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Abstract. We report enhancing of complete synchronization in iden-
tical chaotic oscillators when their interaction is mediated by a mis-
matched oscillator. The identical oscillators now interact indirectly
through the intermediate relay oscillator. The induced heterogeneity in
the intermediate oscillator plays a constructive role in reducing the crit-
ical coupling for a transition to complete synchronization. A common
lag synchronization emerges between the mismatched relay oscillator
and its neighboring identical oscillators that leads to this enhancing ef-
fect. We present examples of one-dimensional open array, a ring, a star
network and a two-dimensional lattice of dynamical systems to demon-
strate how this enhancing effect occurs. The paradigmatic Rössler os-
cillator is used as a dynamical unit, in our numerical experiment, for
different networks to reveal the enhancing phenomenon.

1 Introduction

Various types of collective behaviors emerge when two or more oscillatory units inter-
act with each other; synchronization is one of the most important collective behaviors
due to a range of applications in different fields [1,2], physics, chemistry, biology, net-
work science and technology. The concept of chaos synchronization is useful in secure
communications [3–7], for encoding and information processing in neuronal systems.
Synchronization in two coupled chaotic oscillators and also in complex networks has
been extensively studied in the last two decades [8,9]. Some of the important forms of
synchronization are complete synchronization (CS) or zero lag synchronization (ZLS)
[10], phase synchronization (PS) [11], lag synchronization (LS) [12] and generalized
synchronization (GS) [13] that might occur either in identical or nonidentical chaotic
systems. In a large ensemble of oscillators, more varieties of collective behaviors such
as clustering [14], partial synchronization [15], chimera states [16–18], relay synchro-
nization (RLS) [10,19–21] and remote synchronization [22,23], were reported. In this
paper, we emphasize on RLS [10] that defines a state of synchrony between two in-
directly coupled oscillators interacting through an intermediate oscillator, called as a
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relay unit in a network. We revisit our previous study [19] on RLS and the related
enhancing effect in an open array of oscillators and further extend the results to
different other networks. RLS was first reported [10] in diode lasers when two delay
coupled laser sources were interacting via a relaying third laser source. The robustness
of RLS against heterogeneity and noise were experimentally demonstrated in lasers
[10,24–26] and electronic circuits [27,28]. The idea of RLS is useful [29] for transmit-
ting and recovering encrypted massages. The dynamical relaying mechanism and the
associated RLS is a possible recipe for isochronous synchronization between distantly
located cortical areas of brain [30–32].
We established a type of RLS earlier [19] where the critical coupling for CS was

found reduced in two identical chaotic oscillators when the parameter of the mediating
third oscillator was detuned from the identical parametric condition. The induced
parameter mismatch or heterogeneity in the mediating oscillator played a constructive
role on CS of the indirectly interacting identical oscillators. Basically, LS emerged
between both the identical units and the mismatched relay unit for a coupling strength
lower than the coupling threshold for a CS state. This reduction in critical coupling
of CS between the identical units via the relay unit was explained as enhancing of
synchrony. We show here that the enhancing phenomenon is not limited to an open
chain of oscillators rather it can emerge in other type of networks as well. RLS was
also reported by others [21] during the onset of GS where the authors also found
an enhancing effect. The role of heterogeneity in the enhancement of CS was also
explored [33] in a complex network. Different processes such as induced heterogeneity
[20,33], coupling delay [34], noise [35–38] have been suggested for the enhancement
of chaos synchronization in two or more oscillators.
We emphasize here that a natural presence of heterogeneity in dynamical systems

or an induced heterogeneity (positive and negative) can really play constructive role
on synchrony. We explore this constructive role in chaotic oscillators using different
coupling configurations, an one-dimensional open array, a star network, a ring of oscil-
lators and a 2-dimensional (2D) lattice of oscillators. We consider the chaotic Rössler
oscillator as a paradigmatic model, althrough the text, and always use mutually diffu-
sive interactions between any two oscillators, although we know that the phenomenon
can be seen in many other chaotic models. We mention here that the enhancing effect
is observed in chaotic systems only [19] since LS emerges in such systems at a lower
coupling than the critical coupling for CS. On the other hand, in limit cycle systems,
CS emerges in identical systems for a coupling smaller than the coupling for LS in
mismatched systems.
The rest of the paper is arranged as follows: the enhancement of CS under RLS in

one dimensional linear array, ring network are presented in Section 2. The study
has been extended to star networks as illustrated in Section 3. The case of two
dimensional array is explained in Section 4. The manuscript ends with a conclusion in
Section 5.

2 One dimensional array and a ring lattice

We consider an open array and a ring of N -coupled Rössler oscillators with nearest
neighbor diffusive coupling. The dynamical equation of the networks is

ẋi = −ωiyi − zi + ε(xi−1 + xi+1 − 2xi)
ẏi = ωixi + ayi (1)

żi = b+ zi(xi − c), i = 1, ..., N.
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Fig. 1. One-dimensional array of five Rössler oscillators (top). The oscillator in black
color has parameter mismatch. Pair of (x2, x4) times series of oscillators 2 and 4 shown
for ε = 0.19, (a) in black and gray lines in all identical case when they are in a de-
synchronized state, (b) CS emerges when a mismatch δω = 0.2 is introduced in the re-
lay oscillator numbered 3 and, (c) pair of (x2, x3) time series for oscillators 2 and 3
shows a LS state; time lag of the adjacent oscillators with the mismatched oscillator.
(d) Plots of master stability function λmax against the coupling strength ε shows (gray
line for δω=0, black line for δω = 0.2) a drifting to a lower critical value for induced
heterogeneity.

where ε is the coupling strength. The uncoupled system (ε = 0) exhibits chaotic dy-
namics for a choice of parameters, ωi = ω + δωi, a = 0.2, b = 0.4, and c = 7.5. For
all the oscillators, ω = 1 and δω = δωi = 0, except for the mismatched oscillator, for
which δω = 0.2. Depending on the boundary conditions, equation (1) represents ei-
ther an open array or a ring topology. We consider five (N = 5) Rössler oscillators,
as an example, where a boundary condition x0 = x1 and xN+1 = xN represents an
open array. For the ring configuration, a periodic boundary condition x0 = xN and
xN+1 = x1 is considered. An open array of five oscillators is shown in the upper panel
of Figure 1 where the black circle represents the relay oscillator with a mismatch δω
and indirectly coupled identical oscillators in open and gray circles. In this open array,
the critical coupling for CS between the identical oscillators in symmetric positions to
the relay oscillator in the center, reduces. A LS state emerges between the central relay
oscillator and its neighboring relayed systems, and thereby CS is enhanced between all
the identical oscillators in symmetric positions on both sides. All identical oscillators
(N = 5) emerge into a CS state for a coupling strength ε ≥ 0.1985. Figure 1a shows
a desynchronized state between the indirectly coupled oscillators (2, 4) for a coupling
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Fig. 2. Plots of master stability function λmax against the coupling strength ε show (gray
line for δω=0, black line for δω = −0.1) a drifting to a lower critical value for induced
heterogeneity. For identical case, when δω=0 for all the oscillators in the lattice, ωi=1.1 is
used and in the mismatched case, ωi = 1.1 + δω is used only for the oscillator in black color.
Rest of the oscillators have the same set of parameter values.

strength ε = 0.19 that is lower than the critical coupling when all the oscillators are
identical. When a mismatch δω = 0.2 is introduced in the central oscillator (black cir-
cle oscillator 3), then CS is observed between (x2, x4)- and (x1, x5)-pair and time lag
is observed between the time series of (x2, x3)- or (x3, x4)-pair in Figures 1b and 1c,
respectively. The inset figure of Figure 1c shows the LS in an enlarged part of the
time series. Interesting point to note that the amount of delay does not propagate as
the distance of the relayed systems increases from the relay unit. Rather, it remains
constant for all the oscillators in the network. Figure 1d shows the variation of master
stability function (MSF) λmax with coupling strength ε. Pairs of (2, 4)-oscillators and
(1, 5)-oscillators emerge into a CS state for ε > 0.1985 (gray line) when five oscillators
are identical (δω = 0). λmax crosses the line to a negative value at a lower critical
coupling strength ε ≥ 0.174 (black line) when a mismatch is introduced in the central
oscillator. For a negative mismatch (δω = −0.1), the effect is found similar as shown
in Figure 2.
Next we consider a ring of oscillators shown in Figure 3. The dynamical equation

for this network is represented by equation (1) with the boundary conditions, x0 =
xN and xN+1 = x1. For this ring network, five (N = 5) mutually coupled Rössler
oscillators are chosen, with any one of them having a parameter mismatch: here the
black color circle is the mismatched oscillator with an amount of mismatch δω. The
nodes at equal distances on both sides of the relay oscillator show an enhancing effect
and the distance from the central node does not affect the time lag. Variation of
λmax with respect to coupling strength ε is shown in the right panel of Figure 3 for
identical (gray) and mismatched (black) cases. We observe again that the critical
coupling strength for CS in all the identical oscillators is lowered when a mismatch is
introduced in any one of the oscillator.

3 Star lattice

A similar enhancing of synchronization due to heterogeneity is also observed in a star
network. In a star network shown in the left panel of Figure 4, one central node (black
circle) communicates directly with all the remaining nodes (gray color circles), and
the other nodes communicate between themselves via the central node considered
as a hub. The central node relays the information to all the other oscillators. The
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Fig. 3. Left panel shows five oscillators in a closed ring. The oscillator in black color has
parameter mismatch. Right panel: Variation of MSF with respect to coupling strength ε.
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Fig. 4. Left panel: Coupling configuration of star network. All the gray color oscillators are
identical and black oscillator has parameter mismatch. Right panel: Variation of MSF for
synchronization between identical nodes (gray circle).

heterogeneity is induced in the hub as a mismatch δω. The dynamical equation of the
star network is

ẋ1 = −ω1y1 − z1 + ε

N − 1
N∑

j=2

(xj − x1)

ẏ1 = ω1x1 + ay1 (2a)

ż1 = b+ z1(x1 − c)
ẋi = −ωiyi − zi + ε(x1 − xi)
ẏi = ωixi + ayi (2b)

żi = b+ zi(xi − c), i = 2, ..., N.

Equation (2a) describing the dynamics of [x1, y1, z1]
T represents the hub. A parameter

mismatch ω1 = 1 + δω is introduced in the hub. All indirectly connected outer nodes
are identical (ωi = 1 for i = 2, ..., N), which are represented by their state variables
[xi, yi, zi]

T , i = 2, 3, ...N in equation (2b). To reveal enhancing of synchrony in the
star network, we consider N = 15 Rössler oscillators and their system parameters
in a chaotic regime. Variation of λmax with coupling strength is shown in the right
panel of Figure 4 for identical (gray) and mismatched (black) cases. Figure 4b of λmax
clearly shows a lowering of critical coupling (black) of CS in the outer oscillators for
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Fig. 5. Two dimensional grid of bidirectionally coupled Rössler oscillator where black color
oscillator represents the mismatched oscillator and open circles and gray colors circles are
identical oscillators.

a mismatch in the hub. Plot of λmax for all identical case shows a larger critical
coupling (gray) for CS.

4 Two dimensional lattice

Finally, we consider a 2D lattice of chaotic Rössler oscillators shown in Figure 5. The
dynamical equation of the 2D lattice is

ẋi,j = −ωi,jyi,j − zi,j + ε(xi−1,j + xi+1,j + xi,j−1 + xi,j+1 − 4xi,j)
ẏi,j = ωi,jxi,j + ayi,j (3)

żi,j = b+ zi,j(xi,j − c)
where i, j = 1, 2, 3. Individual oscillators are chaotic in absence of coupling (ε = 0.0)
for ωi,j = 1 for all i, j and parameters, a = 0.2, b = 0.4, c = 7.5. As an example, we
consider a 3× 3 lattice in Figure 5: all open circles and gray circles represents identical
oscillators, ωi,j = 1 and the central black node represents the mismatched oscillator
ω2,2 + δω. All open circle nodes communicates with the black node via two links
whereas the gray colors nodes form direct links with the black node. For the identical
case (i.e. δω = 0.0), we consider a lower coupling strength ε = 0.19 than the critical
coupling when they are all desynchronized: chaotic time series of all identical oscil-
lators confirm this in Figure 6a. When the coupling strength is increased to ε = 0.25
(above the critical value), all the oscillators reaches a CS state in chaotic motion as
confirmed by their corresponding time series in Figure 6b and the associated syn-
chronization manifold xi vs. xj plot in Figure 6c. When we induce a mismatch in the
hub (black circle) at a lower coupling ε = 0.19, we observe three separate groups or
clusters: open circle nodes form a cluster in a CS state, gray color nodes form another
cluster in a CS state but maintain a LS with the open circle nodes. On the other
hand, the central hub remain isolated and forms a separate group, however, it also
maintains a lag with gray color nodes but different from that of open circle nodes. We
refer to this overall state as cluster synchronization. For demonstration, we induce a
small mismatch δω = 0.1 in the central oscillator (black circle) when all 9-oscillators
are divided into three clusters: one cluster contains degree 2 nodes (open circles) far-
away from the central node (black circle), another cluster contains the degree 3 nodes
(gray color circles) and at a relay distance 1 from the central node (black circle) and,
the central mismatched oscillator remains isolated from other two clusters. The time
series of all oscillators are plotted in Figure 6d for δω = 0.1 and ε = 0.19 which are
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Fig. 6. Clustering synchronization in a 2D lattice Rössler oscillators. Time series of
9-identical oscillators show a desynchronized state for ε = 0.19. in (a). In absence of parame-
ter mismatch (δω = 0), time series in (b) of all the oscillators are in CS for a larger ε = 0.25,
corresponding synchronization manifolds in (c). Under induced heterogeneity δω = 0.1 and
the lower coupling strength, ε = 0.19, three clusters form. Two clusters emerge into separate
CS states but they develop LS (blue and red lines) as shown in their time series plot in
(d) when the central oscillator (black line) is isolated but having a lower lag time with the
nearest neighbor. The corresponding LS manifolds are shown in (e). Snapshots of all the
oscillators at a particular instant are plotted in (f) where magenta (solid circles), dark green
(star) and green (open circles) colors represent the desynchronized state (δω = 0.0, ε = 0.19),
CS state (δω = 0.0, ε = 0.25) and cluster synchronization (δω = 0.1, ε = 0.19), respectively.
In cluster state, two clusters green color (open circles) are seen along the blue and red lines,
while the isolated central node is seen along the black line.

magnified in the inset where three distinct colors, namely, black, blue and red lines
are shown. It indicates that all open circle nodes are in a CS state and, the gray
color nodes are also in a separate CS state but they maintain a lag. The black line
represents the hub node which also maintain LS with the other two clusters, however,
its lag time is different from red and blue lines. The amount of lag time between the
central node and the open circle nodes is more than the lag between the central node
and the gray color nodes. The synchronization manifolds x1,1 vs. x2,2 (blue color),
x1,2 vs. x2,2 (green color) and x1,1 vs. x1,2 (red color) are plotted in Figure 6e. Snap-
shots of the amplitude at a particular instant are plotted in Figure 6f where magenta
(solid circles), green (open circles) and dark green (stars) colors represents the de-
synchronization (ε = 0.19, δω = 0.0), cluster synchronization (ε = 0.19, δω = 0.1) and
CS (ε = 0.25, δω = 0.0) in the network.
Enhancing of synchronization between the indirectly coupled oscillators of the 2D

lattice is described in Figure 7. In absence of any mismatch (δω = 0.0), the two groups
(open and gray color circles) are completely synchronized for ε ≥ 0.22. Figure 7a shows
the variation of synchronization errors E of the open and gray color circles nodes by
changing the coupling strength ε. From this figure it is shown that the oscillators
in the two groups are synchronized at the same critical coupling strength. If we
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Fig. 7. Synchronization error E against coupling strength ε of the bidirectionally coupled
2D lattice, (a) δω = 0.0, (b) δω = 0.2 and (c) δω = 0.3. The black and gray colors represent
the corresponding synchronization error of two cluster synchronization (open circle and gray
color oscillators in 2D coupling topology). (d) The enhancement of relay synchronization is
shown by varying the coupling strength ε and mismatched parameter δω in two dimensional
phase plane ε− δω where violet (black) and cyan (gray) colors represent the corresponding
desynchronized (DSYN) and synchronized (SYN) regions respectively.

introduce heterogeneity in the central oscillator (δω = 0.2), the whole network forms
two clusters (except the central node) and the oscillators (open and gray color circles)
in each cluster are fully synchronized for lower value of ε ≥ 0.17. The corresponding
synchronization error with respect to coupling strength is shown in Figure 7b. By
further increasing the heterogeneity at the relay unit by δω = 0.3, synchronization
in the two clusters is more enhanced (Fig. 7c). To explore the whole scenario by
changing the heterogeneity δω and the coupling strength ε, we plot a phase diagram
in ε− δω plane in Figure 7d where violet (black) and blue (gray) colors represent
the desynchronized and synchronized region. The borderline of the synchronous and
asynchronous regions indicates the critical coupling strength. It is clear that the
critical coupling ε = εc decreases with increase of mismatch δω.

5 Conclusion

The effect of heterogeneity was studied on CS of chaotic oscillators using different
configurations ranging from 1D array, ring, star and 2D lattice. It was shown that an
induced heterogeneity or parameter mismatch in a suitably located central oscillator
works as a relaying device to enhance CS in other identical nodes which interacted
via the central node. The effect was found general in all the given example networks.
The heterogeneity in the form of a parameter mismatch induced a LS between
the mismatched oscillator and all the other identical oscillators, which, in turn,
helped the identical oscillators at symmetric positions with respect to the relay
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unit, synchronize at a lower coupling strength than the critical coupling of CS in
all identical oscillators. The time-lag remained unaffected by the distance of the
relayed units from the relay unit in 1D open array. In case of 2D lattice the time-lag
changed with the degree of the relayed units and thereby they evolved into cluster
synchronization. Each cluster remained in CS states but with separate lag between
different clusters.

D.G. was supported by SERB-DST (Department of Science and Technology), Government
of India (Project no. EMR/2016/001039).
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