hunt and Ott class.
Namely, the strip C going around the torus along the parallel θ is transformed to the
C’, which completes one revolution along the meridian and one along the parallel.

4 Rational approximants and the Pikovsky-Feudel criterion

To confirm strange nonchaotic nature of the attractor in our system it is worth turning
to verification of the criterion proposed in due time by Pikovsky and Feudel [2,7].
According to their arguments, a necessary condition for existence of SNA is that if one
uses rational approximants for the frequency ratio, the system must show bifurcations
depending on the initial phase parameter, supposing that this property is retained
with increase of the order of the rational approximations.
For the frequency ratio given by the inverse golden mean ρ = (

√
5− 1)/2 the

rational approximants are ratios of the successive Fibonacci numbers, namely,
ρk = pk/qk = Fk/Fk+1, where F0 = 0, F1 = 1, Fk+1 = Fk−1 + Fk.
If we take the kth approximant instead of the irrational ρ, setting ρk = pk/qk,

the external driving will be periodic, with a period qkT . In contrast to the quasi-
periodicity with the irrational ρ, when the phase variable θ attends a dense set in
the 2π interval in ergodic way, it bypasses now a finite set of points {θ0, θ1, . . . , θqk}.
The initial phase θ0 in this situation must be regarded as an additional parameter;
depending on its choice, one can generally obtain various types of dynamics and
attractors.
Qualitatively, thinking in terms of rational approximations, one can imagine that

the irrational value of the frequency gives rise to a kind of slow drift of the initial
phase parameter, and if the system in the course of the dynamics currently is under-
going bifurcations, it just will correspond to the occurrence of SNA [2,7]. Figure 5
shows charts of dynamical regimes depicted on the parameter plane ε, θ0 with other
parameters ω0 = 6π, τ = 3, T = 6, γ = 0.25. Figure 6 shows bifurcation diagrams
corresponding to passage along horizontal paths on the charts at two fixed values of
ε = 0.9 and 0.11.
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Fig. 6. Bifurcation diagrams obtained for rational approximations of the frequency ratio
ρk: (a) 3/5; (b) 5/8; (c) 8/13; (d) 13/21 at ε = 1.1 (top row) and ε = 0.9 (bottom row).

Looking at the charts of Figure 5 one can observe that for small values of ε
the dynamics are regular, with periods equal to the denominators of the rational
approximants, and no bifurcations occur. In contrast, in the top parts of the pictures,
roughly, above a certain critical level of ε, the bifurcations take place, and they do
not disappear with increasing order of the rational approximations. The bifurcations
are accompanied by emergence of regimes of different periods, which are multiples
of the denominators of the rational approximations. The same is evident from the
bifurcation diagrams shown in Figure 6.

5 Attractor portraits and Lyapunov exponents

Figure 7 in the left part shows three-dimensional stroboscopic portraits of attractors
of the system built for two values of the parameter a = 5, 10; the dots are plotted with
the period of T . Observe that the attractors are characterized by non-uniform subtle
structure, which is an attribute of SNA and is not characteristic for smooth tori. In
the right part of Figure 7 the same attractors are shown in two-dimensional projection
on the plane of phase variables (θ, ϕ). These diagrams allow judging about fractal
distribution of the invariant measure corresponding to the attractors in projection on
the torus. It is clearly seen that the distribution is not uniform but manifests wrinkled,
fibrous structure formed by regions visiting by the representative point more or less
often. Considering enlarged fragments, one can see that this fibrous fractal structure
is preserved and reveals more subtle details. Note the evident visual similarity of these
pictures to those obtained for the SNA systems of Hunt and Ott type [15,16,29].
Figure 8 shows a graph of Lyapunov exponents depending on the parameter α.

The calculations were performed for the system (5) using a standard algorithm
[30–32]. This system does not have a positive Lyapunov exponent; the largest one
is identically equal to zero (it corresponds to a shift perturbation for the phase vari-
able θ and is not shown on the diagram). The remaining four exponents, as seen from
the diagram, are negative. For SNA of Hunt and Ott type, because of its robustness,
the dependence of the Lyapunov exponents on the control parameter is smooth. The
graph clearly shows that this property holds for the system we discuss in this paper.
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Fig. 7. Stroboscopic portraits of attractors of the system at a = 5 (a) and 10 (b) in
three-dimensional projections and in two-dimensional representation on the plane of phase
variables.

Fig. 8. Graph of Lyapunov exponents, depending on the parameter α; other parameters
correspond to (6).

6 Spectral properties of the SNA

Fourier analysis is one of the conventional signal processing techniques in studies of
dynamical processes. Of great interest are spectral properties of SNA [2,6,8].
To make clear the specifics of spectral characteristics intrinsic to dynamics of

different types, consider construction of the Fourier transform in application to a
time series xn as a process of accumulating for sums:

Z(Ω, N) =
∑N−1

n=0
xne

iΩn, (7)

where n is the discrete time, Ω is a frequency parameter for the spectral component
we are interested with, and N is a number of terms in the sum.
For periodic and quasi-periodic dynamics, which correspond to discrete spectra,

the cumulating sums with increasing N behave linearly: |Z| ∝ N , if Ω is equal to a
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Fig. 9. Fourier spectra for signals produced by the system at α = 5 (a) and 10 (b) in
logarithmic scale (the top row) and in linear scale (the bottom row).

Fig. 10. The walks of the spectral sums on the complex plane for different values of the
parameter Ω.

frequency of spectral component presenting in the spectrum, or tend to zero otherwise.
For random signals, for arbitrary choice of the parameter Ω, the point representing the
cumulating sum will undergo a random walk in the complex plane Z with growing N ;
it corresponds to linear increase of the mean square of the modulus, so, |Z| ∝ √N .
This is a situation of the continuous spectrum mathematically analyzed in a frame of
the Wiener-Khinchin theory. In contrast to these traditionally considered behaviors,
for SNA the cumulating sums exhibit a distinct kind of dependences on N , character-
ized generally by fractional exponents, and it is associated with the so-called singular
continuous spectra [2,6,8].
Figure 9 shows Fourier spectra obtained in the numerical calculations for SNA

modes of the system (5) in logarithmic and linear scales.
In order to characterize nature of the spectra within the framework of the above

considerations, let’s turn to diagrams shown in Figure 10, which illustrate graphically
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Fig. 11. Estimate of the exponents of the growth of spectral sum modules for different
values of the parameter Ω.

the walk of the complex accumulating sums Zn as obtained from step-by-step com-
putations according to (7). The resulting are non-trivial pictures with evident fractal
structure. The graphs are plotted for several different values of the parameter Ω: ρ/5,
ρ/4, ρ/3, 1/4, 1/ρ. One can observe a “fractal drift”, which does not match simple be-
haviors of growth with the exponents 1 or 1/2, which would correspond to traditional
discrete or continuous spectra.
For quantitative characterization of the behavior of the spectral sums we build

plots of the modulus |Z(Ω, N)| depending on the number of terms in the sum
N , using the double logarithmic scale. Then, the slope coefficient for a straight
line approximating the dependence is an estimation of the respective nontrivial
exponent.
The diagrams are shown in Figure 11. The straight lines on the plots indicate the

approximations to estimate the slope coefficients. The slopes for periodic and quasi-
periodic oscillations would be close to 1, and for a random process or for chaotic
oscillations to 1/2. In the case of SNA the exponent estimates give some fractional
values, distinct from 1 and 1/2, and different for different frequency parameters Ω.
This indicates that we are dealing with the singular continuous spectra [2].

7 Conclusion

The article proposes a realizable system implementing SNA of Hunt and Ott type
in a ring circuit composed of a pair of linear second-order filters (oscillators) and
a non-linear active amplifying element, with modulation of the transfer coeffi-
cients. In such a system the external driving is quasi-periodic and contains ba-
sic frequencies that are in irrational ratio, whereby the existence of SNA becomes
possible.
The numerical results are obtained indicating that SNA indeed occurs here of

the same type as in the artificially constructed map on torus proposed by Hunt and
Ott [15], and in a system based on alternately excited self-oscillating elements by
Jalnine and Kuznetsov [29]. This is confirmed by demonstration of the basic topolog-
ical nature of the map for the phase variables.
Additionally, the presence of SNA is illustrated using the criterion of Pikovsky

and Feudel with charts of dynamical regimes and bifurcation diagrams obtained for
the rational approximants of the basic golden mean frequency ratio. Also we con-
sider the spectral properties of the SNA in some details. Besides the directly calcu-
lated spectra, we analyze and discuss behavior of the spectral sums depending on
the number of the terms that indicates the singular-continuous type of generated
spectra.
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