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Abstract. The dynamics of two coupled twist maps with weak dissi-
pation is studied. The calculation of Lyapunov exponents is used to
analyze the structure of the action plane of the system. The chaotic
transient dynamics is revealed for extremely small values of dissipation
by calculation of finite-time Lyapunov exponents. The stagger-and-step
method is used to obtain the chaotic saddle and it is found that it is
similar to the Arnold web.

1 Introduction

Although traditionally the study of nonlinear dynamical systems mainly deals with
the long-time stable behavior, nowadays it is known that the transient process from
initial state to the attractor can demonstrate a lot of interesting phenomena. The
transient processes are studied in both classical model systems such as the logistic
map [1], the Henon map [2], Rössler system [3] and in a number of dynamical models
for a wide range of phenomena in physics, biology, chemistry, economics, engineering,
and even social sciences [4–9]. The situation when the dynamics on finite time is
chaotic while the attractor is regular is usually refered as chaotic transient process.
One of the earliest studies of this phenomenon was made in [13] where the existence of
the chaotic behavior which persists for a long but finite time in the Lortenz system was
shown. Later similar phenomena were observed in a number of systems (see [10–12,14]
for some examples). It seems to be of most interest and is usually due to non-attracting
invariant sets with chaotic dynamics (chaotic saddles) in the phase space [15–17] and
the complex structure of its stable and unstable manifolds. The permanent chaos
(chaotic attractor) can be regarded as a limit of transient chaos when the average
lifetime of the underlying chaotic set becomes infinite. So the transient chaos is more
common and possibly richer phenomenon than permanent chaos and can be regarded
as a kind of metastable state.
In this work we consider transient chaos that occurs in the system with Arnold

web [18] with weak dissipation. Arnold web is typical for non-integrable Hamiltonian
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systems with more than two degrees of freedom (DOF) [16–20] the system of inter-
secting the resonance (stochastic) layers, which form a dense web. The diffusion along
this web (usually called Arnold diffusion) is possible for arbitrary small values of non-
integrable perturbation unlike the systems with two DOF. In fact, the systems with
weak dissipation form a special class of dynamical systems which are intermediate
between conservative and dissipative ones. The peculiarities of dynamics that typical
for systems with weak dissipation are studied in a number of papers [21–25], basi-
cally, they are about the coexistence of a large number of attractors and very long
transient processes. Also it is known that chaos in the non-integrable conservative
systems can be observed for almost any parameters, but typically in a very narrow
region of the phase space [20,26,27]. In contrast, in dissipative systems chaos appears
only in the specific range of parameters but the basin of the chaotic regime usually
is rather large. So systems with weak dissipation are expected to demonstrate some
intermediate behavior; the chaotic transient process is one of expected phenomena.

2 Two coupled twist maps

Let’s consider the system of two coupled twist maps (1), that have been investigated
in [28,29]. In these works the authors have been provided numerical evidence of global
diffusion occurring in slightly perturbed integrable Hamiltonian systems and have
been shown that even if a system is suffciently close to be integrable, global diffusion
occurs on a set with peculiar topology, the so-called Arnold web, and is qualitatively
different from Chirikov diffusion, occurring in more perturbed systems.

⎧
⎨

⎩

ϕ′1 = ϕ1 + I1,

I ′1 = I1 + ε
df

dϕ1
(ϕ1 + I1, ϕ2 + I2)

⎧
⎨

⎩

ϕ′2 = ϕ2 + I2,

I ′2 = I2 + ε
df

dϕ2
(ϕ1 + I1, ϕ2 + I2)

(1)

where f(ϕ1, ϕ2) = 1/(cos(ϕ1) + cos(ϕ2) + 4). For small ε this system can be
interpreted as the Poincaré map of the 3 DOF system with Hamiltonian:

Hε =
I21
2 +

I22
2 + I3 + εf(ϕ1, ϕ2) by the section plane ϕ3 = const. So parameter ε can

be interpreted both as the coupling amplitude for coupled twist maps and the non-
integrable perturbation amplitude for the Hamiltonian system (1).
The structure of the action plane (I1,I2) seems to be the most informative because

for integrable case the actions completely determine the orbit, so the investigation of
the action plane is in fact similar to the investigation of the parameter plane. Also as
for a Hamiltonian system frequencies are determined as ωi =

∂H
∂Ii
, it can be assumed

that the frequencies are proportional (in the system (1) equal) to the actions.
Resonance conditions for system (1) can be written as k1I1 + k2I2 + 2πk3 = 0,

where k1, k2, k3 are integers, the straight lines on the Figure 1 mark some of them.
To investigate the system (1) we numerically calculate the largest Lyapunov ex-

ponent using Benettin algorithm [30] and plot its values on the action plane (Fig. 2).
The resonance (Arnold) web is clearly seen for coupling amplitude ε = 0.3 (Fig. 2a) as
the regions with largest values of Lyapunov exponent (dark lines) because the chaotic
regimes (stochastic layers) are situated along the resonances. With the growth of cou-
pling amplitude ε the Lyapunov values outside the resonance layers increases (Figs. 2b
and 2c) and only few resonance lines can be seen. It seems rather natural as ε is a
perturbation amplitude.
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Fig. 1. Resonance lines corresponding to the resonance relations k1I1 + k2I2 + 2πk3 = 0
(k1, k2, k3 are integers).

Fig. 2. Maps of dynamical regimes in the action plane of (1) at different values ε:
(a) ε = 0.3; (b) ε = 0.6; (c) ε = 0.8. Lyapunov exponent values are indicated on the color
palette. The realization length N=1000 (without transient process).

Let’s introduce the linear dissipation in the system (1) as follows:

⎧
⎨

⎩

ϕ′1 = ϕ1 + I1

I ′1 = αI1 + ε
df

dϕ1
(ϕ1 + I1, ϕ2 + I2)

⎧
⎨

⎩

ϕ′2 = ϕ2 + I2

I ′2 = αI2 + ε
df

dϕ2
(ϕ1 + I1, ϕ2 + I2)

(2)

where f(ϕ1, ϕ2) = 1/(cos(ϕ1) + cos(ϕ2) + 4).
The determinant of the Jacobi matrix for (2) is equal to α2, so the system is

conservative for α = 1 and dissipative for α < 1.

3 The chaotic transient process

When we introduce the small dissipation in the system (2), regular attractors occur,
but the transition process can be rather long. Let’s study the transition process in
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Fig. 3. Dependencies of finite time Lyapunov exponent (a,d) and the Lyapunov sum (b,e)
on the realization length N and corresponding phase portraits (c,f) for the system (2) with
α = 0.9999, ε = 0.6. The orbits start from the points marked 1 (left column) and 2 (right
column) on Figure 6a.

more details. We calculated the dependence of a finite time Lyapunov exponent (the
Benettin algorithm again was used) on the realization length using for calculating a
set of orbits starting from different initial points. Typical plots are shown in Figures 3
and 4 for different small dissipation levels (α = 0.9999 for Fig. 3 and α = 0.999 for
Fig. 4). We can see two (except first approx. 1000 iterations where the dynamics
strongly dependes on initial point) stages on each plot: during the first Lyapunov ex-
ponent remains definitely positive while during the second it monotonically decreases
to zero. It seems natural to refer the first part as the chaotic transient process and
the second as a regular transient process. Numerically, we define the global (except
the initial 1000 iterations) maximum of local Lyapunov exponent as a border be-
tween these two stages, it is marked by vertical line on Figures 3 and 4. On the phase
portraits (Figs. 3c, 3f; Figs. 4c, 4f) the chaotic transition process is marked with
black points and the regular transition process is marked with green points. One can
see that during the chaotic process the representative points move mostly along the
resonance lines while during the regular process the points move near the attractor.
Also one can see that a time period with the linear growth of Lyapunov sum exist
on every plot which means that the points move along the chaotic set in the phase
space. These results show that there is a set with chaotic behavior situated along the
resonance lines in the action plane which results in the chaotic transient process.
Figure 5 shows the values of largest Lyapunov exponents on the action plane

of system under investigation. 10000 iterations were used to calculate Lyapunov
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Fig. 4. Dependencies of finite time Lyapunov exponent (a,d) and the Lyapunov sum (b,e)
on the realization length N and corresponding phase portraits (c,f) for the system (2) with
α = 0.999, ε = 0.6. The orbits start from the points marked 1 (left column) and 2 (right
column) on Figure 6a.

exponent for Figure 5a but only 1000 for Figure 5b. We can see that Lyapunov
exponents calculated on short time are larger for any point of action plane which
confirm the existence of chaotic transition process.
Figure 6 shows the dependence of whole (i.e., the number of iterations required

for initial point to come closer than 10−4 to attractor) and chaotic transition process
duration on the initial conditions (the darker color means the greater number of
iterations). One can see that the transition process is the longest for orbits started
from the resonance regions. The left and right figures seem to be quite similar, which
means that chaotic transient process contributes significantly to the whole transient
process.
However, the features revealed above take place only when the dissipation is ex-

tremely small. Even for ε = 0.99 the Lyapunov exponent decreases uniformly (Fig. 7)
and demonstrates no chaotic transition process. Also the sum of the Lyapunov expo-
nents quickly reaches a constant value without intermediate maxima.

4 Search for the chaotic saddle

Results discussed above show that some unstable set with chaotic behavior exists in
the system (2). We try to obtain it by using the stagger-and-step method, introduced
in [31] to find the chaotic saddle.
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Fig. 5. Maps of Lyapunov exponents for the system (2) with α = 0.999, ε = 0.6; different
lenghts of realization used for calculation: (a) N = 10000; (b) N = 1000. The color of point
depends on Lyapunov exponent value as shown on palette.

Fig. 6. Maps of the duration of the whole (a) and chaotic (b) transition process for the
system (2) with α = 0.999, ε = 0.6 (numbered points correspond to the initial conditions for
Figs. 3,4,7). The color of point depends on Lyapunov exponent value as shown on palettes.

This method consists of two stages. On first we should find the initial point which
does not leave some region during some large time T*. We obtain it by trying con-
sequently random points in some region without attractors. On the second stage we
consider the next iteration of this point as the new initial point. If the orbit starting
from the new point leaves the region for times larger that T* we repeat the second
stage, in another case we try the orbits starting from the small vicinity rn of this
point until the one which leaves the region for more that T* is found. This procedure
can be shortly described by

xn+1 =

⎧
⎨

⎩

F (xn), T (xn) > T
∗(step)

F (xn + rn), T (xn) ≤ T ∗(stagger) (3)

where F (xn) – the initial dynamic system, rn – perturbation. We use T
∗ = 3000

iterations and |rn| < 10−7 while numerical simulation.
Trajectories calculated by Stagger-and-Step method for the system (2) are shown

in Figure 8. It is rather blurred because the method used is statistical and requires
extremely long time to cover the whole saddle set especially if it has a complex
structure. But it seems to be similar to the resonance lines of Arnold’s web, that is,
the trajectory of points on the way to the attractor located along the web.
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Fig. 7. Dependencies of finite time Lyapunov exponent (a,d) and the Lyapunov sum (b,e)
on the realization length N and corresponding phase portraits (c,f) for the system (2) with
α = 0.99, ε = 0.6. The orbits start from the points marked 1 (left column) and 2 (right
column) on Figure 6a.

Fig. 8. The chaotic saddle of the system (2) obtained by Stagger-and-Step method at
α = 0.9999, ε = 0.6.

For larger values of dissipation (already at the α = 0.999) the described procedure
works worse because it becomes increasingly difficult to implement the first stage of
the method as orbit often comes to attractors with a very small basins of attraction.
So we can suppose that the set with chaotic dynamics disappear.
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5 Conclusion

We revealed that chaotic transient processes occur in the system of two coupled twist
maps with extermely weak dissipation although the attractors are regular. The chaotic
transient process is associated with a chaotic saddle situated near the resonance web
of the Hamiltonian system. This set destructs with increase of dissipation.

The authors thank Prof. U. Feudel and Ph.D. D.V. Savin for very useful discussions and
comments. Also we are grateful to The Russian Foundation for Basic Researches (project
15-02-02893) for financial support.
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