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Abstract. The function of a protein depends strongly on its spatial
structure. Therefore the transition from an unfolded stage to the func-
tional fold is one of the most important problems in computational
molecular biology. Since the corresponding free energy landscapes ex-
hibit huge numbers of local minima, the search for the lowest-energy
configurations is very demanding. Because of that, efficient heuristic al-
gorithms are of high value. In the present work, we investigate whether
and how the thermal cycling (TC) approach can be applied to the
hydrophobic-polar (HP) lattice model of protein folding. Evaluating the
efficiency of TC for a set of two- and three-dimensional examples, we
compare the performance of this strategy with that of multi-start local
search (MSLS) procedures and that of simulated annealing (SA). For
this aim, we incorporated several simple but rather efficient modifica-
tions into the standard procedures: in particular, a strong improvement
was achieved by also allowing energy conserving state modifications.
Furthermore, the consideration of ensembles instead of single samples
was found to greatly improve the efficiency of TC. In the framework of
different benchmarks, for all considered HP sequences, we found TC to
be far superior to SA, and to be faster than Wang-Landau sampling.

1 Introduction

Proteins are basic to all life forms on earth since they are involved in quite diverse
biological processes [1]. They are chain-like macromolecules consisting of amino acids,

a e-mail: f.guenther@hzdr.de
b e-mail: a.moebius@ifw-dresden.de
c e-mail: schreiber@physik.tu-chemnitz.de

http://www.epj.org/
http://dx.doi.org/10.1140/epjst/e2016-60333-2


640 The European Physical Journal Special Topics

where the specific sequence of the amino acids determines all protein properties.
For correct functioning, a protein has to acquire its specific three-dimensional (3D)
structure. This structure is referred to as the native, functional, or biological fold.
Misfolded proteins do not function or even function in the wrong way, which can
cause serious diseases as Alzheimer, Parkinson [2], bovine spongiform encephalopathy
(BSE, also known as “mad cow disease”), and Creutzfeldt-Jakob disease [3].
Therefore, the problem of protein folding, that is the prediction of the 3D structure

of a protein based on the knowledge of its amino acid sequence, is of long standing
interest to biologists, chemists, and physicists. The folding is governed by attraction
or repulsion of single atoms or groups of atoms according to their chemical properties.
Among all these non-covalent intra-molecular interactions [4], the hydrophobic effect
has the strongest influence [5,6].
The hydrophobic interaction arises from a collective phenomenon, the effective

interaction of non-polar molecules in an environment consisting of polar components
like H2O molecules. Driven by an entropic effect, the water molecules at the boundary
of the polar solvent and the non-polar phase form extra fluctuating hydrogen bonds
with their nearest neighbours [7,8]. In protein folding, this effect causes the forma-
tion of a core consisting of hydrophobic amino acids which is surrounded by polar
amino acids.
The computation of the functional fold is very difficult not only because of poorly

understood contributions to the free energy [4], but also because of the huge and
complex space of possible configurations. The first of these two problems requires the
investigation of detailed models and an adjustment by comparing to experimental
results [9]. The second problem can be approached considering simplified models such
as the hydrophobic-polar (HP) model [10] by means of sophisticated optimisation
algorithms.
In this work, we investigate the performances of three heuristic optimisation al-

gorithms when applied to the HP model: we focus on the thermal cycling (TC) al-
gorithm [11] and compare its performance to that of multi-start local search (MSLS)
procedures and to that of the well know simulated annealing (SA) algorithm [12].
For all these methods, we study here how the performance depends on the respec-
tive algorithm parameters; related more detailed, although preliminary, information
is given in [13].

2 The hydrophobic-polar model of protein folding

The HP model is the simplest model used in protein folding simulations. Nevertheless,
it is one of the most frequently studied ones. This model was introduced by Lau and
Dill in order to explore the energy landscape of model proteins in both conformational
space and sequence space [10]. Although it is very simple, the HP model exhibits the
important features of real protein folding: a huge configuration space with a very
large number of local minima, funnels in the energy landscape, and a dependence on
the sequence of amino acids [9]. The first aspect was analysed in some detail by the
group of Wolfhard Janke; they established an algorithm for the exact enumeration of
HP chains, see reference [14].
The HP model belongs to the backbone-only models and is based on three rough

simplifications. First, the amino acids are grouped into only two types of nodes,
hydrophobic (H) and polar (P) ones [10,15]. Second, the chain is placed on a regular
lattice where the bond lengths equal the lattice constant and where each lattice site
can be occupied by at most one node. Third, the energy of a conformation is assumed
to be given by the negative number of neighbouring pairs of unconnected H nodes.
With this, the formation of a hydrophobic core is reflected in a very simple way.



Recent Advances in Phase Transitions and Critical Phenomena 641

Table 1. Benchmark sequences [16] considered in this work. The names comprise dimension
and length, L, of the chains. The E0 values are the lowest energies reported [16]. Here we
assume them to be the ground state energies although exact proofs are partly still missing.

Name E0 Sequence
2D64 −42 H12PHPHP2H2P2H2P2HP2H2P2H2P2HP2H2P2H2P2

HPHPH12
2D85 −53 H4P4H12P6H12P3H12P3H12P3HP2H2P2H2P2HPH
2D100a −48 P6HPH2P5H3PH4PH2P4H2P2H2PH5PH10PH2PH7

P11H7P2HPH3P6HPH2
2D100b −50 P3H2P2H4P2H3PH2PH2PH4P8H6P2H6P9HPH2PH11

P2H3PH2PHP2HPH3P6H3
3D48 −32 HPH2P2H4PH3P2H2P2HPH3PHPH2P2H2P3HP8H2
3D58 −44 PHPH3PH3P2H2PHPH2PH3PHPHPH2P2H3P2HPH

P4HP2HP2H2P2HP2H
3D64 −56 PH2PH2PH3P2HPHP2HPHP2H3PH2PH2P2H2PH2P

H3P2HPHP2HPHP2H3PH2PH2P

The HP model has been extended in several directions. Beside square and simple
cubic lattices, other common lattices structures were considered, for instance the
triangular and face centred cubic lattices [17,18]. Furthermore, side chains were taken
into account [19]. In the present study, we focus on the square and simple cubic lattices
and consider the single stranded sequences given in Table 1.
For all the heuristic optimisation methods considered in our work, finding an

appropriate set of small but to some extent also complex state modifications is basic.
Here, we use the pull move set suggested by Lesh et al. [20], which was designed for
self-avoiding chains on regular lattices. Such state modifications consist in choosing a
node, shifting it to a lattice site being a next-nearest neighbour of its current position,
and, if necessary, pulling nodes either out of the previous or out of the subsequent
parts of the chain to neighbouring sites of the last node moved until a valid sequence of
node positions, see above, is obtained again. However, not all pull moves are feasible:
they may be forbidden by a target site being already occupied or by the impossibility
to relax the chain considering either only previous or only subsequent nodes.
The set of pull moves provides a good balance between local and global configura-

tional changes [16]. Moreover, each such state modification is reversible, and their set
fulfils the ergodicity demand [20]. Finally, pull moves can be implemented in such a
way that the effort to calculate the total energy change by any such state modification
scales with the number of nodes moved rather than with the chain length L.

3 Numerical methods

3.1 Local search by iterative improvements

For discrete optimisation tasks, such as the search for the ground state of an HP
sequence, the answer to the question whether or not a given state is a local minimum
depends on the set of considered state modifications. This so-called move class defines
which states are neighbours to each other.
Although the idea of corresponding local minimisation procedures is very simple,

they can be rather efficient, especially in the case of a small number of local minima.
In this context, we point out that the number of local minima is usually lowered when
moves of higher complexity are additionally taken into account.
The choice of random initial configurations may be non-trivial. Treating combi-

natorial problems such as the HP model requires first to select a valid configuration.
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Then, the move class considered in the local search can be used to randomise this
configuration in an iterative process.
Based on any local search procedure, a simple composed heuristic optimisation

algorithm can be easily constructed: repeatedly, a random initial configuration is
created and afterwards quenched by this local search. The best of the quenched states
is considered as final result. This composed algorithm is referred to as multi-start local
search (MSLS) in the following.

3.2 Simulated annealing

SA is one of the most famous heuristic algorithms since it is easy to implement
and exhibits reasonably good computing performance [12]. In such a calculation,
the temporal development of a system is simulated, often by means of a Metropolis
algorithm [21]. In doing so, the energetic change is controlled via a parameter Θ,
which can been interpreted as the simulation temperature.
When this temperature is slowly reduced, the system is driven towards a minimum

of the energy landscape. According to the exact proof in reference [22], for exponen-
tially slow cooling, the energy converges to the ground state energy. In practice,
however, the computing time is limited, so that the simulations are mostly trapped
in merely local minima. Typically, the energies reached are the lower the slower the
cooling.
A simple approach to improve SA, as well as other heuristic optimisation algo-

rithms, is the best-of-N procedure. Its idea consists in distributing the computing
effort to several independent runs with lower accuracy and considering the best of
the individual results as final one. This procedure is the most straightforward way to
treat an optimisation task in parallel. Furthermore, it may offer some performance
benefits [23].

3.3 Thermal cycling

The TC procedure combines the features of the algorithms discussed above. In it, a
multiply repeated cyclic process is substituted for the slow cooling down in SA [11].
First, starting from the best configuration obtained so far, the system is disturbed

whereby its energy increases. This step is referred to as heating, but this notion has
to be understood in a qualified sense: it is basic to TC that the distortion is limited
to only a small part of the degrees of freedom. Thus, most of the knowledge gained in
the previous optimisation cycles is retained. One can understand this step as a short
heat pulse, where length and height together determine the amplitude of distortion.
Second, the system is quenched by means of a local search procedure, see

Section 3.1. In principle, it is a big advantage of TC that, in case of combinatorial
optimisation, branch-and-bound strategies can be used to reach stability concerning
certain classes of complex moves which are inappropriate for SA.
At the third and last step, the quenched state is compared to the initial one

and the best of both of them is selected for the ongoing optimisation. Concerning
this point, TC differs from so-called basin hopping methods, in which transitions to
higher local minima can be performed also [24]. In basin hopping, in analogy to SA,
the acceptance rate of those transitions is controlled by an appropriate schedule.
These three steps are cyclically repeated many times while the amplitude of the

distortion decreases slowly. On average over the entire optimisation process, substitu-
tions of quenched for initial states occur seldom. Therefore, it is tempting to distribute
the performing of complete cycles, or even of groups of complete cycles, to different
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Table 2. Comparison of parameter sets characterising the distributions of final energies
obtained in 105 local search runs without (m = 0) and with (m = 5) performing energy con-
serving moves found; for the definition of m see text. Here, values of the average, 〈E〉, the
standard deviation, σ, the median, Emdn, and the lowest energy found, Eb, are presented to-
gether with the ground state energies, E0, from Table 1. Additionally, averages of best values
out of 1000 minimisations, 〈E1000〉, are given. The random initial states were constructed by
means of the TM method with ktm = 10L.

m = 0 m = 5
sequence 〈E〉 σ Emdn Eb 〈E〉 σ Emdn Eb 〈E1000〉 E0
2D64 −18.8 3.8 −19 −35 −26.6 2.8 −27 −37 −35.4 −42
2D85 −26.5 4.8 −27 −46 −37.2 3.5 −37 −52 −48.6 −53
2D100a −21.3 4.5 −22 −36 −33.1 3.0 −33 −44 −41.9 −48
2D100b −21.7 4.5 −22 −38 −34.1 3.0 −34 −47 −42.4 −50
3D48 −18.0 3.3 −18 −30 −22.5 2.9 −22 −32 −29.7 −32
3D58 −22.6 3.3 −23 −37 −27.6 3.1 −28 −41 −37.4 −44
3D64 −25.8 4.0 −26 −45 −30.6 3.5 −30 −46 −42.9 −56

CPUs. In this, the substitution rule may be slightly modified. Thus TC should be
well suited for parallelisation; but this aspect is behind the scope of the present work.
Applying the TC algorithm to the travelling salesman problem, it was shown that

the performance can be strongly improved by generalisation to the consideration of an
ensemble of nens states [11,25]. In doing so, the third step is modified in the following
way: if and only if the quenched state has a lower energy than the initial state of the
cycle, it is substituted for the ensemble state with the highest energy. In this way, the
diversity of the ensemble is maintained as far as possible [26].

4 Results and discussion

4.1 Local search procedures

In our study of the properties of local search codes, we implemented two specific
features which turned out to be very useful: (i) while sweeping through the whole
move class, we perform not only the energy reducing moves, ΔE< 0, but, under
the condition that an energy reduction happened within the last m sweeps, also the
energy conserving moves, ΔE = 0. (ii) To reduce the computing effort, we skip trials
of those moves which were found to be not feasible in a previous trial and which have
not been released again since then in consequence of another move. For this aim, we
establish a dynamically ordered list in which these forbidden moves are grouped on
the bottom. Through the remaining moves, we run in a pseudo-random order.
Beside the local search itself, the construction of the starting state has substantial

impact on the final result. To study this effect, we considered the following three
options: (i) performing a self-avoiding random walk which ends when the length of
the considered sequence is reached; if the walk terminates in a dead end before, it
is restarted. (ii) Starting from the linear chain, we apply a number of modifications
out of the whole pull move class. (iii) Also starting from a linear chain, we consider
only those moves pulling at one end of the chain and perform ktm of such tail moves
(TM). In our experiments, the TM method was found to offer the best balance of
final minimal energies and required computing effort. We observed that ktm = 10L
results in appropriately randomised starting configurations; for details, see [13].
To evaluate the effectiveness of our local search algorithm, we applied it 105

times to each of the sequences given in Table 1. For all these tasks, we obtained
almost Gaussian-like distributions of the final energies. Our Table 2 presents the
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Fig. 1. (a) Specific heat C(Θ) versus the temperature Θ for 2D64, 2D100a, and 3D58.
(b) Logarithmic performance plot, presenting the mean deviations of the final energy from
the ground state energy, δ〈E〉, versus computing time, τ , for SA applied to 2D64 (red),
2D100a (green), and 3D58 (blue) using the best-of-N approach: N =1 (�), N =3 (�), N =10
(�), N =30 (�), and N =100 (+). For comparison, performance curves for MSLS (•, ◦) are
given; full symbols mark data obtained from overall 105 local searches starting from random
configurations, as the values in Table 2, empty symbols refer to additional MSLS runs with
larger numbers of such trials. In all our performance plots, the dashed lines serve as guide
to the eye, and averaging is performed over the results of 100 independent runs.

corresponding characteristic parameter values. Moreover, in its column 〈E1000〉, it
contains mean values of the best final energies out of 1000 minimisations. The data
in this column provide a first impression of what can be reached by means of MSLS.
Table 2 shows that, for none but one of the investigated sequences, any of the

minimisations could find the ground state energy. Only for the 3D48 sequence, the
ground state energy was obtained in a few runs.
This finding testifies how challenging these minimisation tasks are. Simultaneously,

however, Table 2 demonstrates that performing pull moves with ΔE = 0 leads to a
surprisingly strong improvement of the search quality. This effect, however, saturates
at about m = 5. We remark that the computing effort which is required to perform
the additional sweeps through the move class is rather low: due to the use of the list
of forbidden moves, the computing time increases only by up to 15%.

4.2 Simulated annealing

In our SA studies, we used a pseudo-exponential cooling schedule: the simulation
starts at an initial temperature, Θ = Θi. For each value of Θ, nMs Metropolis steps are
performed; after that, Θ is diminished by a factor of 0.9. The simulation is terminated
as soon as Θ has fallen below the final temperature, Θf . Then, a local search step as
described above is applied to the configuration with the lowest energy found in the
Metropolis part; this local search yields the final result of our SA run.
For choosing appropriate values of Θi and Θf , we make use of the temperature

dependence of the specific heat, C(Θ), shown in Figure 1a. For the here considered
cases, C(Θ) is only weakly dependent on dimension, length, and HP sequence. It has
a broad peak in the region of 0.2<Θ< 0.8, in agreement with reference [16]; in this
temperature interval, folded structures are formed [16]. Therefore, we chose Θi=1
and Θf =0.1 in all our simulations.
In Figure 1b, the deviation, δ〈E〉= 〈E〉 − E0, of the mean value of the final energies

of SA runs, 〈E〉, from the ground state energy is plotted versus the computing time
τ in a double logarithmic presentation for three HP sequences. We compare here
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the results of individual SA runs with those of an SA based best-of-N procedure.
The latter calculations were performed sequentially, still without using parallelisation
tools; the τ values are total times of individual optimisation runs. All performance
data points presented in this and the other diagrams of our study were obtained by
means of 100 independent runs on 2.6GHz AMD Opteron(tm) processors 6238.
The main message of Figure 1b is that the best-of-N approach applied to SA

works very nicely: for the two more complicated tasks, 2D100a and 3D58, if τ > 3 sec,
the performances are roughly the same from N =1 up to N =100; for the simplest
task, 2D64, this holds up to N =10. Thus, distributing such SA based optimisations
to many CPUs should be easily possible without significant loss of efficiency.
Furthermore, one feature of the SA performance curves in Figure 1b is particularly

noteworthy: there is always a threshold τt separating a low-τ region of slow power
law decrease of δ〈E〉(τ) with increasing τ from a high-τ region in which δ〈E〉(τ) very
rapidly drops. Already, if τ is only moderately larger than τt, almost all SA runs yield
the ground state energy. The transition between the two regimes seems to occur when
δ〈E〉(τ) ∼ 1. Thus this effect likely arises from only very few, in the final stage even
only two, energy levels remaining relevant. This feature seems to occur also in global
minimum searches by means of TC, see Subsection 4.3.
For comparison, Figure 1b includes performance data for MSLS applied to the

same sequences. It shows that, not surprisingly, this approach is by several orders
of magnitude slower than SA. Simultaneously, for 2D64, it demonstrates that, when
the number of trials rises to values far above 105, the MSLS result, too, tends to the
ground state energy. Finally, we emphasise that, similarly as for SA, also the MSLS
performance plot for 2D64 rapidly bends down above a certain τ threshold.
Further SA results and a comparison to TC are given in Subsection 4.4.

4.3 Thermal cycling

As in the case of SA, a few parameters have to be set before the TC simulation can
start. In the heating steps, we modify the initial state of the cycle by a given number
of randomly chosen pull moves, nh, where, in contrast to [11], all proposed moves
are performed. The simulation starts with nh=L/2. After ncyc cycles, nh is dimin-
ished by substituting the integer part of 0.9 nh for it. The simulation proceeds as
long as nh> 0.
In Subsection 4.1, we found that executing also energy conserving moves improves

the performance of the local search starting from random states. Thus, we investi-
gated the impact of this idea when applied within the quenching step of TC. Again,
we observed that this modification of the iterative improvement leads to considerably
better results, where m=5 seems to be an appropriate choice again.
In our first attempts to utilise TC, we struggled with missing convergence for

2D64. Figure 2a demonstrates this failure by presenting the distributions (red) of
final energies which we obtained with ncyc=500 and ncyc=1000. The origin of the
failure becomes clear when the shapes of the configurations are compared. While the
ground state configurations with E0= − 42 have the shape of a C, the metastable
configurations with E= − 36 resemble an S. Therefore, the finding that the height
of the peak at E= − 36 does not decrease with increasing ncyc while the low-energy
part of the distribution changes considerably can be understood as follows: the num-
ber of pull moves which is required to reach and overcome the barrier between the
regions of S and C structures in the energy landscape seems to exceed the maximum
number of modifications performed in the heating step.
To approach this problem, we modified the starting stage of TC. We now use

MSLS to obtain an appropriate initial configuration of the HP sequence instead of
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Fig. 2. Comparison of the TC approaches applied to the 2D64 sequence utilising the stan-
dard initialisation (red) and the construction of the initial configurations by means of MSLS
(green). (a) Distribution of the final energies obtained from 500 independent initialisations
with ncyc=500 (+) and ncyc=1000 (◦). (b) Corresponding performance plot.

quenching only one random configuration. To do so, we first perform nmsls=αmslsncyc
local searches starting from different random configurations. The corresponding final
energy distributions (green) in Figure 2a demonstrate the success of this idea: when
utilising it, the risk to end up in an S shaped configuration decreases with increasing
ncyc. Furthermore, the low-energy part of the distribution is amplified by utilising
MSLS as initialisation of TC. These features are related to the improved efficiency
obvious from the performance curves in Figure 2b. In the following, we set αmsls=1.
We showed above that performing also energy conserving modifications strongly

improves the effectiveness of the local search. The same idea can also be incorporated
into the selection step of TC; in the original version of TC, the quenched state with
energy Eq is only substituted for the initial state with energy Ei if Eq<Ei. Figure 3a
shows that performing the substitution whenever Eq ≤ Ei leads to a remarkable im-
provement of the performance.
So far, we have focused only on TC versions employing a single sample. Now

we turn to the ensemble approach and consider nens states simultaneously; in do-
ing so, we perform ncycnens cycles for each value of the heating amplitude. For this
aim, the substitution rule has to be extended. Three cases have to be treated sepa-
rately: first, if Eq>Ei, no substitution is done. Second, if Eq<Ei, the new state is
substituted for the worst state in the ensemble. Third, if Eq=Ei, the quenched state
is substituted for the initial state of the cycle. This way, we utilise the advantage
of accepting modifications without energy change and, simultaneously, maintain the
diversity of ensemble as far as possible, compare [26]. As start, we again perform an
MSLS initialisation, where the best nens final states obtained in nmsls=αmslsncycnens
local searches starting from random states are selected to initialise the ensemble.
The influence of nens on the performance of the ensemble TC approach is demon-

strated in Figure 3b for the sequence 2D100b. For small τ , the performance slightly
declines with increasing nens. However, for large τ , with increasing nens, the perfor-
mance improves enormously. For ensemble size nens=300 and τ > 300 sec, all our 100
runs ended with the global minimum energy. We remark that the ensemble sizes con-
sidered here are much larger than the ensemble sizes used in the previously performed
TC investigation reference [25].
However, since treating larger ensembles within the same computing time means

to perform less cycles for each of the individual samples, the improvement of the
performance by increasing nens is limited and an optimum compromise must exist; it
certainly depends to some extent on the sequence considered. Therefore, finding an
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Fig. 3. (a) Performance plot of two TC versions using the different selection criteria ex-
plained in the text for the sequence 2D85. For comparison, corresponding SA results are
included. (b) Performance plot of TC applied to ensembles of fixed size, nens, for the se-
quence 2D100b. Additionally, such a relation for fixed ncyc and variable nens is included.

Table 3. Comparison of the CPU times required by TC with nens=1, 10, 100, and by SA,
respectively, to reach a ground state in at least 50% of 1000 runs. The times are given in
seconds per run; the success percentage is added in brackets. The value of qacc denotes the
maximum acceleration which is reached here by substituting the best ensemble TC for SA.

Name TC, nens=1 TC, nens=10 TC, nens=100 SA qacc
2D64 0.9 (50%) 0.5 (50%) 1.4 (51%) 3.2 (53%) 6
2D85 10.7 (52%) 5.5 (51%) 6.6 (56%) 88.5 (55%) 16
2D100a 297 (54%) 122 (50%) 52.7 (54%) 226 (52%) 4
2D100b >1200 169 (52%) 79.5 (50%) 1046 (58%) 13
3D48 4.8 (53%) 4.7 (52%) 7.9 (51%) 14.3 (55%) 3
3D58 561 (58%) 128 (58%) 64.9 (53%) 467 (50%) 7
3D64 >1500 354 (50%) 80.2 (56%) 1255 (61%) 16

appropriate rule of thumb would be very helpful. As a first attempt in this direction,
Figure 3b includes the performance relation for ncyc fixed to 30 and nens being varied.

4.4 Comparison of the algorithms

So far, we have studied the behaviour of the SA and TC procedures mainly separately.
Now, we compare the individual computing efforts of these algorithms in more detail.
The results for MSLS are not taken into account here, since the global minimum was
found only in extremely rare cases this way.
Table 3 presents the CPU times required so that the median of 1000 runs reaches

the ground state energy. For the shortest chains considered here, 2D64 and 3D48,
single-state TC is by roughly a factor of 3 faster than SA. For the sequence 2D85,
which has a particularly high portion of H nodes, the acceleration factor amounts even
to 8. For the other four sequences, however, SA is more efficient than single-state TC.
Using the ensemble approach totally changes the situation since TC is considerably

accelerated by this modification. In particular, for the sequences 2D85, 2D100b, and
3D64, the global minimum search can be accelerated by factors of 16, 13, and 16,
respectively. Table 3 contains only data for three fixed ensemble sizes. Thus, finding
the optimal ensemble size might yield even substantially greater acceleration factors.
It is instructive to compare the data in our Table 3 to the CPU times given in

Table 2 of reference [16]: concerning finding a ground state, the optimised ensemble
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TC seems to be superior even to the Wang-Landau approach. At the current stage,
however, it is unclear to which extent this holds also for other, in particular for longer
HP sequences, and to which extent implementation details cause this effect.

5 Conclusions

This study has been devoted to the investigation of the performances of the MSLS
and TC algorithms measured against that of SA. Studying the folding of chains of 48
up to 100 amino acids out of the 2D and 3D versions of the HP model, we utilised
pull moves for the modification of single states.
We found that the efficiency of the conventional iterative local search can be

considerably improved by performing also the energy conserving moves found; on av-
erage, we obtained substantially lower metastable states within only slightly longer
computing time in this way. In a qualified sense, our approach may be interpreted
as incorporation of short Metropolis simulations with infinitely small temperature.
Furthermore, we observed that the method of the preparation of the initial state has
a strong influence on the final result; careful randomisation is a must. Nevertheless,
for all but two of the considered examples, our MSLS code could not find the ground
state within reasonable computing time in contrast to SA.
In applying the best-of-N approach to SA for three of the sequences considered

here, we observed that the performance of this combined algorithm is almost inde-
pendent of N for N ≤ 100. Thus, this extended SA should be well suited for paral-
lelisation.
After incorporating our optimised local-search method in the TC procedure, we

obtained ground states of all considered sequences with reasonable computing effort.
In TC, performing also energy conserving modifications leads to a substantial im-
provement in two ways: within the local search and in the comparison of the quenched
state to the initial state of the cycle. In contrast to the basin hopping approach, the
here modified selection decision of TC is still deterministic. It enables, however, the
sample to move through flat basins. Thus, it should also accelerate the treatment of
other combinatorial optimisation tasks with high degrees of degeneracy.
In studying the sequence 2D64, we noted missing convergence of TC caused by the

distortions reached in heating being too small to leave a basin of attraction separated
by a high wall from the global minimum. This problem can be avoided by initialising
TC by means of MSLS where the number of trials is chosen the larger the slower the
amplitude decrease in TC. Hence, such a start of TC is highly recommended.
In our numerical experiments, TC proved to be particularly efficient when it was

applied to an ensemble of states instead of to a single state. For the sequences 2D100b
and 3D64, the implementation of this idea led to an acceleration of the TC global
minimum search by more than one order of magnitude.
Comparing the performances of TC and SA by determining the CPU time needed

until at least 50% of the performed runs end up with the global minimum energy, we
found the ensemble TC procedure to be far superior to SA for all sequences consid-
ered here. The advantage of TC is particularly great for the sequences 2D100b and
3D64, which were most demanding in our SA runs. In these cases, TC runs treating
ensembles of 100 states were by factors 13 and 16, respectively, faster than the corre-
sponding SA simulations. For all cases considered, we found optimised ensemble TC
even to be superior to ground state search by means of Wang-Landau sampling.
In future TC and SA studies of the HP model, the efficiency of these algorithms

may be improved to some extent by schedule optimisation. Moreover, finding a rule
of thumb for estimating the optimum ensemble size would be highly desirable. A far
larger gain might be reached by the incorporation of complex moves in TC making use
of branch-and-bound strategies in their treatment. Furthermore, niching restrictions
may be helpful to avoid the trapping in metastable states. For this, non-energetic
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classifications of the states are required; the mean distance from the centre of the
occupied space could be a useful characterisation. Such improvements may make it
possible to solve also some current problems with very long chains, L> 100, as they
were considered in reference [16], in particular the 3D136 problem [27].
Finally, we point out that TC is not only useful for the study of the discrete HP

model. It can also be successfully applied to the continuous BLN model [13]. Further
such investigations should be promising.

We are obliged to Johannes Zierenberg for his critical remarks. They were a substantial help
in improving the presentation of our study. Furthermore, we are very thankful to Philipp
Cain for his permanent and dedicated IT support.

References

1. N.A. Campbell, Biologie, 1st edn. (Spektrum Akademischer Verlag, Heidelberg, 1997)
2. F.E. Cohen, J.W. Kelly, Nature 426, 905 (2003)
3. S.B. Prusiner, P. Natl. Acad. Sci. USA 95, 13363 (1998)
4. K.A. Dill, Biochemistry 29, 7133 (1990)
5. C.N. Pace, B.A. Shirley, M. McNutt, K. Gajiwala, FASEB J. 10, 75 (1996)
6. G.D. Rose, P.J. Fleming, J.R. Banavar, A. Maritan, P. Natl. Acad. Sci. USA 103, 16623
(2006)

7. T.P. Silverstein, J. Chem. Educ. 75, 116 (1998)
8. E.M. Huque, J. Chem. Educ. 66, 581 (1989)
9. R. Unger, J. Moult, J. Mol. Bio. 231, 75 (1993)
10. K.F. Lau, K.A. Dill, Macromolecules 22, 3986 (1989)
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