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Abstract. Population annealing is a hybrid of sequential and Markov
chain Monte Carlo methods geared towards the efficient parallel sim-
ulation of systems with complex free-energy landscapes. Systems with
first-order phase transitions are among the problems in computational
physics that are difficult to tackle with standard methods such as
local-update simulations in the canonical ensemble, for example with
the Metropolis algorithm. It is hence interesting to see whether such
transitions can be more easily studied using population annealing. We
report here our preliminary observations from population annealing
runs for the two-dimensional Potts model with q > 4, where it undergoes
a first-order transition.

1 Introduction

Monte Carlo simulations are an indispensable tool for studies of a wide range of prob-
lems in statistical physics, including magnetic systems and other models on lattices as
well as continuum models for polymers or colloids [1]. While after 50 years of research
the toolbox of simulational methods is quite well equipped with a rather diverse set
of techniques, the vast majority belong to the kingdom of Markov chain approaches.
Fundamentally different schemes such as sequential Monte Carlo [2] have received
significantly less attention in this field (see, however, Ref. [3]). Population annealing
(PA) [4,5] is a technique combining elements of Markov chain and sequential Monte
Carlo that has received relatively little attention to date [6–8].
Since about 2005 the race towards higher and higher clock frequencies of CPUs

and the resulting constant increase of the performance available from serial codes
have come to end. High-performance computing has hence arrived in the era of
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massive parallelism, where additional computational power is essentially only avail-
able from a further multiplication of parallel computational cores [9]. This also led to
a widespread application of hardware accelerators such as graphics processing units
(GPUs) or Intel’s Xeon Phi devices, which currently feature several hundreds up to
several thousands of cores per device. To be able to tap into this massively parallel
computational power one needs parallel algorithms that scale well with the number
of cores [10]. This is not one of the main strengths of Markov chain Monte Carlo
(MCMC), which is inherently sequential, and parallelism can only be employed by
sub-dividing the work in the updating step (domain decomposition) or by running
multiple chains in parallel. The parallelism in the former approach is limited by the
size of systems studied, while the latter has asymptotically vanishing efficiency as a
larger and larger fraction of time needs to be spent on equilibration. This is where
PA comes to the rescue. In PA one starts from a population of uncorrelated, random
configurations at infinite temperature that are propagated down to low temperatures
according to a well-defined stochastic protocol. For a population of size R statistical
errors decrease like 1/

√
R and bias as 1/R [7,8]. The size of populations is mostly

limited only by the available memory, but since memory is typically expected to scale
with the number of cores this is not a real problem. The approach hence has theo-
retically excellent scaling properties, which are also borne out very well in practical
implementations, for example on GPU [11].
An important application field for computer simulation studies in statistical

physics are phase transitions and critical phenomena. While a lot of effort on the
theoretical and computational side has been invested in the understanding of systems
with continuous transitions, the vast majority of phase transitions in nature is of first
order. They are characterized by the coexistence of two (or more) phases at the tran-
sition point as well as the phenomenon of metastability, i.e., the system remains in its
present phase when crossing the transition point [12]. These effects are accompanied
by discontinuities in observable quantities such as the internal energy or magnetiza-
tion across the transition, as well as dynamic effects such as hysteresis. In contrast to
second-order transitions the correlation length remains finite. These features result
in particular challenges for simulations of systems undergoing first-order transitions,
including an exponential slowing down of the dynamics connecting the two phases
due to a region of strongly suppressed states [13]. Well known rather efficient sim-
ulation methods for this situation are the multicanonical approach [14] and derived
techniques such as Wang-Landau sampling [15]. While population annealing has been
used for simulations of spin-glass systems [8,16,17] and the Ising model [18], as well as
for finding ground states of frustrated systems [19,20], its behavior for systems under-
going first-order phase transitions has not been studied to date. We report here some
preliminary results demonstrating the behavior of the PA algorithm for simulations
in the first-order regime of the q-states Potts model in two dimensions [21].
The rest of the paper is organized as follows. In Section 2 we summarize the PA

algorithm, while in Section 3 we introduce the Potts model and the relevant observ-
ables considered here. In Section 4 we report some properties of the distribution of
energies and magnetizations in the population in the vicinity of a first-order transi-
tion. In Section 5 we show that PA is affected by hysteresis effects for discontinuous
transitions. Section 6 is devoted to the illustration of a method of using the free-
energy estimator provided by PA to determine the location of the transition point.
Finally, Section 7 contains our conclusions.
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2 The population annealing algorithm

Population annealing is a weighted sequential algorithm that performs a temperature
sweep of a population of configurations (replicas) of the system under consideration
[4–6]. At each temperature step the population is resampled from the current distri-
bution at inverse temperature β=1/kBT according to the probability distribution of
energies at the target temperature β +Δβ that is estimated by reweighting. If the
initial population is in equilibrium, which can be easily achieved by starting with
random configurations produced by simple sampling at infinite temperature β0=0,
this procedure keeps the ensemble at equilibrium at all subsequent temperatures. In
practice, however, the resampling leads to an exponential decline of diversity in the
population, and in order to ensure fair sampling one needs to augment the procedure
with further updates on the individual replicas that will typically be chosen according
to a Markov chain scheme. In detail, the algorithm comprises the following steps:

1. Set up an equilibrium ensemble of R0=R independent copies (replicas) of
the system at inverse temperature β0. Often β0=0, where this can be easily
achieved.

2. To create an approximately equilibrated sample at βi > βi−1, resam-
ple configurations j = 1, . . . , Ri−1 with their relative Boltzmann weight
τi(Ej)= exp[−(βi − βi−1)Ej ]/Qi, where Qi=

∑
j exp[−(βi − βi−1)Ej ]/Ri−1.

3. Update each replica by θ rounds of an MCMC algorithm at inverse temperature
βi.

4. Calculate estimates for observable quantities O as population averages∑
j Oj/Ri.

5. Goto step 2 unless the target temperature βf has been reached.

While there is no theoretical restriction on the (inverse) temperature protocol β0, . . .,
βf to be used, we focus here on the simplest choice of constant steps, βi=βi−1 +Δβ.
The resampling proportional to τi(Ej) needs to take a normalization into account to
ensure that the population size stays close to R. One possible implementation which
is used here is to determine the number rji of copies of replica j at temperature βi by
drawing a random number from a Poisson distribution,

rji ∼ Pois [(R/Ri−1)τi(Ej)] . (1)

The new population size is then Ri=
∑
j r
j
i . The equilibration sweeps in step 3 can be

chosen freely from any importance sampling algorithm. Here we use simple Metropolis
single-spin flip updates.
A speciality of the PA approach is that it provides a natural estimate of the free

energy through the expression [6]

−βiF (βi)= lnZβ0 +
i∑

k=1

lnQk, (2)

that involves the reweighting factors Qk. Here, Zβ0 denotes the partition function at
β0 which needs to be known from other sources to get absolute free energies instead of
just free-energy differences. This can be provided by explicit calculation for instance
for β0=0 or β0 →∞ or, more generally, through the application of high- and low-
temperature expansions.
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3 Potts model and observables

The Potts model is a natural generalization of the Ising model to spins with q different
states. The Hamiltonian in zero field is [21]

H= − J
∑

〈ij〉
δsi,sj , (3)

where the spins si=1, 2, ..., q and J > 0 is a ferromagnetic coupling constant. We
study the model on the square lattice with nearest-neighbor interactions as indicated
by the notation 〈ij〉 and set J =1 to fix units. Periodic boundary conditions are
applied. For this specific setup, the transition temperature is exactly given by the
relation βt= ln (1+

√
q) that follows from the self-duality of the model [22,23]. The

model shows a first-order phase transition for q > qc and one finds that qc=4 for
the present setup [21,24,25]. For q ≤ qc the transition is continuous, with additional
logarithmic corrections directly at qc.
We use population annealing with a Metropolis update on single spins in step 3

of the algorithm described above to study the square-lattice Potts model for q=6,
8, 10, and 20 (as well as, for comparison, q=3 in the second-order regime). The
strength of the transition increases with q. The case q=6 is still relatively weakly
first order with a correlation length ξ ≈ 160 at the transition point, while q=20 has
a correlation length of ξ ≈ 3 [26]. In contrast to regular MCMC, measurements in the
PA approach are taken as ensemble averages over the population, and we thus record

E(βi)=
1

Ri

Ri∑

j=1

Ej ,

M(βi)=
1

Ri

Ri∑

j=1

Mj .

(4)

Here, E=H({sk}) is the configurational energy, and the magnetization is defined on
a finite lattice with N =L2 spins via the number M̃ of spins in the most common
spin orientation,

M =
qM̃ −N
q − 1 ,

M̃ = max
1≤α≤q

N∑

k=1

δsk,α.

(5)

4 Behavior of the population

In a perfectly equilibrated PA simulation, the set of replicas at each temperature
is a sample from the equilibrium energy distribution. For a system in the vicinity
of a first-order transition one hence expects a rather wide distribution and, right
at the transition point, a double peak indicating the phase coexistence there [13].
In the left panel of Figure 1 we show three representative histograms for a PA run
with R = 10000, θ = 10, and Δβ=0.01 for the q=6 model with L=32. While one
clearly sees a broadening of the energy distribution at the transition point, there is
no double peak – and for these parameters we also do not find a double peak for any
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Fig. 1. Left: Histograms of internal energies e=E/N per spin of population members for
a PA run for the 6-state Potts model on a 32× 32 square lattice with periodic boundaries
and parameters R=10 000, θ=10, Δβ=0.01 at inverse temperatures β=0.8 in the high-
temperature phase, β=βt ≈ 1.24 at the transition point, and β=1.4 in the ordered phase.
Right: Full width at half maximum, ωL(e), of the energy distribution over the population
with R=1000 in a PA run for the 6-state model and L=16, θ=100. We used Δβ=1/Nβ
with Nβ =1000 for 1.135 ≤ β ≤ 1.305 and Δβ=0.01 otherwise, unless β < 0.995 or
β > 1.545 in which case we used Δβ=0.05.

other temperature in the vicinity of the transition point. As we will see in more detail
below in Section 5 this is a consequence of the metastability of the simulations.
We quantify the behavior of the histograms by systematically studying the widths

ωL(e) and ωL(m) of the distributions of internal energies e=E/N and magnetizations
m=M/N per spin, respectively, in the population. Here, the width is defined as
the full width at half maximum of the corresponding histogram, i.e., if the maximum
of the histogram is denoted as Hmax, it is the distance between the two intersections
of the histogram with the horizontal line at Hmax/2. As is seen for an example run
for q=6 and L=16 with R=1000 replicas and θ=100 in the right panel of Figure 1,
the width of the energy histogram peaks close to the transition coupling. The same
behavior is found for the magnetization histogram. We note that the widths are
related to the specific heat and magnetic susceptibility, respectively, but these are
more precisely a function of the variances of the distributions, so the relation is
merely qualitative. Due to the metastability discussed above and the fact that we use
a cooling (and not a heating) schedule, the quantities ωL(e) and ωL(m) correspond
to the widths of the disordered peaks only [13].
In Tables 1 to 3 we collect our results for the widths ωL,max(e) and ωL,max(m)

at the temperatures Tmax(e) and Tmax(m), respectively, where they are maximal. All
data are averaged results from 200 independent runs. Table 1 shows the dependence
on the number q of Potts states – and hence the strength of the phase transition –
as well as on the system size L. The size dependence of the positions of the maxima
seems to be small, and it is possibly consistent with the shift of finite-size maxima
proportional to 1/N expected for first-order transitions [13], but we did not perform a
quantitative analysis. In Table 2 we summarize the observed dependence of histogram
widths on the number θ of equilibration sweeps taken at each temperature. It is seen
that the widths increase with θ, indicating a gradual reduction of hysteresis with
increasing θ, thus ultimately revealing the double-peak nature of the energy and
magnetization histograms at the transition point. Finally, in Table 3 we show the
dependence of the maxima of the histogram widths on the temperature protocol for
the case of using a spacing Δβ=1/Nβ in inverse temperature in the vicinity of the
transition for different values of Nβ . It is seen that decreasing the size of temperature
steps has an effect that is similar to that of increasing θ [18].
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Table 1. Maximal histogram widths and temperatures of maxima for the energy and mag-
netization for PA runs with R=1000 and θ=100. We used Nβ =1000 in all cases. To speed
up the calculations, inverse temperature steps were chosen as follows. q=6: Δβ=1/Nβ for
1.135 ≤ β ≤ 1.305 and Δβ=0.01 otherwise, unless β < 0.995 or β > 1.545 where we used
Δβ=0.05. q=8: Δβ=1/Nβ for 1.25 ≤ β ≤ 1.42 and Δβ=0.01 otherwise, unless β < 1.11 or
β > 1.66 where we used Δβ=0.05. q=10: Δβ=1/Nβ for 1.305 ≤ β ≤ 1.475 and Δβ=0.01
otherwise, unless β < 1.165 or β > 1.715 where we used Δβ=0.05. q=20: Δβ=1/Nβ for
1.735 ≤ β ≤ 1.905 and Δβ=0.01 otherwise, unless β < 1.595 or β > 2.145 where we used
Δβ=0.05.

L ωL,max(e) Tmax(e) ωL,max(m) Tmax(m)
16 0.71 0.82 0.51 0.82
32 0.39 0.81 0.41 0.81

q=6 64 0.23 0.80 0.40 0.80
128 0.07 0.80 0.16 0.80
256 0.03 0.80 0.055 0.79
16 0.64 0.75 0.46 0.75
32 0.34 0.74 0.36 0.74
64 0.22 0.74 0.31 0.74

q=8 96 0.11 0.74 0.12 0.74
128 0.074 0.74 0.09 0.73
192 0.045 0.73 0.052 0.73
256 0.032 0.73 0.037 0.73
16 0.74 0.71 0.50 0.71
32 0.38 0.70 0.43 0.70

q=10 64 0.20 0.69 0.27 0.69
128 0.074 0.69 0.088 0.68
256 0.032 0.69 0.026 0.68
16 0.84 0.57 0.64 0.57
32 0.57 0.57 0.48 0.57

q=20 64 0.18 0.57 0.17 0.56
128 0.07 0.57 0.06 0.52
256 0.029 0.57 0.018 0.52

5 Hysteresis

One of the most characteristic features of first-order transitions is the occurrence
of metastability, i.e., the system remains in one phase when the transition point is
crossed even though the free energy of the other phase is lower there. The metastable
states decay to the stable phases subject to perturbations on a time scale that depends
on the cooling (or heating) rate. Only if one moves too far into the opposite phase
regime, metastability disappears [12]. To clearly reveal this effect in the present setup,
we need to cross the phase boundary in both directions. This is possible through com-
plementing the cooling run used in PA by an additional heating sweep. The algorithm
described above in Section 2 is in fact independent of the sign of Δβ, so a negative
Δβ corresponding to a heating run is a perfectly valid choice.
To fulfill the preconditions of the approach, we only need to make sure that the

starting population, which in contrast to the cooling run is now at the lowest tem-
perature, is a well equilibrated sample. If we start runs deep in the ordered phase,
however, this can easily be achieved by simulating the ensemble for a few sweeps of
local updates at this lowest temperature. Alternatively, one might directly prepare
the population in the ground-state manifold. For the present case, this corresponds
to a uniform distribution of replicas over the q ground states, i.e.,

sk =α, k=1, . . . , N, (6)
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Table 2. Maximal histogram widths and temperatures of maxima for the energy and magne-
tization for the 8-state Potts model on an L=64 lattice with R=1000 replicas as a function
of θ. The other parameters were chosen as explained in the caption of Table 1.

θ ωL,max(e) Tmax(e) ωL,max(m) Tmax(m)
10 0.10 0.73 0.14 0.72
25 0.13 0.74 0.20 0.73
50 0.17 0.74 0.23 0.74
100 0.22 0.74 0.31 0.74
200 0.28 0.74 0.39 0.74
500 0.29 0.74 0.36 0.74
1000 0.34 0.74 0.42 0.74

where α ∈ [1, q] is an integer random variable with uniform distribution,
P(α= j)= 1/q. This yields an equilibrium sample for T =0. In practice, it is an ex-
cellent approximation also for small T > 0, and we start our runs at β=3.0.
The difference in energies between cooling and heating runs is shown for q=3,

q=6 and q=10 and L=32 in the left panel of Figure 2. The heating runs use the
same temperature sequence as the cooling runs (but in reverse order). While in the
second-order regime for q=3 the cooling and heating curves coincide within statistical
errors, as expected, this is not the case for the first-order models with q=6 and q=10.
This hysteresis effect increases with the strength of the transition and hence with the
value of q. As the vertical dashed lines indicate, the area in the hysteresis loop is
approximately, but clearly not perfectly divided in half by the asymptotic transition
line [27]. We thus see clearly that PA in its standard setup is not able to equilibrate
the population in the vicinity of the transition point. Still, the resampling strongly
reduces the hysteresis effect, at least for the small system size considered here. This
is illustrated in the right panel of Figure 2, where we compare PA runs with and
without resampling.
To additionally illustrate the hysteresis effect in PA, we produced animations of

the temperature sweeps showing the evolution of a randomly picked replica in the PA
population for the two cases of increasing and decreasing temperatures. These videos
are available as Supplementary material�. Two videos show annealing (cooling) of the
square lattice of 64× 64 spins for q=6 (correlation length ξ ≈ 160) and for q=20
(ξ ≈ 3). A further two videos show the heating runs for the same models. As is clearly
visible, the ordering and disordering occurs in a way that is not symmetric between
cooling and heating, indicative of the hysteresis and metastability. Note that the q=6
model with its large correlation length at the transition point shows similarities to the
ordering behavior of a system with a continuous transition as for the given example
L=64� ξ ≈ 160.

Table 3. Maximal histogram widths and temperatures of maxima for the energy and mag-
netization for the 8-state Potts model on an L=64 lattice with R=1000 replicas and θ=100
sweeps as a function of the number Nβ of temperature steps in the vicinity of the transition
coupling βt. The temperature protocol is described in detail in the caption of Table 1.

Nβ ωL,max(e) Tmax(e) ωL,max(m) Tmax(m)
100 0.11 0.73 0.15 0.72
200 0.13 0.74 0.21 0.72
500 0.17 0.74 0.27 0.73
1000 0.23 0.74 0.34 0.74
2000 0.27 0.74 0.38 0.74
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Fig. 2. Left: Internal energy as measured in cooling runs (right curve of each color) and
heating runs (left curve of each color) for q=3, q=6 and q=10 from PA runs for L=32
and R=10 000 with θ=10 and Δβ=0.01. It is clearly visible that hysteresis occurs in the
first-order cases q=6 and q=10, but not for the second-order model with q=3. The vertical
dashed lines show the asymptotic transition points at βt= ln(1 +

√
q). Right: The data for

q=10 as shown on the left compared to the data for equivalent PA runs with the resampling
step turned off.

6 The free energy

A classical method for the determination of the phase boundary in first-order tran-
sitions is the comparison of the free energies of the two phases as a function of the
control parameter, here the temperature. The transition occurs where the two pure-
phase branches of the free energy cross [1,13]. In standard Monte Carlo simulations
it is not straightforward to produce reliable estimates of the free energy, as it can-
not be directly derived from a configurational observable. The standard approach is
through thermodynamic integration, which relies on the relation E= ∂(βF )/∂β, such
that a numerical integral of the internal energy over a temperature range will yield
an estimate for the difference of free energies at the endpoints of the interval [1].
The absolute normalization is additionally derived from exact calculations for Zβ0 as
indicated below equation (2) or from high- or low-temperature series expansions [13].
In PA, a reliable estimator of free energies is explicitly provided through the

resampling factors that are combined in the estimator given in equation (2). For the
case of the cooling schedule, we start at β0=0 and hence we have Zβ0 = q

N . For the
heating runs, on the other hand, we note that

Zβ→∞= lim
β→∞

∑

{sk}
e−βH({sk})= lim

β→∞
q e−βE0 , (7)

where E0 is the ground-state energy that equals E0= − 2N for the square-lattice
model with periodic boundaries studied here. The free energy in this limit hence
becomes

−βFβ→∞
N

=
ln q

N
− βe0, (8)

where e0=E0/N = − 2.
In Figure 3 we show the resulting free-energy estimates from cooling runs start-

ing from β0=0 as compared to heating runs started from an equidistribution in the
ground states of the system at the initial inverse temperature βf =3 and using the
normalizations resulting from Zβ0 and Zβ→∞. As is seen in the left panel, the two
estimates coincide everywhere for the second-order cases of the Ising model (corre-
sponding to q=2, but with a different normalization) and the q=3 Potts model,



Recent Advances in Phase Transitions and Critical Phenomena 603

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

1.1 1.2 1.3 1.4 1.5 1.6

−β
F

/N

β

q = 10
q = 6

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2

−β
F

/N

β

q = 10
q = 6
q = 3
Ising
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coincide everywhere, whereas for the first-order cases q=6 and q=10 each estimate ceases
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bars are only shown for every fifth actual data point. The data for q=10 have been shifted
vertically for clarity of presentation. The vertical dotted lines indicate the locations of the
asymptotic transition points βt= ln(1 +

√
q).

but differences appear for the first-order systems q=6 and q=10. As the right panel
reveals, the two metastable free energies cross very close to the asymptotic critical
point. From the simulations with Δβ=0.01 we can only determine the crossing points
with a resolution of Δβ, and the locations of the crossings are consistent with the
asymptotic βt= ln(1 +

√
q) already for L=32 studied here. One can easily imagine

using a finer temperature grid in the relevant temperature regime to improve on these
results.

7 Conclusion

We have presented a preliminary report on the behavior of the population annealing
algorithm when applied to a system with a first-order phase transition. As a well
understood example system we considered the Potts model on the square lattice with
q > 4 states. While the resampling element reduces the effect of metastability and
hysteresis, it is not able to remove it, at least without further modifications of the
algorithm. Still, the possibility of reliably estimating free energies turns out to be a
useful feature of the method also for the study of systems with first-order transitions
as it appears to allow for a reasonably precise estimate of the transition point through
the matching of the pure-phase free-energy branches. While population annealing in
the present setup does not appear to be an ideal tool for systems with discontinuous
transitions, the search for a variant of the approach using a modified ensemble and
possibly modified update moves promises some improvement in this respect.

The article is dedicated to Wolfhard Janke on the occasion of his 60th birthday. The
authors acknowledge support from the European Commission through the IRSES network
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University for providing a Research Sabbatical Fellowship that supported a long-term visit
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