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Abstract. A transition between tonic and bursting neuronal behaviors
is studied using a linear chain of three electrically coupled model neu-
rons. Numerical simulations show that, depending on their individual
dynamical states, the neurons first synchronize either in a tonic or in
a bursting regime. Additionally, a characteristic firing rate, mediat-
ing tonic-to-bursting transitions in networked neurons, is found to be
associated with a firing rate encountered in the single neuron’s equiv-
alent transition. A few cases describing this peculiar phenomenon are
presented.

1 Introduction

Coordinated neuronal network activity, particularly synchronous, is vital for the sur-
vival of many organisms. Synchrony in neurons is known to be of relevance in a
number of processes including learning and memory [1-3], wake-sleep cycles [4,5],
central pattern generators [6], and neurological conditions such as epilepsy [7,8] and
Parkinson’s disease [9].

In this study we describe a tonic (rhythmic single spiking) to bursting (repeat-
ing sequences of multiple spikes) transition taking place in triads of synchronous
model neurons connected via electrical synapses. Electrical synapses are channel-
shaped structures formed in contacting membranes of nerve cells enabling electrical
transmission between them. This type of synapses between neurons was demonstrated
in the pioneer work of Furshpan and Potter [10], and its role in neuronal communica-
tion has since become better understood and appreciated [11]. Additionally, electrical
synapses are known to promote synchrony in networked neurons [12], and are believed
to have decisive roles in seizures [13] and in pattern formation and development [14].
Our network model involves three distinct neurons (one tonic and two bursting) recip-
rocally coupled via electrical synapses in a linear chain format. The center neuron
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(neuron 1) and the two outer neurons (neurons 0 and 2) have identical but variable
couplings, i.e., gco1 = ge12 = ge i a control parameter defining the strength of the
connections between the neurons. Neuron 1 can be viewed as a relay neuron, allowing
neurons 0 and 2 communicate with each other.

Also known as interneurons, relay neurons are not uncommon, carrying informa-
tion from one part of the central nervous system to another, and being of major
relevance in neuronal communication. For example, thalamocortical cells performing
sensory, motor or a higher order associational role are subject to switching modes of
responsiveness that are elicited by relay neurons. Recent fMRI and physiology studies
indicate that perceptual and cognitive tasks modulate responses in the visual thala-
mus [15], suggesting that the thalamus does more than just the passive relaying of
sensory information to the cortex [16].

Furthermore, some neuronal synchronous states are directly related to transi-
tions between tonic and bursting activity, including arrays of noisy neurons [17].
Tonic-to-bursting transitions are important, for example, in thalamocortical neurons
at sleeping transition states [18], and in sensory-motor nuclei producing tremors in
Parkinson’s disease [19]. Transitions of this nature have been investigated, mostly
involving the dynamics of individual neurons [20,21], and not much is known about
these transitions involving distinct coupled neurons.

Here we focus on the tonic-to-bursting transition taking place in triads of coupled
synchronous model neurons. Our results indicate that the typical tonic-to-bursting
transition encountered in the single neuron model is carried over to the network of
neurons in a peculiar way. The single neuron undergoes this transition for a particular
value of its slow repolarization conductance, g¢r*ice! = (.305 mS/cm?, with a partic-
ular firing rate fer***c! = 1.25Hz. The three-neuron network we study undergoes an
equivalent transition, with a variety of different g4, values for the individual neurons,
but firing together at the common firing rate f"#@ = 1.25Hz. In the network, the
transition happens when the synchronous neurons undergo their first period-doubling
bifurcation en route to chaos and then to bursting, creating a clear separation between
tonic and bursting synchronous states. However, while the tonic-to-bursting transition
in synchronous neurons is mediated by a period-doubling cascade and chaos [22], the
equivalent transition for the single neuron is followed by a period-adding sequence [23].

2 Model equations

The Huber-Braun model equations used for representing the neuron in this work are
a variation of the Hodgkin and Huxley model [24], include physiologically relevant
components, and have been widely applied to a number of situations [25-30]. Briefly,
the Huber-Braun equations consist of a set of four differential equations (one for the
voltage and three for electric current activation functions) describing the dynamics
of ionic flows across the cell’s membrane.

The equation for the membrane voltage of neuron (j) coupled to two other neurons
(i and k) is given by

CVE = —Ileak — INa — IK — Isd — Isr — Iinj — Iji — Ijk' (]_)

Here C represents the membrane capacitance, the leak current is given by Ijeax =
Greak(V — Voleak) Where gieax is the leak conductance (constant) and Vpjeax is the
equilibrium potential. The fast currents for sodium Iy, and potassium Ik are ac-
companied by the corresponding slow depolarization sodium current I,4 and the slow
repolarization potassium calcium-dependent current 7,.. The maximum conductances
and equilibrium potentials are represented by g, and Vyq, respectively. Ijn; denotes a



Recent Advances in Nonlinear Dynamics and Complex Structures 1941

constant current injection, and the terms Ij; and Ijc represent the coupling currents
between the pairs of neurons.

The opening and closing of the ion channels are directly associated with charac-
teristic time constants 7. For the fast income of sodium the activation function is

given by an, = — %V,VON 5, where sy, represents the slope of the sigmoid curve,
e a a

and Vj,, corresponds to the half-activation potential. For fast potassium activation,
slow sodium activation and slow potassium activation, the equations are, respectively

ag = a(aKoo - aK)’ (2)
Asg = Td(anm - asd)? (3)
. ¢
Qg = _7(Vacclsd + VdePan)' (4)

Sr
The scaling parameters for temperature dependencies are p = 0.607 and ¢ = 0.124.
Equations (2)—(4) represent the activation functions for potassium, slow depolariza-
tion, and slow repolarization, respectively. The activation functions aq. are repre-
sented by sigmoid steady state curves given by agec = m, q= K, sd, sr.

In this model an, = aNaoe, as a result of the very fast Nat channel activation, and
Ca™" accumulation and depletion are included, repectively in vac. and vgep. Deacti-
vation is embedded in the functional timing of the in-place activation functions and
the corresponding conductances. Equations (1) through (4) can mimic a wide range
of neuronal dynamics, and the variables and parameters in the model represent quan-
tities of physiological relevance for the real neuron. Parameter values throughout this
work are presented in the Appendix: Model parameters, unless otherwise explicitly
mentioned in the text. Numerical simulations were carried out applying the standard
Runge-Kutta fourth order method implemented in a costum-made C** code with
step of integration h = 0.01.

The current I, is of particular interest in this work. It represents the slow repolar-

ization calcium-dependent potassium current given by Iy = pgseas (V' — Vi), where
V' is the voltage across the cell membrane and V4, is the equilibrium potential asso-
ciated with the corresponding ion channels. These channels are critical for neuronal
excitability in pacemaker neurons of the hypothalamic arcuate nucleus [31], for ex-
ample, and are considered to be responsible for spike-frequency adaptation [32-36].
The conductance gg, included in the current I, represents the maximum conductance
associated with potassium channels activated by calcium, and is here implemented as
control parameter for setting the individual neurons in different dynamical states. In
Figure 1 we show how the dynamics of a single Huber-Braun neuron evolves depend-
ing on the values of g,. Starting tonic at gs, = 0.20 (all conductance values in this
work have units of mS/cm?) with a firing rate f = 8.11 Hz, increasing the value of
gs: drops the firing rate to feritical = 1.25Hz at the transition point g&rtical = 0.305,
where the neuron changes its firing regime from tonic to bursting.
Past gfrtical now in the bursting regime, the firing rate increases to 2.125 Hz at
gsr = 0.3125 and then starts dropping again for increasing gs,. This transition in the
behavior of the neuron at g&itca! from tonic to bursting has been shown to influence
the final state in which pairs of distinct (one tonic and the other bursting) coupled
neurons synchronize [22]. Here we investigate how this intrinsic feature of the single
neuron mediates a similar transition in the case of a triad of neurons electrically
coupled in a linear chain format. The individual neurons are set to operate mostly in
stable limit cycles but still displaying a wide variety of patterns as a function of the
slow repolarization conductance gg;..
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Fig. 1. Single neuron firing rate dynamics with Iin; = 1.0. For increasing gs: values the single
neuron firing rate decreases reaching a critical point at g&** = 0.305 and f°r*®! = 1,25 Hz
when the neuron undergoes a tonic-to-bursting transition. The dashed vertical line indicates
the boundary between tonic and bursting behaviours.
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Fig. 2. Top: Schematic of three distinct coupled neurons in a linear array. Voltage vs. time
for g. = 0.0 (uncoupled neurons) (a) neuron 0, tonic, (b) neuron 1, bursting with four spikes
per burst and (c) neuron 2, bursting with one spike per burst; for g. = 0.05 (weak coupling)
(d), (e), (f) the neurons change their dynamics in response to the inputs they receive from
each other, but still have distinct behaviors; for g. = 0.1 (stronger coupling) (g), (h), (i ) the
three coupled neurons synchronize in the tonic regime; for g. = 0.2 (even stronger coupling)
(4), (k), (1) the three neurons continue synchronized but in a different regime (chaos).

3 Linear array of coupled neurons

The network of neurons in this study consists of three distinct neurons coupled in a
linear chain format, with reciprocal electrical synapses coupling the middle neuron
1 to the outer neurons 0 and 2, as illustrated in Figure 2, top. The strength of the
synapses (g.) is varied but the strength values remain identical to each other at
all times in all cases discussed here. We start with neuron 0 tonic and neurons 1
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and 2 bursting, with slow repolarization conductance values gs;0 = 0.20, gs;1 = 0.38,
and gs2 = 0.46, as indicated. Voltage traces vs. time plots are displayed in Figures 2a,
2b and 2c in the case where the three neurons are firing independently, with g. = 0.

Turning the coupling on and increasing it slightly to g. = 0.05 begins to alter the
dynamics of the individual neurons, as displayed by their voltage traces in Figures 2d,
2e and 2f, showing neuron 0 slowing down its firing rate while neurons 1 and 2 attempt
to spike more, in a trend to increase their firing rates. Further increase in g. eventually
brings the three neurons into synchrony, with the synchronous state dependent on
the strength of the coupling. For g. = 0.1 the neurons synchronize in the tonic regime
(Figs. 2g, 2h and 2i), and further increase to g. = 0.2 synchronizes them in a bursting
chaotic regime (Figs. 2j, 2k and 21).

Next we examine three cases for the evolution of the state of the network with
different individual neuronal dynamics, along with a varying coupling strength g..
In all three cases, neuron 1 with g5,1 = 0.38 and neuron 2 with gso = 0.46 are kept
fixed. In case 1 we set neuron 0 to gs;o = 0.20, and calculate for each neuron both the
average frequency and the interspike interval for increasing values of the coupling.

Figure 3a displays the average firing rates for each neuron starting with g. = 0,
and increasing all the way up to g. = 0.3, showing the initial firing rates of neuron 0
at fo = 8.1Hz, of neuron 1 at f; = 1.4Hz and of neuron 2 at fy = 0.4 Hz. Increasing
g. values changes the firing rates of the neurons showing an overall trend for the
frequencies to coalesce, approaching a common value reached when g. = 0.07, where
the three neurons synchronize at a firing rate foyn. = 3.9 Hz. Further increase in g.
maintains the three neurons synchronous but at various dynamical states, depending
on the value of g.. On the lower range of g., where the three neurons remain asyn-
chronous, increasing g. slows down the frequency of neuron 0 while the frequencies
of neurons 1 and 2 increase up to the point where the three neurons synchronize
(9. = 0.07). From g. = 0.07 on, increasing g. values keeps the three neurons in syn-
chrony, but their common firing rate decreases continuously until g. = 0.176 from
which point, increasing g. on does not significantly alter the common firing rate. In
Figure 3b we show a bifurcation diagram for the same three neurons and same g,
range as in Figure 3a, but now plotting the interspike intervals, not the average fre-
quencies. Figure 3b gives us the dynamics of the three neurons for a range of g., and
in conjunction with Figure 3a provides a more complete view of the state of not only
the individual neurons but also of the state of the network as a whole. The three
neurons first synchronize at g. = 0.07, start a period-doubling cascade at g. = 0.168
with a common firing rate which happens to be fer#cel — 1.25Hz, transitioning to
chaos at g. = 0.176. Continued increase of g. leads the neurons back to periodicity
with a backward bifurcation starting at g. = 0.255 and into bursting at g. = 0.261.
This tonic-to-bursting transition has been observed for the single neuron [23] as well
as for pairs of coupled neurons [22], associated with the intrinsic properties of the
single neuron in its transition from tonic to bursting.

In case 2 we set gs;0 = 0.23 keeping gs;1 = 0.38 and gg0 = 0.46, with the corre-
sponding frequency and interspike interval bifurcation diagrams shown in Figures 3c
and 3d, respectively. Neuron 0 now starts at a lower firing rate, 6.5 Hz, with neurons 1
and 2 starting at the same frequencies as in case 1 above. Additionally, the three neu-
rons first synchronize at about the same coupling strength g. = 0.068 as in case 1, also
in the tonic regime. However, the g. range in which they remain tonic is considerably
less compared to the g. range of case 1. In case 2 the synchronous neurons undergo
a period-doubling bifurcation in the same manner they do in case 1, but in case 2
the bifurcation happens for g. = 0.095 as opposed to case 1 where it happens for
g = 0.168. This is so possibly because, compared to case 1, in case 2 the dynamics of
neuron 0 is closer to the dynamics of the other two neurons, therefore requiring a less
strong coupling to get the three neurons in synchrony. However, the first bifurcation
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Fig. 3. Plots of frequencies (a) and interspike intervals (b) as the coupling strength increases
for three distinct coupled neurons (neuron 0, tonic gsro = 0.20 (blue), neuron 1, bursting
gsr1 = 0.38 (red) and neuron 2 bursting gsr2 = 0.46 (green)). Their dynamical states evolve
to synchrony in the tonic regime for g. = 0.0850. Further increase in g. leads the three
synchronous neurons into a period-doubling cascade at g. = 0.17, to chaos, and to bursting
starting at g. = 0.26. Changing neuron 0 slow repolarization conductance to gsro = 0.23 and
keeping neurons 1 and 2 the same, the frequencies (c¢) and interspike intervals (d) are shown
as the coupling strength increases for the three neurons. Here also the neurons evolve to
synchrony around g. = 0.0800 and display a period-doubling cascade, now with a reduced
coupling strength g. = 0.095 and goes to the bursting at g. = 0.17. Increasing the neuron 0
slow repolarization conductance to gsr-0 = 0.26 and keeping neuron 1 and neuron 2 the same,
the frequencies (e) and interspike intervals (f) are shown as the coupling strength increases,
now with the neurons evolving into synchrony around g. = 0.0850 directly into the bursting
regime.

observed in case 2 also happens for the three synchronous neurons firing at the same
feritical — 1 95 Hy. Inside the synchronous chaotic region of Figures 3b and 3d there
are several periodic windows opened by a saddle-node bifurcation and closed by a
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Fig. 4. Colormap showing the changes in frequencies of neuron 0 (a), neuron 1 (b) and
neuron 2 (c), for varying gsro (neuron 0) values in the range [0.10:0.30] and increasing
coupling strength. In this case neuron 1 and neuron 2 were kept fixed with gsr1 = 0.38
(bursting, Freq ~ 1.5Hz) and gsr2 = 0.46 (bursting, Freq ~ 0.4 Hz). The black solid line
indicates the coupling strength at which the three neurons synchronize and the dashed line
depicts the first period-doubling in the period-doubling cascade.

global bifurcation, typical of an interior crisis [37,38]. Also, reference [39] discusses
the mechanisms of tonic-to-bursting transition in single neurons via Hopf bifurcation.

For gq0 = 0.26 in case 3, the frequency and bifurcation diagrams displayed in
Figures 3e and 3f, respectively, show that the three neurons synchronize at g. =
0.07, with a frequency f = 1.95Hz directly into the bursting regime, forgoing the
period-doubling cascade and chaos transition observed in cases I and 2. Figures 3e
and 3f further show that the synchronous frequency of the three neurons remains
about constant in the range of g. between 0.07 and 0.3 (Fig. 3e) even though their
bursting dynamics changes within this same g. range (Fig. 3f).

4 Frequency dynamics

To further investigate the interactions between tonic and bursting networked neurons
we expand the range of g5, for one of the neurons while keeping the other two fixed,
in three different scenarios. The aim here is to verify the extent of the tonic-bursting
transition displayed by the synchronous neurons in parameter space of g. and the
three gs,.’s. In scenario 1, we vary gs.o in the [0.1:0.3] range (keeping neuron 0 tonic),
and fix gs;1 = 0.38 and ggo = 0.46, both bursting. Figure 4 shows three maps with
the neurons’ firing rates color coded according to the palette on the right-hand side.
On the z-axis of the maps we have the coupling strength g. and on the y-axis we
have gs0. The colors displayed on the maps of Figures 4a, 4b and 4c correspond to
the firing rates of neurons 0, 1 and 2, respectively. On each map, the black continuous
approximately vertical line indicates the minimum g. values for which the neurons
synchronize. On the right-hand side of the black line, the colors represent the firing
rates of the individual synchronous neurons, and therefore the three color maps on
the right-hand side of the black line are identical. On the left-hand side of the black
line, the neurons are non-synchronous, so the color maps in this case are different.
The black dashed curved lines in Figure 4 indicate g. values for which the syn-
chronous neurons undergo the first period-doubling bifurcation. This line falls on the
left border of a strip (red) of lower firing rate compared to the surrounding areas
(orange) on both sides. The firing rate on this strip matches the feritical = 1.25 Hz for
the single neuron illustrated in Figure 1, and the width of the strip corresponds
to the range of g. for the length of the period-doubling bifurcation cascade, up
to the point where the system reaches chaos. Immediately to the left of the red
strip the neurons are synchronized in the tonic regime, and to the right of the red
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Fig. 5. Colormap showing the changes in frequencies of neuron 0 (a), neuron 1 (b) and
neuron 2 (c), for varying gsr1 (neuron 1) values in the range [0.32:0.45] and increasing
coupling strength. In this case neuron 0 and neuron 2 were kept fixed with gsr0 = 0.20 (tonic,
Freq ~ 8.0Hz) and gsr2 = 0.46 (bursting, Freq ~ 0.4 Hz). The black solid line indicates the
coupling strength at which the three neurons synchronize and the dashed line depicts the
first period-doubling in the period-doubling cascade.

strip the neurons are synchronized in the bursting regime. The strip therefore repre-
sents a parameter space region for which the transition between tonic and bursting
regimes is mediated by a period-doubling bifurcation cascade (width of the strip)
followed by chaos. Two specific examples are shown in the bifurcation diagrams of
Figures 3b and 3d, where the first period-doubling bifurcation point in the bifurca-
tion diagrams correspond to points of minima in the frequency bifurcation diagrams
of Figures 3a and 3c. In the color maps of Figures 4a, 4b and 4c, the point where
the black continuous line and the black dashed line intersect marks the maximum
gms* = 0.24 for which a period-doubling cascade exists in this configuration. Neu-
ron 0 with gg, > gig™ will display no period-doubling cascade in the tonic-bursting
transition, as shown in the specific example of Figure 3f where gs,o = 0.26.

In scenario 2 we maintain the same tonic-bursting-bursting setting for the three-
neuron network, but now we change the dynamics of neuron 1, with g; varying in the
[0.32:0.45] range (keeping neuron 1 bursting). The frequency color maps for the three
neurons are shown in Figures 5a, 5b and 5¢ for neurons 0, 1, and 2, respectively. As in
scenario 1, the continuous black line represents minimum g, values for synchronization
and the dashed black line represents g. values for the first period doubling bifurcation
point. Here too, the black dashed line follows a strip (red) of lower firing rate compared
to the surrounding areas (yellow) on both sides. However, in this range of g5 the
continuous and the dashed lines to not intersect and all bifurcation diagrams in this
configuration exhibit period doubling cascades.

Finally, in scenario 3 we follow the same setup of the two previous scenarios, but
here we change the dynamics of neuron 2, varying g2 in the [0.45:0.50] range (keeping
neuron 2 bursting). In this scenario neurons 1 and 2 remain more similar to each other
and more different from neuron 0, with the color map of Figure 6a being more different
than the two more similar color maps of Figures 6b and 6¢. The continuous and dashed
black lines in this scenario are positioned in a more parallel disposition, distinctly
separated, indicating that while there will always be a period doubling cascade in
the bifurcation diagrams, the transition between non-synchronous and synchronous
states will never happen with the synchrony in the typical tonic period-one state.
Even though the scenarios described above correspond to different ranges of g, for
the neurons, all three scenarios share the common feature of first synchrony happening
for g. =~ 0.07. Moreover, the transition between tonic and bursting synchronous states
happens with the three neurons sharing the common firing rate f = 1.25Hz, which
corresponds to the fitical displayed by the single neuron when transitioning between
tonic and bursting regimes, shown in Figure 1.
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Fig. 6. Colormap showing the changes in frequencies of neuron 0 (a), neuron 1 (b) and
neuron 2 (c), for varying neuron 2 g.,2 values in the range [0.45 : 0.50] and increasing coupling
strength. In this case neuron 0 and neuron 1 were kept fixed with gsro = 0.2 (tonic, Freq
~ 8Hz) and gsr1 = 0.38 (bursting, Freq ~ 1.5 Hz). The black solid line indicates the coupling
strength the three neurons synchronize and the dashed line depicts the first period-doubling
in the period-doubling cascade.
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Fig. 7. Four-dimensional plot showing the combined changes of the tonic neuron 0 (gsro)
and the bursting neuron 1 (gsr1). Neuron 2 was kept constant at gsr2 = 0.46, bursting. The
z-axis shows the coupling strength in which the three neurons synchronize. Color shows the
frequency in which the three neurons synchronize.

This feature of coupled synchronous neurons, in their transition between tonic
and bursting states, displaying the very same f°ti@l a5 the single neuron, has been
observed before in the case of pairs of neurons [22]. Here we show that the carrying
over of this single neuron intrinsic property also happens in a more general setting,
with three coupled neurons in a wide range of g, values.

A more comprehensive representation of the network dynamics is depicted in the
four-dimensional plot of Figure 7, where the range of gs, is set at [0.1:0.3] (tonic), and
of gsr1 at [0.32:0.44] (bursting). The value of is kept constant at gso = 0.46 (bursting).
The colors represent the firing rates of the neurons upon synchronization according
to the color palette on the right-hand side, and the mesh displays along the z-axis the
values of the minimum coupling strength g. for which the three neurons synchronize.
The gsr0 vS. gsr1 color plate shows that the firing rate at which the neurons synchronize
decreases for increasing g0 and gs1 values.
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Also, the dark stripe observed in this color plane, starting at (gs;0, gsr1) point
(0.26, 0.32) and ending at point (0.22, 0.44) following a negative slope, corresponds
to the bump observed on the mesh separating the plateau-like surface on the left-
hand side (tonic first synchronization) from the bumpy surface on the right-hand side
(bursting, first synchronization). The firing rate of the neurons in the configurations
corresponding to points along the dark stripe (border between tonic and bursting first
synchronization) equals the feitical = 1 25Hz of the single neuron in its transition
between tonic and bursting regimes, as illustrated in Figure 1. This indicates that
the intrinsic characteristic fritical of the individual neurons plays a specific role in
their synchronization process, remarkably, when they undergo a transition from tonic
firing to bursting in their synchronized states.

5 Conclusion

Neuronal synchronization is relevant for the proper functioning of many neuronal
circuits and vital for the continuation of more than a few species. There are many im-
portant aspects associated with synchronous neurons including, and of major interest
in this work, transitions between tonic and bursting states. We address this issue using
triads of model neurons reciprocally coupled via electrical synapses in a linear chain
format. Our single model neuron equations [25] display fast and slow repolarization
and depolarization currents, eliciting slow subthreshold voltage oscillations typical of
bursting activity. A firing rate characteristic of this single neuron transition between
tonic and bursting behaviors (Fig. 1) is here shown to be also found in the case of
an equivalent transition for the triad of coupled neurons. The set of three neurons
consists of one neuron tonic (neuron 0) and the other two bursting (neuron 1 with
multiple spikes per burst, and neuron 2 with one spike per burst), as illustrated in
Figure 2, with the dynamics of the network being studied with respect to two impor-
tant parameters: the slow repolarization conductance gs, for the individual neurons,
and the neuronal coupling strength g. between pairs of neurons.

Initially, we analyse three cases in which the gy values of the two bursting neu-
rons are held constant while the tonic neuron’s ggy is varied (Fig. 3). We found that
the three coupled neurons synchronize at a rather small and approximately constant
coupling strength, regardless of gs,¢ value assigned to the tonic neuron. After synchro-
nization, however, different bifurcation structures are observed for continued increase
of the coupling strength. In the first case, for g0 = 0.20 (Fig. 3b), the three neurons
first synchronize in a tonic (period-one) regime followed by a period doubling cas-
cade taking place at g. = 0.17, followed by chaos and then bursting. Similar sequence
is observed for g5 0 = 0.23 (Fig. 3d), but now the period doubling cascade happens
at g. = 0.095, substantially decreasing the g. range for the period-one synchronous
state. As in the previous case, chaos and bursting follow the period doubling cascade.
Further increase of the gs value to 0.26 (Fig. 3f) leads the three neurons to first
synchronize in the bursting regime, bypassing the transition observed in the previous
two cases. The feature to be noted in these three cases is in regards to the change ob-
served in the state of the neurons when they first synchronize, either tonic (case 1 and
case 2) or bursting case 3. However, the characteristic firing rate feriticel = 1.25Hz
is present only in the first two cases, where the existing tonic-to-bursting transition
is mediated by the period-doubling cascade and chaos.

To further explore the connection between the transition observed in the single
neuron and the corresponding transition encountered in the networked neurons we
set neuron 2 fixed and vary neurons 0 and 1 as denoted in Figure 7. The color map
shows the typical decrease in firing rate for increasing g, values for both neuron 0
and neuron 1. Additionally, the color map shows a dark stripe with negative slope
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in the gsro vs. gsr1 plane. This stripe separates regions of tonic (to the left) and of
bursting (to the right) synchronous behaviors for the three neurons. The distinction
between these two regions is more visible in the mesh with the same gs-0 vS. gsr1
coordinates but with the coupling strength g. as third coordinate. This mesh shows
a sharp transition above the same region where the dark stripe is located in the color
map. Most interestingly, the value of the firing rate along this stripe is the same
feritical — 1 25 Hz encountered in the single neuron tonic-to-bursting transition.

For future investigation of this unique phenomenon we expect the characteristic
firing rate f¢*¢@ of the single neuron to be carried over in the case of networks more
complex than the triads studied here, including the case of bursting neuron models
other than the Huber-Braun presently used.

Appendix A: Model parameters

Jleak = 0.1 mS/cm?, Vigax = —60 mV, Iy, = 1.0 pA/cm?
gNa = 1.5 mS/cm?, Vi, = 50 mV, Vona = —25 mV

gx = 2.0 mS/cm?, Vi = —90 mV, Vox = —25 mV

gsd = -25 mS/cm?, Vyq = 50 mV, Vogg = —40 mV

gsr = 25 mS/cm?, Vi, = =90 mV, C' = 1 uF/cm?

Tk = 2.0 ms, 7gq = 10.0 ms, 7 = 20.0 ms

sk =0.25 mV™!, 5 =0.09 mV ™!, sgna = 0.25 mV !
p=0.607, ¢ = 0.124, Vaee = 0.17, vgep = 0.012
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