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Abstract. Recent Monte Carlo simulations of the q-state Potts model
with a disorder displaying slowly-decaying correlations reported a
violation of hyperscaling relation caused by large disorder fluctuations
and the existence of a Griffiths phase, as in random systems governed
by an infinite-disorder fixed point. New simulations of the Ising model
(q = 2), directly made in the limit of an infinite disorder strength, are
presented. The magnetic scaling dimension is shown to correspond to
the correlated percolation fixed point. The latter is shown to be unsta-
ble at finite disorder strength but with a large cross-over length which
is not accessible to Monte Carlo simulations.

1 Introduction

Disorder is present in all experimental systems but it does not lead to the same con-
sequences. The study of its influence on phase transitions is of particular interest
because even weak disorder can induce drastic changes. First-order phase transitions
are softened and may even become continuous if the disorder is sufficiently strong or
the space dimension equal to two [1–3]. When the transition of the pure system is
already continuous, its critical behavior is changed by the introduction of disorder
when the random fluctuations grow faster with the system size than energy fluctu-
ations [4]. The critical behavior of the random system is then governed by a new
Renormalization Group (RG) fixed point. The fixed point of the pure model, still
present, is unstable but may cause a cross-over at weak disorder. A clear example
of a change of universality class upon the introduction of disorder is provided by
the two-dimensional 3 or 4 state Potts model, a generalization of the celebrated Ising
model. When exchange couplings are made random, new critical exponents were mea-
sured numerically [5–7] and shown to be in agreement with RG calculations [8–11].
Experimentally, the phase transition of the 4-state Potts model can be realized by
the order-disorder transition of atoms bound on a surface offering four inequivalent
adsorption sites in presence of oxygen impurities [12].
In the above-mentioned Potts models, the disorder is assumed to be quenched

and to consist in uncorrelated random couplings. However, at some point of the
evolution of the system, in particular during its preparation, or at a much larger
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time scale, impurities may diffuse in the sample and thermalize. If there exists an
interaction between them, their equilibrium configurations may display long-range
correlations. Renormalization Group studies of the φ4 model showed that a disorder
with correlations displaying an exponential or a fast algebraic decay, i.e. as r−a with
a ≥ d, is equivalent to uncorrelated disorder. Therefore, as predicted by the Harris
criterion, this disorder is a relevant perturbation when α = 2− νd > 0, where ν is
the correlation length exponent of the pure model and α the specific heat exponent.
When α > 0, the new critical behavior is governed by the uncorrelated random fixed
point. In contrast, slowly decaying disorder correlations, i.e. C(r) ∼ r−a with a < d,
are relevant when 2− νa > 0. In this case, the introduction of randomness brings
the system towards a new RG fixed point, distinct from the pure one and from
the one associated to uncorrelated or short-range disorder [13]. These predictions
were confirmed by Monte Carlo simulations of the Ising model [14,15] and by RG
calculations directly in dimension d = 2 [16].
In the recent years, Monte Carlo simulations of the Potts model with very slowly

decaying correlations between the random couplings led to results that do not fit in
this well-accepted picture [17,18]. Several intriguing features, already known in other
models but not in the short-range random Potts model, were observed. First, the
magnetic susceptibility displays a power-law divergence with the lattice size, not only
at the critical point, but in a finite range of temperatures around the self-dual critical
point. Such a region of the phase diagram, known as a Griffiths phase [19], was first
observed in the McCoy-Wu model [21,22] or, equivalently in the extreme anisotropic
limit, in the random quantum Ising chain in a transverse field [23]. It is explained
as the consequence of the existence, though with an exponentially small probability,
of macroscopically large clusters with a high concentration of strong (resp. weak)
couplings. These clusters can order earlier (later) than the rest of the system, i.e.
already in the paramagnetic (ferromagnetic) phase [20]. Second, a violation of the
hyperscaling relation (γ + 2β)/ν = d was reported. Such a violation exists in pure
models above their upper critical dimension, and, for different reasons, in the classi-
cal 3D Ising model in a random field [24]. In the latter, the origin of the hyperscaling
violation is found in the different algebraic decay of typical and average spin-spin cor-
relations. The same mechanism was proposed in the long-range random Potts model.
Third, the new universality class does not seem to depend on the number of states
q of the Potts model while in the case of uncorrelated disorder a dependence of the
magnetic scaling dimension xσ = β/ν on q was unambiguously observed numerically.
The independence on the number of states q is also found in the 1D random quan-
tum Potts model [25]. Moreover, the numerical estimates of the critical exponents
are remarkably stable with the disorder strength and no sign of cross-over could be
distinguished.
In this paper, the 2D classical Potts model with slowly-decaying disorder corre-

lations is considered. In contrast to previous studies, the numerical calculations are
performed in the limit of an infinite disorder. After a short presentation of the model,
the magnetic scaling dimension is estimated numerically for different disorder cor-
relations in Section 3. In Section 4, the relevance of a large but finite disorder is
investigated. A conclusion follows.

2 Definition of the model

The 2D classical q-state Potts model is considered on the square lattice. The
Hamiltonian is [26]

−βH =
∑

(i,j)∈E
Jijδsi,sj , si ∈ {0, . . . , q − 1} (1)
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where the sum extends over the set E of pairs of neighboring sites of the lattice.
The Ising model is recovered when q = 2. For simplicity, the exchange couplings are
chosen to take two possible values, i.e. Jij ∈ {J1, J2}. On average, half of the couplings
take the value J1. In the following, the disorder strength is measured by the ratio
r = J1/J2. We are interested in the case where the exchange couplings are random
and display algebraic correlations with the distance:

JijJkl − Jij Jkl ∼ |rij − rkl|−a. (2)

In previous studies, it was found convenient to generate these coupling configurations
by performing a Monte Carlo simulation of another lattice spin model, the isotropic
Ashkin-Teller model. Its Hamiltonian [27]

−βHAT =
∑

(i,j)∈E

[
JAT(σiσj + τiτj) +KATσiσjτiτj

]
, σi = ±1, τi = ±1 (3)

is invariant under the two global Z2 transformations:

σi −→ −σi, (σi, τi) −→ (−σi,−τi). (4)

As a consequence, the phase diagram displays three phases: a mixed, or Baxter, phase
where both symmetries are spontaneously broken, a ferromagnetic phase where the
two Ising copies are ordered but not correlated between them and a paramagnetic
phase. Magnetization and polarization

M =
∑

i∈V
σi, P =

∑

i∈V
σiτi (5)

are order parameters for the phase transitions between these phases. V is the set
of lattice sites. Interestingly for our purpose, the two symmetries are simultaneously
broken along a critical line which is known exactly by self-duality arguments [28]:

sinh 2JAT = e
−2KAT . (6)

While the magnetic scaling dimension xσ = 1/8 is constant along the line, the polar-
ization scaling dimension is given by

xστ =
1

8− 4y (7)

where the parametrization

cos
πy

2
=
1

2
[e4KAT − 1] (8)

was introduced. Along the self-dual critical line, polarization-polarization correlations
decay algebraically as

σiτiσjτj ∼ |ri − rj |−2xστ (9)

while the average polarization density σiτi vanishes.
The procedure to generate correlated random couplings for the Potts model is the

following: Monte Carlo simulations of an auxiliary Ashkin-Teller model are performed
at various points y of its self-dual critical line. Statistically uncorrelated spin config-
urations are sampled by throwing away a number of Monte Carlo steps several times
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Fig. 1. Typical spin configurations of the critical 4-state Potts model with uniform coupling
(left), uncorrelated random couplings (center) and correlated couplings (right). In the last
two cases, the disorder strength is J1/J2 = 4.

larger than the autocorrelation time. These spin configurations are transformed into
coupling configurations:

Jij =
J1 + J2
2

+ σiτi
J1 − J2
2
, ∀(i, j) ∈ E. (10)

On each site, two couplings, one horizontal and one vertical, take the same value, i.e.
Jij = Jij′ where j is the site on the right of the site i and j

′ the site at the bottom
of i. This choice should not have any relevant effect on the physics at large distance.
For each coupling configurations, a Monte Carlo simulation of the Potts model is
performed. The construction of the random couplings (Eq. (10)) ensures that the dis-
order correlations will decay algebraically as the polarization-polarization correlations
of the auxiliary Ashkin-Teller model. The exponent a of disorder correlation is given
by a = 2xστ . Note that higher-order correlation functions are non trivial and may
differ from those generated with different techniques. For the random Potts model,
averages are computed over both thermal and disorder fluctuations:

〈X〉 = 1

ZAT
∑

{σ,τ}

[ 1
Z
∑

{s}
X[s]e

∑
(i,j) Jij [σ,τ ]δsi,sj

]
e−βHAT[σ,τ ] (11)

where the brackets stands for the average over thermal fluctuations for a given disorder
configuration and the overline for the average over disorder.
Typical spin configurations of the Potts model at its self dual critical point are

presented on Figure 1. In contrast to the case of uncorrelated disorder, the typical
spin configurations display coexisting paramagnetic and ferromagnetic clusters when
random couplings are correlated. Paramagnetic (resp. ferromagnetic) clusters are fa-
vored by a high density of weak (resp. strong) couplings. Thermal fluctuations are
essentially limited to the interior of each cluster and do not induce any significant
fluctuation of their boundaries. Even though the disorder strength is relatively small
(r = J1/J2 = 4 in the configurations presented on the figure), the Potts model be-
haves as in the limit of infinite disorder. The spin configurations of the Potts model
are highly correlated with the disorder realization and, subsequently with the polar-
ization configuration of the auxiliary Ashkin-Teller model. The coexistence of para-
magnetic and ferromagnetic clusters does not imply that the random Potts model
undergoes a first-order phase transition. The Ashkin-Teller model being critical and
symmetric under polarization reversal, clusters of all sizes, both with strong and
weak couplings, are present in each disorder configuration. Each cluster will undergo
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a sharp ferromagnetic-to-paramagnetic transition at a different temperature so the
average magnetization curve will be much smoother than the curve of a single clus-
ter. The argument is similar to the Imry-Wortis criterion [1]. More importantly, the
criticality of the Ashkin-Teller model ensures that, in the thermodynamic limit, a
percolating cluster is present in any polarization configuration. As a consequence, a
spanning cluster of either strong or weak couplings is present in each disorder con-
figuration. In the former case, long-range ferromagnetic order will be induced in the
Potts model.

3 Magnetic scaling dimension

In this section, the magnetic scaling dimension of the long-range random Potts model
is estimated in the infinite-disorder limit. Magnetization is more easily computed in
the case of the Ising model, i.e. q = 2. The Hamiltonian becomes, up to a constant
term,

−βH =
∑

(i,j)

Kijsisj , si ∈ {+1,−1} (12)

where Kij = Jij/2 is half of the coupling of the original Potts model. For a given
disorder realization, the partition function reads

Z[K] =
∑

{s}
e
∑
(i,j)Kijsisj (13)

and the average square magnetization is computed as

〈M2〉 = 1

Z[K]
∑

{s}

(
∑

i

si

)2
e
∑
(i,j)Kijsisj . (14)

The average over disorder leads to

〈M2〉 =
∫

R|E|

1

Z[K]
∑

{s}

(
∑

i

si

)2
e
∑
(i,j)Kijsisj℘[K]

∏

(i,j)

dKij . (15)

As discussed in the previous section, the disorder configurations {Kij} are either
random or determined from the spin configurations {σ, τ} of an auxiliary spin model,
the Ashkin-Teller model. In both cases, the random couplings can take only two
values, K1 or K2.
In the limit of an infinite disorder, K1 → +∞ and K2 → 0, neighboring spins

connected by a coupling K1 are frozen in the same state. The partition function is
reduced to the number of ways that the connected clusters of the graph formed by
the strong bonds can be decorated with Ising spins. Given a disorder configuration
{Kij}, the partition function tends towards

Z[Kij ] =
∑

{s}
e
∑
(i,j)Kijsisj ∼ e|E1|K1

∑

{s}

∏

(i,j)∈E1
δsi,sj = e

|E1|K1 × 2C[E1] (16)

where E1 = {(i, j)/Kij = K1} ⊂ E is the set of strong bonds, |E1| =
∑
(i,j) δ(Kij −

K1) the number of strong bonds and C[E1] the number of connected clusters in the
graph E1 formed by the strong bonds. The free energy is

f [Kij ] = −kBT lnZ[Kij ] = −kBT |E1|K1 − kBTC[E1] ln 2 (17)
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where |E1|K1 is an energy term while C[E1] ln 2 is the entropy associated to the
number of spin decorations of the connected clusters of the graph E1. Note also
when Kij is determined by σiτi, |E1| and C[E1] are functions of the Ashkin-Teller
spin configurations {σ, τ}. |E1| is related to the total polarization P =

∑
i∈V σiτi by|E1| = |V |+ P where |V | is the number of lattice sites.

The second moment of magnetization is, for a given disorder configuration,

〈M2〉E1 =
1

Z[Kij ]e
|E1|K1

∑

{s}

(
∑

i

si

)2 ∏

(i,j)∈E1
δsi,sj

∼ 2−C[E1]
∑

{s}

(∑

i

si
)2 ∏

(i,j)∈E1
δsi,sj . (18)

Numerically, this quantity is evaluated in the following way: first, the graph of strong
bonds is identified and the connected clusters are labeled. The number of sites of each
clusters is determined. Since spins are frozen in the same state in a cluster, the total
magnetization reads

M [E1] =

C(E1)∑

α=1

Nαsα (19)

where Nα is the number of spins in the α-th cluster and sα ∈ {+1,−1} is the value
of all spins in this cluster. When averaged over all possible spin configurations, the
total magnetization M vanishes. In contrast

M2[E1] =

⎛

⎝
C(E1)∑

α=1

Nαsα

⎞

⎠
2

=
∑

α

N2α +
∑

α,β �=α
NαNβsαsβ (20)

and, since spins are uncorrelated, i.e. 〈sαsβ〉 = 0 when α �= β, the last term vanishes
and the second moment reads

〈M2〉E1 =
∑

α

N2α. (21)

Note that the prefactor 2−C[E1] appearing in equation (18) is precisely the number
of spin decorations of the clusters so that it cancels with the sum

∑
{s}. Finally, the

disorder average 〈M2〉 is performed.
In Figure 2, the Monte Carlo estimate of the second moment of the magnetization

density 〈m2〉1/2 is plotted versus the lattice size L for different values of y and for
uncorrelated disorder. As discussed above, each value of y corresponds to a correlated
disorder with a different algebraic decay of disorder correlations. The data have been
averaged over 100 000 disorder configurations. While random couplings belonging to
the same disorder configuration are correlated, there is no correlation between differ-
ent disorder configurations. Therefore, 〈m2〉 are uncorrelated random variables and
the error on 〈m2〉 can be estimated from the mean square deviation.
The data show a nice algebraic behavior over the full range of lattice sizes con-

sidered. The associated critical exponents β/ν are reported in Table 1. They are in
good agreement with the values previously obtained with more standard Monte Carlo
simulations at finite disorder strength r = K1/K2 [18]. This supports the assumption
of a critical behavior governed by an infinite-randomness fixed point. In contrast,
the estimate of β/ν for uncorrelated disorder (0.1037(4)) is incompatible with the
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Fig. 2. Finite-size scaling of the second moment of the magnetization density 〈m2〉1/2 of
the 2D Ising model in the limit of infinite disorder. The different symbols correspond to the
Monte Carlo data for different disorder correlations. The parameter y is given in the legend.
The case of uncorrelated disorder is also plotted and denoted ’uncorr.’ in the legend. Errors
bars are plotted. The lines are the power-law fits.

Table 1. Numerical estimates of the magnetic scaling dimension β/ν for correlated disorder
(y ∈ [0; 1.25]) and for uncorrelated disorder (‘uncorr.’) as discussed in Section 3. The expo-
nent a of the algebraic decay of disorder correlation is given in the second column. The last
two columns correspond to the Monte Carlo estimates of the exponent ω of the algebraic
decay of the first-order corrections C1 and C2 of the square magnetization (see Sect. 4 for
details).

y a β/ν Correction
0.00 0.25 0.064(2) 0.135(3) 0.125(3)
0.25 0.286 0.064(2) 0.144(3) 0.134(3)
0.50 0.333 0.070(2) 0.170(3) 0.152(3)
0.75 0.4 0.079(2) 0.190(3) 0.167(3)
1.00 0.5 0.091(2) 0.194(3) 0.166(3)
1.25 0.667 0.1050(8) 0.192(3) 0.161(3)
uncorr. 2 0.1037(4) 0.786(2) 0.788(3)

expected exponent for the 2D random Ising model. Since randomness is marginally
irrelevant in this case, the exponent β/ν = 1/8 of the pure fixed point was expected.
However, we note that the estimate obtained in the limit of an infinite disorder is close,
though at the boundary of error bars, to the exponent β

ν
= 5
36 × 34 � 0.10417 . . . of

percolation. This can be understood in the following way: in the limit K1 → +∞ and
K2 → 0, the random-bond Ising model is equivalent to a diluted Ising model at zero
temperature. Long-range ferromagnetic order can exist only if the bonds percolate.
The singularity of magnetization is due to the percolation transition. In the case of
the random-bond Ising or Potts model, the percolation fixed point is known to be
unstable. It manifests itself only by cross-over effects at small lattice sizes and strong
disorder. In the simulations presented above, the calculation is performed exactly at
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the percolation fixed point. As a consequence, the exponent β/ν of the percolation
fixed point is measured and no cross-over effect is expected.
To summarize, in the case of correlated disorder, the magnetic critical behavior

that was previously reported at finite disorder strength is the same as in the limit of
infinite strength. It is therefore governed by the correlated percolation fixed point [29].
As far as we are aware, only the value corresponding to the Ising model, i.e. y = 0,
has been reported to be 0.0527(4) assuming ν = 1 [30]. Even though no cross-over
was observed at finite disorder strength, the stability of the fixed point remains to be
shown. In the case of uncorrelated disorder, the percolation fixed point is unstable
so that, at finite disorder, and therefore at finite temperature at the critical point,
thermal fluctuations bring the system to the random fixed point if disorder is relevant,
or to the pure fixed point otherwise.

4 Stability of the correlated percolation fixed point

In the previous section, the calculations were performed exactly in the limit of an
infinite disorder, i.e. at the (correlated) percolation point. In this section, the case
of a large but finite disorder is considered. The partition function and the average
square magnetization are expanded to first order around the (correlated) percolation
point and the exponent of the first correction is estimated.
Even though the Ising case q = 2 will be considered, we start with the Potts

Hamiltonian. For a given disorder configuration {Jij}, the partition function reads

Z[Jij ] =
∑

{s}
e
∑
(i,j) Jijδsi,sj =

∑

{s}

∏

(i,j)

(
uijδsi,sj + 1

)
. (22)

where

uij = e
Jij − 1. (23)

Introducing E1 (resp. E2) the set of bonds for which Jij = J1 (resp. Jij = J2), the
partition function of the Potts model for a given coupling realization reads

Z[Jij ] =
∑

{s}

∏

(i,j)∈E1

(
u1δsi,sj + 1

) ∏

(i,j)∈E2

(
u2δsi,sj + 1

)
. (24)

On the square lattice, each coupling configuration Jij can be mapped onto a dual
configuration J∗ij where

uiju
∗
ij = q (25)

with u∗ij = e
J∗ij − 1. The duality transformation Jij → J∗ij exchanges strong and weak

couplings and therefore maps the ferromagnetic phase onto the paramagnetic one. If a
coupling configuration J and its dual J∗ have the same probability, i.e. ℘[J ] = ℘[J∗],
the model is self-dual and critical. In our case, this condition is satisfied when J1 = J

∗
2

because the exchange of the couplings J1 and J2 is equivalent to a reversal of the
polarization of the auxiliary Ashkin-Teller model. Along the critical line, the variable
u2 = q/u1 can be removed:

Z[Jij ] = u|E1|1

∑

{s}

∏

(i,j)∈E1

(
δsi,sj +

1

u1

) ∏

(i,j)∈E2

( q
u1
δsi,sj + 1

)
(26)
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where |E1| is the number of couplings J1. When u1  u2 = q/u1, an expansion in
powers of 1/u1 is easily obtained. To first order, the partition function is

Z[Jij ] � u|E1|1

∑

{s}

⎡

⎢⎣
∏

(i,j)∈E1
δsi,sj +

1

u1

⎛

⎜⎝
∑

(k,l)∈E1

∏

(i,j)
∈E1\(k,l)

δsi,sj + q
∑

(k,l)∈E2

∏

(i,j)
∈E1∪(k,l)

δsi,sj

⎞

⎟⎠

⎤

⎥⎦.

(27)
Each term is proportional to the number of ways a graph can be decorated by Potts
spins. Denoting C(G) the number of connected clusters of a graph G ⊂ E, the parti-
tion function reads to first order

Z [Jij ] � u|E1|1

⎡

⎣qC(E1) + 1
u1

⎛

⎝
∑

(k,l)∈E1
qC(E1\(k,l)) +

∑

(k,l)�∈E1
qC(E1∪(k,l))+1

⎞

⎠

⎤

⎦ (28)

= u
|E1|
1 qC(E1)

⎡

⎣1 + 1
u1

⎛

⎝
∑

(k,l)∈E1
qC(E1\(k,l))−C(E1) +

∑

(k,l)�∈E1
qC(E1∪(k,l))+1−C(E1)

⎞

⎠

⎤

⎦.

The quantity C(E1 \ (k, l))− C(E1) vanishes for all bonds (k, l) of E1 that do not
disconnect a cluster into two unconnected parts when they are removed. It takes the
value +1 otherwise, i.e. for the so-called red bonds, or bridges, of the graph E1. The
quantity C(E1 ∪ (k, l))− C(E1) vanishes if adding a bond (k, l) does not change the
number of clusters, i.e. if the vertices k and l are connected by some path on the graph
E1. It takes the value −1 otherwise, i.e. when the vertices k and l belong to different
clusters of the graph E1. Numerically, the first quantity is determined by identifying
the red bonds with the Tarjan algorithm [31]. The second quantity is computed using
a labelling of the clusters during their identification.
The same expansion is now written for the average square magnetization of the

Ising model, i.e. the case q = 2:

〈M2〉 = 1

Z[Jij ]u
|E1|
1

∑

{s}

(
∑

i

si

)2 ∏

(i,j)∈E1

(
δsi,sj +

1

u1

) ∏

(i,j)∈E2

(
q

u1
δsi,sj + 1

)
· (29)

To first order and performing the average over the spin decorations of the clusters,
the square magnetization reads

〈M2〉 � 〈M2〉E1 +
q−C(E1)

u1

⎛

⎝
∑

(k,l)∈E1
qC(E1\(k,l))〈M2〉E1\(k,l)

+ q
∑

(k,l)∈E2
qC(E1∪(k,l))〈M2〉E1∪(k,l)

⎞

⎠− 1
u1
〈M2〉E1

⎛

⎝
∑

(k,l)∈E1
qC(E1\(k,l))−C(E1)

+
∑

(k,l)�∈E1
qC(E1∪(k,l))+1−C(E1)

⎞

⎠ (30)
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where 〈M2〉E1 denotes a calculation at zeroth-order in 1/u1 for the graph E1 along
the lines presented after equation (18). Finally, we get

〈M2〉 � 〈M2〉E1 +
1

u1

∑

(k,l)∈E1
qC(E1\(k,l))−C(E1)

(〈M2〉E1\(k,l) − 〈M2〉E1
)

+
1

u1

∑

(k,l)∈E2
qC(E1∪(k,l))+1−C(E1)

(〈M2〉E1∪(k,l) − 〈M2〉E1
)
. (31)

The only strong couplings Jkl, i.e. (k, l) ∈ E1, contributing to the first sum are the red
bonds of the graph E1. Their removal provokes the splitting of a cluster of strong cou-
plings into two unconnected clusters so, as discussed before, C(E1 \ (k, l))− C(E1) =
1. The change in the total square magnetization, 〈M2〉E1\(k,l) − 〈M2〉E1 , is computed
numerically simply by first removing the red bond and then relabelling the cluster
starting at one edge of the bond. The only weak couplings Jkl, i.e. (k, l) �∈ E1, con-
tributing to the second sum of equation (31) are those for which a different cluster is
found at the two edges. Adding this bond leads to the merging of the two clusters so
that C(E1 ∪ (k, l)) + 1− C(E1) = 0. The calculation of the change in the total square
magnetization, 〈M2〉E1∪(k,l) − 〈M2〉E1 , only requires a minimal computational effort
if the sizes of the different clusters were stored. After performing the average over
disorder configurations, the average square magnetization can be put in the form

〈M2〉u1 = 〈M2〉∞
[
1 +

1

u1

(
qC1 + C2

)]
(32)

where the two correction terms are

C1 =

∑
(k,l)∈E1

[〈M2〉E1\(k,l) − 〈M2〉E1
]
∞

〈M2〉∞
(33)

and

C2 =

∑
(k,l)�∈E1

[〈M2〉E1∪(k,l) − 〈M2〉E1
]
∞

〈M2〉∞
· (34)

The two correction terms C1 and C2 were computed for 100.000 graphs E1 corre-
sponding to disorder configurations Jij , and therefore to polarization configurations
of the auxiliary Ashkin-Teller model. The data are plotted on Figure 3 versus the
lattice size L. Nice power laws are observed. Slightly larger exponents are obtained
for C1 than for C2 (see the estimates in Table 1). In the case of uncorrelated disor-
der, this exponent is ω � 0.79. In contrast, for correlated disorder, the exponent is
much smaller but positive. There are two important consequences: first, the correc-
tion terms grow with the lattice size which implies that they will eventually become
dominant. The correlated percolation fixed point is therefore unstable. Second, the
cross-over length L∗ at which the correction becomes of order O(1) for a given u1
is much smaller in the uncorrelated case. For L = 32 for instance, C1 � 6.55 for un-
correlated disorder while C1 � 0.73 for y = 1.25. Assuming a correction exponent
ω � 0.2, C1 will be equal to 6.55 only at a lattice size L � 2.3.106! The situation is
even worse in the case y = 0 for which a lattice size L � 2.5.1012 is needed for C1
to reach the value 6.55. Such huge lattice sizes cannot be reached by Monte Carlo
simulations. This explains why the cross-over was not observed in previous
Monte Carlo simulations at finite disorder strength.
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Fig. 3. Finite-size scaling of the two contributions C1 (left) and C2 (right) to the first-order
correction to the square magnetization of the 2D Ising model in the limit of infinite disorder.
The different symbols correspond to the Monte Carlo data for different disorder correlations.
The parameter y is given in the legend. The case of uncorrelated disorder is also plotted and
denoted ’uncorr.’ in the legend. Errors bars are plotted. The lines are the power-law fits.

5 Conclusion

By performing calculations explicitly in the limit of an infinite disorder strength, it
was shown that the magnetic scaling dimensions previously reported for the random
Potts model with slowly-decaying disorder correlations correspond to the correlated
percolation fixed point. The analysis of the first-order corrections at finite disorder
strength revealed that this fixed point is unstable. However, the cross-over length
associated to these corrections is found to be much larger, by several orders of mag-
nitude, than in the uncorrelated case. Therefore, the true critical behavior cannot be
reached by Monte Carlo simulations. Nevertheless, it is interesting that this model
reproduces features of an infinite-disorder fixed point even though the latter is not
stable in this case. One may hope that it will help in a better understanding of the
stability of such fixed points.

The author would like to congratulate Wolfhard Janke at the occasion of his 60th birthday
and gratefully thanks the organizers of the workshop dedicated to this event.

References

1. Y. Imry, M. Wortis, Phys. Rev. B 19, 3581 (1979)
2. K. Hui, A.N. Berker, Phys. Rev. Lett. 62, 2507 (1989)
3. M. Aizenman, J. Wehr, Phys. Rev. Lett. 62, 2503 (1989)
4. A.B. Harris, J. Phys. C: Solid State Phys. 7, 1671 (1974)
5. J.L. Cardy, J.L. Jacobsen, Phys. Rev. Lett. 79, 4063 (1997)
6. J.L. Jacobsen, J.L. Cardy, Nucl. Phys. B 515, 701 (1998)
7. C. Chatelain, B. Berche, Nucl. Phys. B 572, 626 (2000)
8. A.W.W. Ludwig, Nucl. Phys. B 285, 97 (1987)
9. A.W.W. Ludwig, J.L. Cardy, Nucl. Phys. B 285, 687 (1987)
10. Vl.S. Dotsenko, M. Picco, P. Pujol, Phys. Lett. B 347, 113 (1995)
11. Vl.S. Dotsenko, M. Picco, P. Pujol, Nucl. Phys. B 455, 701 (1995)
12. L. Schwenger, K. Budde, C. Voges, H. Pfnür, Phys. Rev. Lett. 73, 296 (1994)
13. A. Weinrib, B.I. Halperin, Phys. Rev. B 27, 413 (1983)
14. H.G. Ballesteros, G. Parisi, Phys. Rev. B 60, 12912 (1999)



816 The European Physical Journal Special Topics

15. D. Ivaneyko, B. Berche, Y. Holovatch, J. Ilnytskyi, Physica A 387, 4497 (2008)
16. M. Dudka, A.A. Fedorenko, V. Blavatska, Y. Holovatch, Phys. Rev. B 93, 224422 (2016)
17. C. Chatelain, Europhys. Lett. 102, 66007 (2013)
18. C. Chatelain, Phys. Rev. E 89, 032105 (2014)
19. R.B. Griffiths, Phys. Rev. Lett. 23, 17 (1969)
20. T. Vojta, J. Phys. A 39, R143 (2006)
21. B.M. McCoy, T.T. Wu, Phys. Rev. 176, 631 (1968)
22. B.M. McCoy, T.T. Wu, Phys. Rev. 188, 982 (1969)
23. D.S. Fisher, Phys. Rev. B 51, 6411 (1995)
24. M. Schwartz, A. Soffer, Phys. Rev. Lett. 55, 2499 (1985)
25. T. Senthil, S.N. Majumdar, Phys. Rev. Lett. 76, 3001 (1996)
26. R.B. Potts, Math. Proc. Camb. Phil. Soc. 48, 106 (1952)
27. J. Ashkin, E. Teller, Phys. Rev. 64, 178 (1943)
28. C. Fan, Phys. Lett. A 39, 136 (1972)
29. A. Coniglio, A. Fierro, Encyclopedia of Complexity and Systems Science, Part 3, 1596
(Springer, New York, 2009)

30. W. Janke, A. Schakel, Braz. J. Phys. 36, 708 (2006)
31. R. Tarjan, Inf. Proces. Lett. 2, 160 (1974)


	1 Introduction
	2 Definition of the model
	3 Magnetic scaling dimension
	4 Stability of the correlated percolation fixed point
	5 Conclusion
	References

