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Abstract. We study the transition from coherence (complete syn-
chronization) to incoherence (spatio-temporal chaos) in ensembles of
nonlocally coupled chaotic maps with nonhyperbolic and hyperbolic
attractors. As basic models of a partial element we use the Henon map
and the Lozi map. We show that the transition to incoherence in a ring
of coupled Henon maps occurs through the appearance of phase and
amplitude chimera states. An ensemble of coupled Lozi maps demon-
strates the coherence-incoherence transition via solitary states and no
chimera states are observed in this case.

1 Introduction

Exploring synchronization, different pattern formation in coupled nonlinear systems
as well as studying their stability and evolution is one of the most important and
rapidly developing topic of research in the nonlinear science and its applications.
Recently a new form of dynamics called chimera state attracted a lot of attention
[1–16]. These chimera states arise in networks of nonlocally coupled identical os-
cillators and consists of parts with spatially coherent (synchronous) dynamics and
regions where spatial coherence is lost (desynchronous dynamics). Initially, this effect
has been found in regular networks of nonlocally coupled identical phase oscillators
in [1]. Later, this kind of dynamics was called “chimera state” [2] for its similarity
to the mythological Greek beast made up of incongruous parts. In recent years the
interest in studying chimera states has rapidly increased. It has been recently shown
that chimera states can also arise in networks with different types of network elements
ranging from discrete-time [3] and continuous-time [4] chaotic models, Van der Pol
oscillators [5,6] to population models [7] and autonomous Boolean networks [8]. This
effect has also been found experimentally in chemical reactions [9,10] and laser arrays
[11,12]. Recently a number of works were published where a possible application of
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chimera states is studied to describe the dynamics of real-world ensembles and living
systems [17–20].
It is quite interesting to explore how the properties of individual elements of an

ensemble can influence the appearance of chimera states. The first attempt to gener-
alize the already obtained results on ensembles of elements with chaotic dynamics has
been made in [13]. The authors propose certain properties of partial elements, which
are necessary for chimeras to appear in their ensembles. In particular, they hypoth-
esize that chimera states can be realized only in ensembles of coupled systems with
nonhyperbolic chaotic attractors. This hypothesis has been corroborated for nonhy-
perbolic systems such as the logistic map [3], the Henon map [13], the Rössler sys-
tem [4], and the Anishchenko-Astakhov oscillator [15]. It has also been shown in [13]
that chimera states cannot be found in ensembles of systems with singular hyperbolic
attractors (for example, the Lozi map [13] and the Lorenz system [21]).
Based on the results in [13], in our research we employ the Henon map [22]

xt+1 = 1− α(xt)2 + yt,
yt+1 = βxt, (1)

and the Lozi map [23]

xt+1 = 1− α|xt|+ yt,
yt+1 = βxt, (2)

as basic models for partial elements in networks of nonlocally coupled chaotic systems
with different types of chaotic attractors. In both maps given above, t is the discrete
time (t = 1, 2, . . .), α and β are control parameters.
The Henon map (1) describes the dynamics of a sufficiently wide class of

chaotic systems. It can be transformed to the classical logistic map when β → 0.
Three-dimensional continuous-time systems with a chaotic attractor emerging in
the neighborhood of a saddle-focus separatrix loop (Shilnikov’s theorem [24]) are
characterized by a map in a secant plane, which is topologically equivalent to the
map (1) [25]. Therefore, we can suggest that the map (1) is a sufficiently general
model of systems with a chaotic attractor which is formed through a cascade of
period-doubling bifurcations, i.e., systems with a chaotic quasiattractor [26].
The Lozi map is especially introduced to describe the structure and properties

of the Lorenz attractor, which is known to be a singular hyperbolic attractor in a
bounded range of system parameter values. The Lozi map exhibits a singular hyper-
bolic attractor and is not characterized by multistability. This map (2) also describes
the dynamics of a rather broad class of chaotic systems with hyperbolic and nearly
hyperbolic attractors. When β → 0, the map (2) transforms to a one-dimensional map
of the hyperbolic type, the so-called tent map. The map (2) is topologically equiv-
alent to a map in a secant plane of three-dimensional continuous-time systems with
Lorenz-type attractors.
In the present paper we study coherence–incoherence transitions in ensembles of

nonlocally coupled Henon and Lozi maps and describe their similarities and funda-
mental differences. We also show that these networks fully reproduce the basic effects,
which have been obtained for ensembles of oscillators with nonhyperbolic and hyper-
bolic chaotic attractors. These findings enable one to substantiate the choice of maps
(1) and (2) as basic models of chaotic systems.
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2 Models under study

The first model, which we use to study in our paper, is a one-dimensional ensemble
of nonlocally coupled Henon maps:

xt+1i = fx(x
t
i, y
t
i) +

σx

2P

i+P∑

j=i−P
[fx(x

t
j , y
t
j)− fx(xti, yti)],

yt+1i = fy(x
t
i, y
t
i) +

σy

2P

i+P∑

j=i−P
[fy(x

t
j , y
t
j)− fy(xti, yti)], (3)

where t denotes the discrete time, i = 1, 2, . . . , N is the index of an oscillator, N
is the number of all elements in the ring, σx and σy are the coupling coefficients,
P denotes the number of nearest neighbors in each direction in the ring. Function
fx(x, y) is specified by the first equation of the Henon map, fx(x, y) = 1− αx2 + y,
and fy(x, y) is given by the second equation, fy(x, y) = βx. We introduce the coupling
radius r = P/N and assume that σx = σ and σy = 0. In this case we can rewrite the
system (3) as follows:

xt+1i = fx(x
t
i, y
t
i) +

σ

2P

i+P∑

j=i−P
[fx(x

t
j , y
t
j)− fx(xti, yti)],

yt+1i = fy(x
t
i, y
t
i). (4)

With a little manipulation the system (4) can be represented in a different form:

xt+1i = (1− σ)fx(xti, yti) +
σ

2P

i+P∑

j=i−P ;j �=i
fx(x

t
j , y
t
j),

yt+1i = fy(x
t
i, y
t
i). (5)

The second term in (5) describes the effect of 2P neighbors only, i.e., it characterizes
only nonlocal coupling. The first term in (5) illustrates transformations of the ith
oscillator without coupling with 2P neighboring oscillators.
As follows from (5), σ is the main bifurcation parameter in the system (4). Varying

its values we can control the dynamics of the first and second terms in (5). Hereinafter
the parameters of the Henon map are fixed as α = 1.4 and β = 0.2. These values yield
a regime of fully developed chaos in an individual element of (5) without coupling. Two
limit values of σ can be distinguished. When σ → 1, the dynamics of (4) is described
by the second term in (5) and the regime of complete chaotic synchronization is
realized in the ensemble (4). When σ → 0, we have an ensemble of uncoupled chaotic
oscillators. If initial conditions are chosen to be random, the oscillators are completely
desynchronized both in time and in space. For 0 < σ < 1, the dynamics of (4) is
defined by both terms in (5) and, as has been recently shown, phase and amplitude
chimera states can be realized in this case [14,15].
Similarly, we introduce a network of coupled Lozi maps by using the system (5).

Now the function fx(x, y) in (5) is given by the first equation of the Lozi map
(2), fx(x, y) = 1− α|x|+ y, and fy(x, y) is specified by the second equation of (2),
fy(x, y) = βx. We fix the control parameters of the Lozi map at α = 1.4 and β = 0.3.
These values correspond to a chaotic regime with a positive value of the maximal
Lyapunov exponent. Other parameters are the same as in (4) and (5).
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Fig. 1. Bifurcation diagram for the network of coupled Henon maps in the (r, σ) parameter
plane. A denotes the region of complete chaotic synchronization, B is the region of complete
incoherence. C, D, and E are the coherence regions with the wave numbers k = 1, 2, and 3,
respectively. Inside these regions, the light gray tone (yellow color) marks period-2 temporal
dynamics, gray tone (green) – period-4 dynamics, and dark gray tone (red) – period-8
dynamics. The hatched region corresponds to the coherence regimes shown in Figures 2e
and 2f. The insets display snapshots of typical coherent states. System parameters: α = 1.4,
β = 0.2, and N = 1000.

As can be seen from (5), the second term in the first equation describes the
effect of neighbors i− P ≤ j ≤ i+ P on the ith oscillator. We denote it as Φti =
σ
2P

i+P∑
j=i−P ;j �=i

fx(x
t
j , y
t
j) and call it the coupling function.

3 Transition from coherence to incoherence in the network
of coupled Henon maps

We start our study by constructing a bifurcation diagram for the ensemble of coupled
Henon maps, which is depicted in Figure 1 in the (r, σ) parameter plane. Region
A corresponds to complete chaotic synchronization and B refers to the region of
complete desynchronization. Letters C, D, and E denote the coherence regions with
wave numbers k = 1, 2, and 3, respectively [3]. The corresponding coherent states xti
are shown as snapshots in the insets of Figure 1. In the context of temporal dynamics,
subregions with period-2, 4, and 8 dynamics can be distiguished inside these regions.
For further investigations we fix the coupling radius at the value r = 0.32 and

decrease the coupling strength σ from 1 to 0. At the beginning we consider the
destruction of complete chaotic synchronization (Fig. 2). In order to analyze the
peculiarities of the temporal dynamics we use the method proposed in [15]. For each
partial element 1 ≤ i ≤ 1000, we plot the last 50 iterations of xti or Φti (9950 ≤ t ≤
10000). This method enables one to diagnose the oscillation mode (periodic or chaotic)
and to find the oscillation period and regimes of synchronization (desynchronization)
in an ensemble. We call this graphical illustration as a “spatio-temporal profile”. If
necessary, we also plot instantaneous spatial profiles (snapshots) for a fixed discrete
time t = const.
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Fig. 2. Snapshots and spatio-temporal profiles of the dynamics of the network of coupled
Henon maps for decreasing coupling strength σ. Left panels show snapshots at t = 10000,
center panels correspond to the last 50 instantaneous spatial profiles of xti, right panels depict
the last 50 snapshots for the coupling function Φti. (a) Complete chaotic synchronization
regime at σ = 0.68, (b) partial chaotic synchronization regime at σ = 0.49, (c) emergence of
period-2 oscillations at σ = 0.48, (d) appearance of two breaks in the snapshot at σ = 0.41,
(e) and (f) correspond to the network dynamics in the hatched region in Figure 1 at σ = 0.408
and σ = 0.368, respectively. Other parameters: α = 1.4, β = 0.2, and r = 0.32.

When σ ∈ A (for r = 0.32 this regime is realized when 0.48 < σ ≤ 1.0), the net-
work of coupled Henon maps demonstrates the regime of complete chaotic synchro-
nization both in space and in time (Fig. 2a). All the elements have the same values
xi at any time (Fig. 2a, left panel). The temporal evolution of x

t
i values is chaotic

but synchronous for all the elements (Fig. 2a, center panel). A new interesting regime
(Fig. 2b) can be observed between A and C regions (the white area in Fig. 1). The
snapshot (Fig. 2b, left panel) differs from a straight line but is described by a smooth
and slowly varying function. The neighboring elements have close xi values, i.e., the
following inequality holds:

|xti − xti+1| < δ, δ � 1. (6)

The spatial profile (snapshot) oscillates irregularly (chaotically) in time (Fig. 2b,
center panel) but still remains a smooth and slowly varying function. We call this
regime as partial chaotic synchronization. In this case the neighboring oscillators
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Fig. 3. Snapshots (left column) and spatio-temporal profiles (center column) of the dynamics
of the network of coupled Henon maps, and spatio-temporal profiles for the coupling function
Φti (right column) for different values of the coupling strength: (a) σ = 0.41, (b) σ = 0.316,
(c) σ = 0.26, and (d) σ = 0.258. 1 marks the phase chimera regime, 2 denotes the amplitude
chimera regime. Other parameters: α = 1.4, β = 0.2, and r = 0.32.

behave almost synchronously but the synchronization degree is gradually destroyed
when the distance between the oscillators increases.
When σ ≈ 0.48, the ensemble demonstrates stable 2-periodic oscillations (Fig. 2c).

The front of the wave-like profile (Fig. 2c, left panel) and the spatio-temporal profile
(Fig. 2c, center panel) become steeper. This regime corresponds to the coherence
domain C (light gray (yellow)) in the diagram in Figure 1. The coupling function also
demonsrates the 2-periodic dynamics (Fig. 2c, right panel).
With a further decrease of the coupling strength σ the spatial profiles loose their

smoothness and split into upper and lower branches. Many works state that this is one
of the main reasons for the appearance of chimera states [3,4]. At the points where
the spatial profile breaks up, the spatial derivative tends to infinity (Fig. 2d). The
discontinuity of the wave-like profile is caused by drastic changes in the oscillation
phase. The oscillations of the elements from the upper and lower branches in the
profiles (Fig. 2d (left and center panels)) are 2-periodic but they are shifted in phase
by a half-period with respect to each other.
As can be seen from Figure 1, the hatched region, that corresponds to the regime

shown in Figures 2e and 2f, is superimposed on the coherence region C. The spatial
profiles are still coherent but the temporal dynamics differs from the regimes depicted
in Figures 2c and 2d. The superposition of two domains in Figure 1 means that we
can observe either the regime in Figures 2c and 2d or the regime shown in Figures 2e
and 2f by changing initial conditions.
Further decreasing σ leads to the birth of a phase chimera state [4,15] in the

neighborhood of the profile breaks (Fig. 3a). This regime is characterized by period-
4 oscillations. The oscillators from the coherence cluster have equal phases unlike
the oscillators from the incoherence region, which are shifted in phase by a half-
period. The coupling function Φti also demonstrates 4-periodic oscillations. The regime
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Fig. 4. Snapshots (left column) and spatio-temporal profiles (center column) for the dy-
namics of the network of coupled Lozi maps, and spatio-temporal profiles of the coupling
functions Φti (right column) with decreasing coupling strength: (a) σ = 0.63, (b) σ = 0.57,
(c) σ = 0.4, and (d) σ = 0.23. System parameters: α = 1.4, β = 0.3, and r = 0.193.

described is shown in Figure 3b. It must be noted that the period-4 oscillatory regime
can be realized without phase chimeras. This implies that the instantaneous spatial
profile can be coherent and has two breaks like in Figure 3a. However, the temporal
dynamics with oscillation period ≥ 4 is the basic condition for the chimera state ap-
pearance. When σ decreases further, a period doubling cascade takes place in time
(Fig. 3c) and finally, the network dynamics becomes chaotic at σ ≈ 0.258. This evo-
lution process is accompanied by the appearance of an amplitude chimera which can
either coexist with the phase chimera (Fig. 3d) or not. The amplitude chimera cluster
occupies the network domain 450 ≤ i ≤ 550, in which the elements behave chaotically
and are desynchronized. When σ ≤ 0.25, the network demonstrates the transition to
spatio-temporal chaos (Fig. 1).

4 Coherence-incoherence transition in the ensemble of coupled
Lozi maps

Our numerical studies of oscillation regimes for the network of coupled Lozi maps
in the (r, σ) parameter plane have shown that only two regions can be clearly dis-
tinguished, namely, the region of complete chaotic synchronization and the region of
spatio-temporal chaos. Regions with periodic oscillations, like regions C, D, and E
in Figure 1, cannot be defined. However, in the ensemble of coupled Lozi maps, there
are regions of travelling waves which highly depend on initial conditions.
In analogy to the ensemble of coupled Henon map, we explore the transition from

complete synchronization to spatio-temporal chaos in the network of coupled Lozi
maps by decreasing the coupling strength σ from 1 to 0 for a fixed value of the
coupling radius r = 0.193. Numerical results are shown in Figures 4 and 5.
The regime of complete chaotic synchronization is realized in the ensemble of

coupled Lozi maps within the range 0.62 < σ < 1.0 (Fig. 4a). With a decrease of σ,
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Fig. 5. Snapshots (left column) and spatio-temporal profiles (center column) of the dynamics
of the network of coupled Lozi maps, and spatio-temporal profiles of Φti (right column) for
different values of the coupling strength: (a) σ = 0.226, (b) σ = 0.219, (c) σ = 0.193, and
(d) σ = 0.165. Other parameters: α = 1.4, β = 0.3, and r = 0.193.

the temporally chaotic but spatially coherent dynamics is observed in the ensemble
(Fig. 4b). For σ ∈ [0.295; 0.48], the values of xti states are divided and formed four
separate domains (Fig. 4c). Then the distribution of the xi values becomes less and for
σ ≥ 0.227 the network starts operating in a nearly regular 4-periodic mode (Fig. 4d).
At the same time, the snapshots shown in Figures 4b–4d (left panels) illustrate co-
herent wave-like profiles.
As the coupling strength σ decreases further, the network of coupled Lozi maps

can exhibit regimes which are not realized in the ring of coupled Henon maps. Several
separate oscillators in the network of coupled Lozi maps demonstrate abrupt jumps in
their amplitudes. Such regimes are called solitary states [16]. When σ ≈ 0.226, there
is only a single solitary state (Fig. 5a). The number of solitary states grows almost
linearly as σ decreases (Figs. 5b–5d).
Thus, the transition to spatial incoherence (spatio-temporal chaos) in the ensemble

of coupled Lozi maps occurs through a gradual growth of the number of solitary states.
No chimera states are observed in this case.

5 Conclusions

We have studied the peculiarities of transitions from coherence to incoherence in
ensembles of coupled chaotic maps with different types of a chaotic attractor. Com-
parative analysis of the numerical results obtained for the networks of coupled Henon
maps and Lozi maps has shown that for large values of the coupling strength σ, the
regime of complete chaotic synchronization can be realized in both systems. This is
substantiated by the dominant role of the coupling function Φti in (5). The regime of
spatio-temporal chaos (complete incoherence or desynchronization) is also observed in
both ensembles. In this case, the prevailing role belongs rather to the local dynamics
of individual elements in both ensembles (the first term in (5)) because the coupling
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strength is sufficiently weak. However, there is a fundamental difference in the tran-
sition between these two regimes in the considered networks. When 0 < σ < 1, the
contribution of both the first and second terms in (5) appears to be significant. For
the ensemble of coupled Henon maps, the transition to complete incoherence occurs
through the appearance of phase and amplitude chimera states, while no chimeras
are found in the ensemble of coupled Lozi maps. In the latter system, the dynamics
evolves to spatio-temporal chaos via solitary states. We also note that the traveling
wave regime can be observed in the network of coupled Lozi maps. This kind of dy-
namics has already been found in an ensemble of coupled Lorenz systems and has
not been encountered in networks of coupled logistic maps, Henon maps and Rössler
systems.
Thus, we can generalize the results summarized above. Ensembles of nonlocally

coupled systems with a singular hyperbolic attractor (the Lozi map or the Lorenz-
type systems) can demonstrate regimes of travelling waves and solitary states. These
latter typically accompany the transition to spatio-temporal chaos in such networks.
A different mechanism is exhibited by ensembles of nonlocally coupled systems with a
nonhyperbolic attractor (e.g., the logistic map, the Henon map, the Rössler system).
The transition from coherence to incoherence in those networks is realized through
chimera states.
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92, 012915 (2015)

8. D.P. Rosin, D. Rontani, D.J. Gauthier, Phys. Rev. E 89, 042907 (2014)
9. V. Vanag, I. Epstein, Phys. Rev. Lett. 87, 228301 (2001)
10. M.R. Tinsley, S. Nkomo, K. Showalter, Nat. Phys. 8, 662 (2012)
11. F. Rogister, R. Roy, Phys. Rev. Lett. 98, 104101 (2007)
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