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Abstract. We report the appearance of three-dimensional (3D) mul-
tiheaded chimera states that display cascades of self-organized spa-
tiotemporal patterns of coexisting coherence and incoherence. We
demonstrate that the number of incoherent chimera domains can grow
additively under appropriate variations of the system parameters gen-
erating thereby head-adding cascades of the scroll wave chimeras. The
phenomenon is derived for the Kuramoto model of N3 identical phase
oscillators placed in the unit 3D cube with periodic boundary condi-
tions, parameters being the coupling radius r and phase lag α. To obtain
the multiheaded chimeras, we perform the so-called ‘cloning procedure’
as follows: choose a sample single-headed 3D chimera state, make ap-
propriate scale transformation, and put some number of copies of them
into the unit cube. After that, start numerical simulations with slightly
perturbed initial conditions and continue them for a sufficiently long
time to confirm or reject the state existence and stability. In this way it
is found, that multiple scroll wave chimeras including those with inco-
herent rolls, Hopf links and trefoil knots admit this sort of multiheaded
regeneration. On the other hand, multiple 3D chimeras without spiral
rotations, like coherent and incoherent balls, tubes, crosses, and layers
appear to be unstable and are destroyed rather fast even for arbitrarily
small initial perturbations.

1 Introduction

Chimera states represent one of the most fascinating discoveries of modern nonlinear
science at the border of the network and chaos theories. It has been found that
networks of identical oscillators with non-local coupling can demonstrate robust co-
existence of coherence and incoherence, such that a part of the network oscillators are
synchronized but the others exhibit desynchronized and often chaotic behavior. First,
the chimera phenomenon was described in 2002 for the one-dimensional complex
Ginzburg-Landau equation and its phase approximation, the Kuramoto model [1].
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This paper stimulated the study [2] two years later. Both have opened a substantially
new direction in the research of oscillatory networks. See recent review papers on the
topic [3,4].
At about the same time, this novel approach was extended to two-dimensional net-

works of oscillators. Spiral waves with a randomized core were identified for a class of
three-component reaction-diffusion systems in the plane and for the two-dimensional
Ginzburg-Landau equation as well as for the corresponding non-locally coupled
Kuramoto model [5–7]. They constitute a new class of chimera states, called the
spiral wave chimeras [8]. This kind of spatio-temporal behavior is different from the
oscillating 2D chimeras in which the coherent region only oscillates but does not spiral
around the incoherence. The oscillating chimeras which are the natural counterparts
of the 1D chimeras have been obtained in the form of stripes and spots, both coherent
and incoherent [9,10] and also twisted states [11]. An interesting observation is that
chimeras of both classes, oscillating and spiraling, emerge in opposite corners of the
system parameter space and thus cannot co-exist [9].
The first evidence of chimera states in three-dimensions was reported two years

ago in [12] for the Kuramoto model of coupled phase oscillators in three-dimensional
(3D) grid topology

ϕ̇ijk = ω +
K

NP

∑

(i′,j′,k′)∈BP (i,j,k)
sin(ϕi′j′k′ − ϕijk − α), (1)

where ϕijk are phase variables, and indexes i, j, k are periodic mod N . The coupling is
assumed long-ranged and isotropic: each oscillator ϕijk is coupled with equal strength
K to all its NP nearest neighbors ϕi′j′k′ within a ball of radius P , i.e., to those falling
in the neighborhood

BP (i, j, k) := {(i′, j′, k′):(i′ − i)2 + (j′ − j)2 + (k′ − k)2 ≤ P 2},
where the distances are calculated taking into account the periodic boundary con-
ditions of the network. The phase lag parameter α is assumed to belong to the at-
tractive coupling range from 0 to π/2. The second control parameter, coupling radius
r = P/N varies from 1/N (local coupling) to 0.5 (close to global coupling). Without
loss of generality, we put in equation (1) ω = 0 and K = 1.
In [12], two principal families of 3D chimera states were obtained for equation (1):

type I – oscillating chimeras, i.e., those without spiraling of the coherent region, and
type II – spirally rotating chimeras, called scroll wave chimeras. Examples of the first
class are coherent and incoherent balls, tubes, crosses, and layers in incoherent or co-
herent surrounding, respectively; the second class includes incoherent rolls of different
modality and space disposition in a spiraling rotating coherent surrounding. As it is
illustrated in Figure 1, parameter regions for chimeras of both classes (type I) and
(type II) do not intersect, while there is a huge multistability inside each of the classes.
Recently, two new kinds of the scroll wave chimeras, Hopf link and trefoil, with

linked and knotted incoherent regions (“swelling” filaments) were detected in [13]. Our
simulations confirm their existence in an ellipse-like parameter region which can be
seen inside the type II chimera regions in Figure 1 (delineated in black). Furthermore,
there exist in equation (1) scroll wave chimeras in the form of chains with one and two
links. Parameter regions for one- and two-link chain chimeras are shown in Figure 1
too (delineated in red and brown). In the R3-cube they look broken. However, they are
indeed closed when considering them on the T 3-torus (which is topologically equiva-
lent to the R3-cube in the case of periodic boundary conditions). Note that all chimera
patterns presented in Figure 1 are obtained with randomly chosen initial conditions.
In the present paper, we study the appearance of multiheaded 3D chimera states

built up on a base of the single- and low-headed states exhibited in Figure 1. Similar



Recent Advances in Nonlinear Dynamics and Complex Structures 1869

Fig. 1. Parameter regions of 3D chimera states for equation (1). Regions for type I oscillating
and type II scroll wave chimeras appear in opposite corners of the parameter space. Snapshots
of the states are shown in inserts. r = P/N . N = 100.

to the 1D case [14], we design cascades of multiple 3D chimeras with an increasing
number of incoherent regions and obtain parameter regions for their existence. To
illuminate the multiheaded scroll wave appearances, we apply the so-called “cloning
procedure” as follows: glue a few copies of a chosen 3D chimera state, rescale them
and stow them in the unit cube with periodic boundary conditions. Afterwards start
a simulation with the constructed multiheaded initial conditions perturbed slightly
to prevent the symmetry capturing effect.
We show, with the use of massive numerical simulations, that the cloning proce-

dure perfectly works for the type II, i.e., scroll wave chimeras including rolls, Hopf
links, and trefoils. The calculations were performed, as a rule, up to t = 104 time
units which corresponds to approximately 100 periods of the spiral rotations in the
patterns.
On the other hand, it fails for for the type I oscillating chimeras, as well as chains.

They disappear in the processes of simulation as soon as the symmetry imposed is
violated. Cascades of the roll-type scroll wave chimeras with even numbers of inco-
herent rolls are constructed in Section 2. Hopf link and trefoil cascades are obtained
in Section 3. “Hybrid chimeras” including different combinations of trefoil, Hopf links
and parallel rolls are illustrated in Section 4. Examples of the multiheaded scroll
wave dynamics are demonstrated by videos at http://chimera3d.biomed.kiev.ua/
multiheaded.
Numerical simulations were performed on the base of Runge-Kutta solver DOPRI5

that was integrated into the software for large nonlinear dynamical networks [15],
allowing for parallelized simulations with different sets of parameters and initial
conditions. The simulations were performed on the computer cluster “CHIMERA”,
http://nll.biomed.kiev.ua/cluster, and the Ukrainian Grid Infrastructure pro-
viding distributed cluster resources and the parallel software [16].

2 Cascades of scroll wave chimeras with multiple incoherent rolls

Scroll waves with parallel incoherent rolls represent one of the characteristic exam-
ples of the chimera states in three-dimensions. In [12], 2- and 4-rolled chimeras of this
type were obtained, they exist in wide regions of the (α, r)-parameter space shown in

http://chimera3d.biomed.kiev.ua/multiheaded
http://chimera3d.biomed.kiev.ua/multiheaded
http://nll.biomed.kiev.ua/cluster
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Figure 1. Due to the periodic boundary conditions they can be considered as scroll
rings with incoherent cores (“swelling” filaments) on the T 3-torus. The microscopic
dynamics inside the chimera rolls is chaotic while, on the large-scale, the rolls them-
selves are practically stationary, i.e., not moving in a significant manner. This can
be seen in the supplementary videos of [12], also at http://chimera3d.biomed.
kiev.ua/high-resolution (files fig5(a)hq-video.mkv, fig5(b)hq-video.mkv); as well
as for 16, 64 parallel and 16 crossed rolls in http://chimera3d.biomed.kiev.ua/
multiheaded/rolls/.
In Figure 2, a cascade of scroll wave chimeras with pair-multiple incoherent parallel

rolls is presented. The number of rolls increases additively from 2 (Fig. 2a) to 16
(Fig. 2h). In addition, a 64-rolled chimera is shown in (Fig. 2i). The chimera rolls
in Figure 2 are symmetrically located in the unit cube. However, the large-scale
symmetry can be violated when other initial conditions are chosen. Note also that
microscopic chaotic dynamics inside the rolls differ for different rolls of the same state,
which is illustrated by the cross-sections shown below the 3D plots in Figure 2.
Regions for existence of the parallel rolled chimeras in the (α, r)-parameter plane

are shown in Figure 3. They lie at intermediate phase shifts α between 0.1 and
0.95, and at small coupling radius r < 0.12 including the minimal possible r = 0.01
when only 6 nearest neighbors are connected to each oscillator (N = 100). Thus, the
multiple rolled chimeras exist in the model (1) not only for non-local but also for
the local coupling scheme. Based on this, we assume that such states should exist
also in the limiting PDE case N →∞, r → 0. If so, the PDE obtained by this a way
could be a rich source for multiple scroll waves (multiple scroll rings when written
in the circular coordinates). Our simulations confirm that chimeras illustrated in
Figure 2 are robust 3D patterns as they survive for long integration times of thousands
of rotating periods. Further study in this direction would be interesting from both
theoretical and practical points of view; e.g., in medicine as prospective models of
spiral patterns formed on heart tissue during ventricular tachycardia and fibrillation
(see [3,12] and references therein).
To obtain the multi-rolled scroll wave chimeras we used the so-called ‘cloning

procedure’ as follows. First, take some number of 2- or 4-rolled parallel chimeras
(previously obtained in [12]). Rescale them in an appropriate way and fill the unit
cube with them. Afterwards, start calculations with these specially prepared initial
conditions slightly perturb to prevent the symmetry capturing effect. Doing so, there
is no guarantee that the resulting state will be of the form as assigned, i.e., with the
initially chosen number of rolls. We often had to repeat the procedure trying different
variants of the number and type of initial ‘chimera clones’, as well as varying system
parameters. Proceeding in such a way, after some number of trials the desired chimera
pattern was usually obtained.
Among other variants of the cloning procedure, there is one reliable approach

always giving the chimera state we are looking for. This is in the case when just 8
identical parallel chimeras are taken as samples and placed, after rescaling, in the unit
cube. Then, a fourfold rolled chimera that is stable with respect to perturbations is
obtained. We have never seen its destruction even at very long simulations. Therefore,
we can successively repeat the multiple chimera regeneration as long as computer
power allows to process it. As the system complexity grows exponentially, we were
only able to produce 4n-rolled chimeras with n = 1, 2, 3, 4 and 5. Our largest example
is the 1024-rolled chimera calculated for N = 400, i.e., for N3 = 64 million oscillators
up to 1000 time units, illustrated in Figure 4.
Stability regions for 4-, 16-, 64- and 256-headed parallel scroll wave chimera states

are presented in Figure 5; the parameter point for the 1024-headed chimera from
Figure 4 is also shown. As it can be observed, each next region in the cascade is
twice thinner on the parameter r compared to the previous one. For instance, at

http://chimera3d.biomed.kiev.ua/high-resolution
http://chimera3d.biomed.kiev.ua/high-resolution
http://chimera3d.biomed.kiev.ua/multiheaded/rolls/.
http://chimera3d.biomed.kiev.ua/multiheaded/rolls/.
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Fig. 2. Cascade of multiheaded scroll wave chimera states with parallel rolls. 3D screenshots
and respective cross-sections are shown for: (a) two rolls (α = 0.8, r = 0.165), (b) four rolls
(α = 0.7, r = 0.12), (c) 6 rolls (α = 0.7, r = 0.09), (d) 8 rolls (α = 0.7, r = 0.08), (e) 10 rolls
(α = 0.64, r = 0.07), (f) 12 rolls (α = 0.63, r = 0.05), (g) 14 rolls (α = 0.64, r = 0.056), (h)
16 rolls (α = 0.6, r = 0.06), N = 100; (i) 64 rolls (α = 0.4, r = 0.04). N = 200. Coordinates
x = i/N, y = j/N, z = k/N .
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Fig. 3. Parameter regions for h-headed parallel rolls chimera states delineated by the color
lines: blue – h6, brown – h8, orange – h10, green – h12, magenta – h14 rolls. r = P/N,N =
100. Snapshots of respective chimera types are shown in inserts.

Fig. 4. Example of 1024-headed parallel scroll wave chimera state (a), and its cross-section
at x = 0.5 (b) with enlarged windows (c,d) (α = 0.6, r = 0.0075, N = 400).

α = 0.7 the top border values of parameters r of the stability regions decreases ap-
proximately as 0.16, 0.08, 0.04, 0.02. We assume that with more computational power,
the whole cascade can be obtained for the 4-multiple scroll wave chimeras with any
22(n+1), n = 1, 2, 3... number of heads. Note that this cloning procedure can be also
applied successfully for 4 crossed rolls chimera.

3 Hopf link and trefoil chimera states

Hopf link and trefoil chimera states represent 3D scroll waves with linked and knot-
ted filaments. Due to the non-local coupling, the filaments are not singular (lines)
as in standard scroll waves but “swelled” proportionally to the radius of coupling.
Moreover, they are filled by oscillators with unsynchronized, chaotic behavior. The
Kuramoto model, Hopf link and trefoil chimeras were fist reported in [13], see also [17]
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Fig. 5. Parameter regions for h-headed parallel rolled chimera states delineated by the
color lines: olive – h4 (N = 50), red – h16 (N = 100), blue – h64 (N = 100), brown – h256
(N = 200) rolls. r = P/N . Snapshots of respective 3D chimera types are shown in inserts.

where bifurcation transitions between this kind of 3D patterns are studied for a dif-
ferent model with local coupling.

3.1 Cascades of multiple Hopf links and trefoils

In this section we design cascades of Hopf link and trefoil chimera states with ad-
ditively growing the number of samples. Figures 6 and 7 illustrate the h-multiple
cascades of Hopf links and trefoils, respectively, for h = 1, 2, 3, . . . , 8 and 64. They
are constructed by the cloning procedure using the the sampled initial conditions of
identical Hopf links or trefoils, always with small perturbations to prevent the sym-
metry capturing. Constructed Hopf links and trefoils are not stationary patterns (in
contrast to the parallel scroll waves in the previous section), this is illustrated by
videos at http://chimera3d.biomed.kiev.ua/multiheaded.
We find that multiple chimera states of this kind exist in wide enough regions of

the (α, r)-parameter plane. The regions are heavily intersecting and do not shrink as
h increases. This is illustrated by the bifurcation diagrams in Figure 8 for N = 200.
To our surprise, both parameter regions for single Hopf link and single trefoil coincide
(delineated in black in Fig. 8). The same occurs for the respective multiple patterns.
Indeed, 2-Hopf link and 2-trefoil states co-exist in the twice smaller region (delineated
in blue). Moreover, the states of higher multiplicity h = 3, 4, . . . , 8, are all found in
the same slightly smaller inclusive region (delineated in green). Therefore, parameter
regions for the h-multiple states stabilize as h increases and, given our precision, they
become indistinguishable beginning from h = 3.
Regions for Hopf link and trefoil chimera states are located in the intermediate

range of the phase lag parameter α, approximately between 0.6 and 0.9, and for rather
small values of the coupling radius r = P/N < 0.08. The lower boundary of the regions
is given by the value r = 0.012245... (N = 200). This is the smallest value of r, when
the number of nearest neighbors ϕi′j′k′ coupled to each oscillator ϕijk is NPmin = 81.
At smaller r < 0.012245, the number of coupled oscillators drops abruptly to 59.
Our simulations confirm that both single and multiple Hopf links and trefoils do not
survive with such low connectivity (P = 59 or smaller) and are fast transforming into
some other state. We conclude that Hopf links and trefoils arise in the Kuramoto
model (1) only with non-local, prolonged coupling. Local diffusive coupling is not

http://chimera3d.biomed.kiev.ua/multiheaded
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Fig. 6. Cascade of multiple Hopf link chimera states: (a) 1-headed (α = 0.76, r = 0.083, N =
100), (b) 2-headed (α = 0.61, r = 0.0215), (c) 3-headed (α = 0.61, r = 0.027), (d) 4-headed
(α = 0.68, r = 0.03), (e) 5-headed (α = 0.68, r = 0.018), (f) 6-headed (α = 0.7, r = 0.017),
(g) 7-headed (α = 0.74, r = 0.02), (h) 8-headed (α = 0.84, r = 0.03). N = 200; (i) 64-headed
(α = 0.72, r = 0.01), N = 400.

enough to insure their stability, which is unlike to the roll-type chimeras surviving at
local coupling, see Section 2.
Multiple trefoil and Hopf link chimeras were obtained using the cloning procedure.

It perfectly works, however, only when just 8 smaller copies of a state are laid into the
unit cube. The other combinations, e.g., when looking for 2h, or 3h states, do not guar-
antee the desired result and require as a rule additional efforts. In many such cases the
multi-compound structure appears to be unstable and is destroyed rather fast as sim-
ulations start. Then, we have to try again with different initial conditions and system
parameters until the desired multi-headed Hopf link ot trefoil is eventually obtained.

3.2 Chain chimeras

For the single-link chimera two more kinds of linked scroll wave chimeras are given
by single- and double-link chains, illustrated in Figure 9. In the R3-cube the chains
are broken, but they are indeed connected on the corresponding T 3-torus. Parameter
regions for the chain chimeras are presented in Figure 10. As it can be seen, similar
to the Hopf links and trefoils, they both arise in equation (1) at the intermediate
values of the phase lag parameter α and for a rather small radius of coupling. For
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Fig. 7. Cascade of multiple trefoil chimeras states: (a) 1-headed (α = 0.68, r = 0.07, N =
100); (b) 2-headed (α = 0.6, r = 0.023), (c) 3-headed (α = 0.68, r = 0.02), (d) 4-headed
(α = 0.585, r = 0.02), (e) 5-headed (α = 0.672, r = 0.02), (f) 6-headed (α = 0.72, r =
0.02), (g) 7-headed (α = 0.78, r = 0.02), (h) 8-headed (α = 0.72, r = 0.02), N = 200;
(i) 64-headed (α = 0.72, r = 0.01), N = 400.

single-link chains the parameter α should be approximately between 0.55 and 0.85,
and r be smaller than 0.075.
The lower boundary of the single-link chain chimera is given by the coupling ra-

dius value r = 0.00707... when each oscillator in the network is coupled to NP = 19 of
its nearest-neighbors. At smaller r the number NP of the couplers drops abruptly to
7 only. The state becomes unstable and is rapidly destroyed in the simulations. Para-
meter regions in Figure 10 are obtained for equation (1) with N = 200. Interestingly,
the same NP = 19 lower bound on the number of coupled oscillators is also obtained
for the chain chimera stability in equation (1) with N = 100.
Note that case of NP = 19 couplers corresponds to the reliable numerical scheme

for a PDE derived in [12], where 3D linked and knotted scroll waves have been ob-
tained, however, only for a short time interval and their stability is not analyzed.
Similarly, NP = 19 in equation (1) can also be considered as local coupling. If so,
we conclude that single-link chain chimera exist not only for the non-local but also
for local coupling, and we expect that this can also be a robust pattern for the
respective PDE in the limit N →∞, r → 0. This situation is different from the Hopf
link and trefoil stability, which have the pure non-local coupling origination (Sect. 3);
on the other hand, it is similar to the rolls chimeras (scroll rings on T 3), see Section 2.
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Fig. 8. Even cascades of Hopf link and trefoils: one-headed (delineated by black line),
2-headed (delineated by blue line), 4-headed, 6-headed and 8-headed (delineated by green
line). r = P/N,N = 200. Snapshots of the chimera states are shown in inserts.

Fig. 9. Chain chimera states: (a) single-linked chain (α = 0.7, r = 0.041, N = 100),
(b) double-linked chain (α = 0.61, r = 0.033, N = 200).

The double-link chain chimera exists in a smaller parameter region, see Figure 10,
which is detached from the locally coupled case. Stability of the state begins with
the non-locally coupling when NP = 27 (r = 0.01 at N = 200). In our simulations,
we have also tried to “clone” the chain chimeras with three and more links. However,
they appear to be unstable and are rapidly destroyed in the presence of even very
small perturbations.

3.3 Large-scale dynamics and transformations

Our simulations show that multiple Hopf link and trefoil chimera states often change
their structure with time in the following way. When starting with 8 practically iden-
tical patterns placed in the unit cube, we observe soon afterwards that they group into
4 visibly different pairs, where the pairwise objects are only slightly different. To our
surprise, without or with only tiny perturbations (10−4) the pairwise identity appears
to be so strong that it practically is not affected by the asymmetry of the Runge-
Kutta numerical algorithm, and only imposed asymmetry in the initial conditions can
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Fig. 10. Parameter regions for single-link (delineated by red line) and double-link (delin-
eated by brown line) chain chimera states. Region for single Hopf link and trefoil are also
shown (delineated by black line). r = P/N,N = 200.

slowly destroy it. On the other hand, each such pair in the chimera state has its own
shape, size and position in the 3D space, distinct from the others. This is illustrated
by the video at http://chimera3d.biomed.kiev.ua/multiheaded/EvolutionT.
Let us follow the dynamics of a multiheaded state inside the stability region shown

in Figure 8. Take the 8-headed trefoil or Hopf links obtained from the single trefoil but
with stronger perturbations of the initial conditions and start the simulations. Then,
it is usually observed that in the some instants the samples collide and disappear or
transform into other states. Eventually, as a rule, a hybrid state or a single-headed
chimera is obtained.
Typical evolutions of a 8-headed trefoil and Hopf links chimera states with

rather strong perturbations (0.1) of the identical initial conditions are demonstrated
in the video at http://chimera3d.biomed.kiev.ua/multiheaded/EvolutionS. As
one can observe there, the dynamics finally results in a single trefoil, Hopf link or
other kinds of chimera states. It depends on the chosen initial cloning chimera, pa-
rameter values α, r and perturbation value. Usually the trajectory evolutions were
calculated up to t = 104 for N = 200.
To obtained the odd-headed Hopf links and trefoils chimera, an odd number of

initial chimeras should be taken in the cloning procedure and placed in the unit cube.
Sometimes, as we have often seen in the simulations, odd-headed chimeras arise from
strong enough perturbations of the even-headed ones. In all cases considered, the
probability to obtain a desired odd-headed chimera was rather small, however after
some number of trials, we could eventually catch it.
Twice repeating the 8-cloning procedure gives birth to 64-headed Hopf links and

trefoils. As it is illustrated in Figure 6i and Figure 7i, each such pattern consist of
16 groups per 4 similar elements inside. Moreover, each 4 groups among the 16 are
quite similar too. We expect that the head-adding sequence of the chimera states can
be continued further, creating states with 512 and more objects. It requires, clearly,
much more computational power to ensure the necessary accuracy of integrations.
Indeed, the single Hopf link and trefoil states were obtained in our simulation of the
N3-dimensional network with N = 100; for the 8- and 64-headed states we had to
take N = 200 and N = 400, respectively. In the latter case, a 64 million-dimensional
nonlinear system should be integrated. The system complexity grows exponentially
with further steps in the multiple chimera cascade.

http://chimera3d.biomed.kiev.ua/multiheaded/EvolutionT
http://chimera3d.biomed.kiev.ua/multiheaded/EvolutionS
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Fig. 11. Trefoil – Hopf link transformation: (a) trefoil (t = 900), (b) transformation begin-
ning (t = 990), (c) Hopf link (t = 1000), α = 0.632, r = 0.04, N = 100.

3.4 From trefoil to Hopf link

In our simulations, we often observed the situation when a trefoil chimera state trans-
forms into a Hopf link (but not vise versa), see also [13,17]. The transition starts in the
moment when trefoil branches touch each other. Soon afterwards the state transforms
into a Hopf link or breaks down completely and disappears.
There are three ways for the trefoil→Hopf link transformation in equation (1). In

the first case, when starting from random initial conditions, a trefoil is born, exists
for some time interval, and then transforms into a Hopf link, see illustrative video at
http://chimera3d.biomed.kiev.ua/multiheaded/Hopflink.
In the second case the trefoil→Hopf link transformation occurs as a result of a

strong enough perturbation of the initial conditions (generated originally as a trefoil):
http://chimera3d.biomed.kiev.ua/multiheaded/evolution. The third transfor-
mation scenario consists of the following: take a single trefoil inside its stability re-
gion, see Figure 8, and move the parameter point to the boundary. When close to
the boundary, it is often observed that the trefoil can suddenly transform into a Hopf
link.
To illustrate the latter scenario, fix parameters α = 0.6325, r = 0.04 close to the

boundary of the trefoil stability region. Shift the parameter α to 0.632 and start
simulations. At t = 900 the trefoil still exists (Fig. 11a) but soon after, at t = 990 two
trefoil branches touch each other, and the transformation to a Hopf link begins (in
Fig. 11b). At t = 1000 (Fig. 11c) a Hopf link is created, and it persists for long in
continuing simulations.

4 Hybrid scroll wave chimeras

In the previous sections, different multiheaded scroll wave chimera states were re-
ported for equation (1), each including similar incoherent elements such as rolls,
Hopf links, trefoils, or chains only. Here, we demonstrate a possibility of hybrid-type
organization for the multiheaded chimera states which can combine different of the
above mentioned single-headed chimera types.
To obtain hybrid-type scroll wave chimeras we have tested different sample

combinations in the cloning procedure. There is no guarantee that the process will
be successful. In many trials the cloned hybrid-type chimeras get destroyed very fast,
and the procedure has to be repeated starting from a different number organization
of the initial ‘chimera clones’, also varying the parameters and the magnitude of the
perturbations.
Screenshots of characteristic hybrid-type scroll wave chimera states with additively

growing number of samples are presented in Figure 12 such as: (a) Hopf link and

http://chimera3d.biomed.kiev.ua/multiheaded/Hopflink
http://chimera3d.biomed.kiev.ua/multiheaded/evolution
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Fig. 12. Examples of multiheaded hybrid chimera states: (a) one trefoil and one Hopf links
(α = 0.785, r = 0.02), (b) 2 trefoils and one Hopf links (α = 0.755, r = 0.02), (c) 2 trefoils
and 2 Hopf links (α = 0.735, r = 0.02), (d) 4 trefoils and one Hopf links (α = 0.625, r =
0.02), (e) 4 trefoils and 2 Hopf links (α = 0.615, r = 0.02), (f) 5 trefoils and 2 Hopf links
(α = 0.68, r = 0.02), (g) 6 trefoils and 2 Hopf links (α = 0.64, r = 0.02), (h) 4 Hopf links
and 4 scroll wave rolls (α = 0.7, r = 0.02). (i) 4 Hopf links, 4 trefoils and 4 scroll wave rolls
(α = 0.76, r = 0.02). N = 200.

trefoil, (b) Hopf link and 2 trefoils, (c) 2 Hopf links and 2 trefoils, (d) Hopf link and
4 trefoils, (e) 2 Hopf links and 4 trefoils, (f) 2 Hopf links and 5 trefoils, (g) 2 Hopf
links and 6 trefoils, (h) 4 Hopf links and 4 rolls (α = 0.7, r = 0.02), (i) 4 Hopf links,
4 trefoils and 4 rolls.
These states exist for long times, up to t = 104 at least. They are non-stationary

objects in 3D and are usually characterized by the non-trivial temporal large-scale
dynamics. In our simulations we have also observed some other hybrid patterns, also
preserving for long-time simulations.
See videos at http://chimera3d.biomed.kiev.ua/multiheaded/hybrid, where

more examples of the hybrid-type chimeras are shown.
To finalize, our last example is a 80-headed scroll wave chimera state including 32

Hopf links, 32 trefoils, and 16 rolls illustrated in Figure 13. The state is calculated
for N = 400 (i.e., 64 million oscillators), simulation time was t = 1000.

http://chimera3d.biomed.kiev.ua/multiheaded/hybrid
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Fig. 13. Example of 80-headed hybrid chimera state consisting of 32 trefoils, 32 Hopf links,
and 16 rolls (α = 0.76, r = 0.01). N = 400.

Fig. 14. Number of oscillators NP coupled to each oscillator in the model (1) depending on
the value of P = rN . Parallel and crossed rolled chimeras exist beginning from P = P1 = 1.0
(NP = 7), single-link chains – from P = P2 = 1.414 . . . (NP = 19), double-link chains – from
P = P3 = 2.0 (NP = 27), trefoils and Hopf links – from P = P4 = 2.44948 . . . (NP = 81).
The minimal values NP are found to be the same for N = 100, 200, and 400.

5 Conclusion

We have demonstrated a diversity of multiple scroll wave chimeras for the three-
dimensional network of coupled Kuramoto phase oscillators with non-local coupling.
Wide parameter regions are obtained for rolls, chains, Hopf links, and trefoil patterns.
It follows, in particular, that rolled chimeras exist not only for non-local but also for
local coupling schemes, beginning from only NP = 7 nearest-neighbor couplers (as in
the simplest diffusive coupling scheme). This fact is schematically indicated by the
left corner inset in Figure 14.
The next chimera state to appear when increasing the coupling radius r = N/P

in equation (1) is the single-link chain, this occurs in the case of NP = 19 couplers.
At further increase of the coupling radius r, first, the double-link chain stabilizes
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for NP = 27 couplers (r = 0.01 at N = 200). Then, only at NP = 81 (r = 0.02449) a
variety in single and multiple Hopf links and trefoils become stable to exist further
for this and larger values of r, up to appr. 0.08.
An essential condition for the scroll wave chimeras appearance is the intermediate

value of the phase shift α, appr. between 0.6 and 0.9. Therefore, Hopf link and trefoil
chimera states exist in the Kuramoto model only with essentially non-local coupling
and sufficiently large phase shift. On the other hand, multiple rolled chimeras which
are actually the scroll rings in the circular coordinates are more stable objects. They
grow not only for non-local but even for local, diffusive-type coupling schemes.
Single-link chain chimeras are also preserved in the locally coupling case, but not the
double-link ones which require some level of non-locality for the stabilization. We be-
lieve that the described fascinating scroll wave chimeras can be found in other, more
realistic 3D networks displaying one of the inherent features of nature, that is due to
non-local coupling.

We thank B. Fiedler, E. Knobloch, P. Manneville and M. Hasler for illuminating discussions,
and the Ukrainian Grid Infrastructure for providing the computing cluster resources and the
parallel and distributed software.
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