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Abstract. In the last 10 years, flat histogram Monte Carlo simulations
have contributed strongly to our understanding of the phase behavior
of simple generic models of polymers. These simulations result in an
estimate for the density of states of a model system. To connect this
result with thermodynamics, one has to relate the density of states to
the microcanonical entropy. In a series of publications, Dunkel, Hilbert
and Hänggi argued that it would lead to a more consistent thermody-
namic description of small systems, when one uses the Gibbs definition
of entropy instead of the Boltzmann one. The latter is the logarithm
of the density of states at a certain energy, the former is the logarithm
of the integral of the density of states over all energies smaller than
or equal to this energy. We will compare the predictions using these
two definitions for two polymer models, a coarse-grained model of a
flexible-semiflexible multiblock copolymer and a coarse-grained model
of the protein poly-alanine. Additionally, it is important to note that
while Monte Carlo techniques are normally concerned with the config-
urational energy only, the microcanonical ensemble is defined for the
complete energy. We will show how taking the kinetic energy into ac-
count alters the predictions from the analysis. Finally, the microcanon-
ical ensemble is supposed to represent a closed mechanical N -particle
system. But due to Galilei invariance such a system has two additional
conservation laws, in general: momentum and angular momentum. We
will also show, how taking these conservation laws into account alters
the results.

Flat histogram Monte Carlo (MC) simulations like multi-canonical simulations [1–4],
Wang-Landau simulations [5–7] or Stochastic Approximation Monte Carlo (SAMC)
simulations [8–10] allow for the determination of the density of states g(U) of a model,
where U is the configurational (potential) energy, as MC simulations normally live
in configuration space not in phase space. Typically, these simulations are limited
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to rather small system sizes N . The analysis of the pseudo-phase behavior of these
small finite systems relies on the evaluation of singular points in the thermodynamic
functions obtainable from the density of states. For this analysis, a combined approach
in the canonical and the microcanonical ensemble [11] has proven most powerful, also
for polymeric systems [12–14] (a recent review can be found in [15]).
To link a statistical observable like the density of states (i.e., the number of states

at fixed configurational energy, g(U), or at fixed total energy, g(E)) to thermodynam-
ics is the task of statistical physics. The linking physical observable is the entropy, S,
a quantity of central importance in statistics as well as in thermodynamics. In ther-
modynamics it is one of the so-called macroscopic observables of a system, and one
distinguishes between the micro-state of the system (its configuration or the point in
phase space representing the system) and the macro-state of the system. For a simple
thermodynamic system, the latter is given by fixing three variables, e.g., the number
of particles, N , the volume of the system, V , and the energy of the system, E. The
thus specified ensemble is called the microcanonical ensemble of statistical physics.
Thermodynamics establishes relations between the differentials of these macroscopic
variables, e.g., the Gibbs fundamental form

dE = TdS − pdV + μdN. (1)

The prefactors are given by the intensive thermodynamic variables temperature, T ,
pressure, p, and chemical potential, μ. All functions occurring in this equation are
macro-variables and, for this equation (and equivalent formulations) to make sense,
have to be differentiable functions. Obviously, this can not be true for the particle
number, and clearly it is also not true when we consider the energy to be given
for a quantum system with discrete energy levels. One therefore typically considers
this equation to hold for large systems in a suitable thermodynamic limit, where the
discreteness of some of the variables can be (hopefully) neglected. For finite systems,
equation (1) should be read as an empirical relation between finite differences

ΔE = TΔS − pΔV + μΔN, (2)

established experimentally by the founders of thermodynamics. Mathematically, the
existence of differential thermodynamic relations like equation (1) is based on large
deviation theory [16,17]. When the probability for the occurrence of a macro-variable,
X, behaves as ρ(X) � exp{−Nr(X)} with some rate function, r(X), then for N →∞
only the state with the minium r(X) (i.e., maximum ρ(X)) will contribute. If we take
X = E then r(X) = −s(E) is the negative entropy per particle, i.e., only the state
with the maximum entropy is relevant in the thermodynamic limit. Such an argument
was also used in the work by Hertz [18,19], who presented a derivation of thermo-
dynamics from statistical mechanics based on Gibbs [20] earlier work. Clearly, the
mathematical background for the derivation of thermodynamic laws via large fluc-
tuation theory does not rely on the existence of an underlying mechanical picture,
be it classical or quantum. This explains the general applicability of thermodynam-
ics. Nevertheless, a closed mechanical N -particle system is the archetypical system
for which thermodynamic relations are considered to hold, and notwithstanding the
questions about the discreteness of some thermodynamic variables, it is important to
understand for such a system, how the link between statistics and thermodynamics
should be constructed, i.e., how entropy should be defined statistically.
Regarding this question, some recent works by Hilbert, Dunkel and Hänggi [21–25]

have raised a controversy in the literature [26,27]. Hilbert, Dunkel and Hänggi pointed
out that entropy is an adiabatic invariant in thermodynamics and consequently should
be defined statistically for a mechanicalN -particle system by a quantity which is a me-
chanical adiabatic invariant [28], which all are related to the existence of action-angle
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variables in mechanics [29]. Concerning the density of states, which is the quantity
we are aiming at with our simulations, it has been noted early on [18,19,30] that the
density of states itself, i.e., the integral over the hyperplane in phase space for fixed
energy, is not an adiabatic invariant

W (E) =

∫
H(x)=E

dσ(x). (3)

Here x = (q1, . . . ,qN ,p1, . . . ,pN ) ∈ Γ is a point in phase space Γ, and the integral
is performed using the surface element, dσ(x), on the surface of constant energy,
H(x) = E. Relating the entropy to the logarithm of this density of states (typically
assigned to Boltzmann and therefore called Boltzmann entropy, we set kB = 1)

SB(E) = lnW (E) (4)

therefore also does not lead to an adiabatically invariant entropy [24,25,31]. Note,
however, that the correct probability density on a surface of constant energy is pro-
portional to dσ(x)/|∇H(x)| [18,19,30] with the normalization given by the density
of states

g(E) =

∫
H(x)=E

dσ(x)/|∇H(x)| . (5)

This is, however, still not an adiabatically invariant quantity [30]. For a system with
discrete energy spectrum and/or discrete state space like an Ising model, the Boltz-
mann definition equation (3) and the definition in equation (5) become equivalent.
Both definitions are furthermore local in energy (i.e., defined for a hypersurface of
constant energy) and we will therefore in the following also use

SB(E) = ln g(E) (6)

to denote the Boltzmann entropy in our calculation (see also the discussion in the
model section). Using the divergence theorem, it is easy to see that one can write

Ω(E) =

∫ E
g(E′)dE′ =

∫ E
dE′
∫
H(x)=E′

dσ(x)

|∇H(x)| =
∫
H(x)≤E

dx (7)

i.e., Ω(E) is the integral over all points in phase space with energy smaller than E.
The Gibbs definition of entropy

SG(E) = lnΩ(E) (8)

leads to an adiabatic invariant [18–20,30]. For systems fulfilling the conditions of the
Gärtner-Ellis theorem [16], in the thermodynamic limit all three entropy definitions
yield the same thermodynamic relations. For finite systems, however, their predic-
tions somewhat differ, the most notable difference being that for models with a finite
upper energy bound, the Boltzmann entropy leads to a region of negative values for
the microcanonical temperature, T−1B (E) = dSB(E)/dE, whereas the temperature
derived from the Gibbs entropy, T−1G (E) = dSG(E)/dE, is always positive. Hilbert,
Dunkel and Hänggi also showed [24,25] that for small mechanical systems thermal
equilibrium between two systems is related to the equality of the Gibbs temperature
TG(E), not the Boltzmann temperature, TB(E). Keep in mind however, that all these
derivations are based on an application of the thermodynamic relations between dif-
ferentials, equation (1); Hilbert, Dunkel and Hänggi are well aware of the problems
which can arise for discrete energy values, but do not discuss the discreteness of
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the particle number in the microcanonical ensemble. Here we will not enter into any
further argument about what is the correct definition of entropy, as this is not the
thrust of this paper, but will focus on the consequences of choosing the two different
definitions for two non-trivial finite polymeric model systems.
Another point, which we would like to elucidate, concerns the effect of some neg-

ligence regarding the effect of Galilei invariance on the definitions in equation (3) and
equation (5). Due to Galilei invariance, a closed mechanical N -particle system has
(at least) two more conservation laws besides the energy conservation: total momen-
tum and total linear momentum are also conserved (for an integrable system, there
exists of course a complete set of conserved quantities – the angle variables – all re-
lated to adiabatic invariants of the motion [29]). The motion of the N -particle system
therefore does not cover the complete surface of constant energy as assumed above.
Assuming hard, infinitely heavy container walls (NVE ensemble) linear momentum
and angular momentum are no longer conserved, whereas for a NVE simulation using
periodic boundary conditions one would retain the conservation of linear momentum.
Following Schierz et al. [32] one can ask what consequences the presence of these
conservation laws would have on the analysis of flat-histogram simulations. And fi-
nally, considering flat histogram Monte Carlo simulations, one generally considers
the density of states in configuration space, g(U), not of the total energy g(E) with
E = U +K, K being the kinetic energy. What is the effect of neglecting the kinetic
energy on the predictions concerning, e.g., the phase behavior of the model?
Our paper is organized as follows. In Section 1 we provide the theoretical back-

ground for the calculation of the density of states g(E) from the configurational
density of states g(U) determined in the simulations in the presence of the different
conservation laws. Section 2 will describe the two polymer models which we have
used to exemplify the predictions obtained from using either the Boltzmann or the
Gibbs entropy for small systems. In Section 3 we will present our results for our two
polymer model systems. Finally, Section 4 presents our conclusions.

1 Theoretical background

As discussed in the introduction, Monte Carlo simulations are performed in configu-
ration space and, consequently, the density of states one obtains is the configurational
one, g(U). One can perform a combined canonical-microcanonical analysis based on
this density of states, and contrasting the Gibbs entropy, SG(U) = lnΩ(U), and the

Boltzmann entropy, SB(U) = ln g(U), where Ω(U) =
∫ U
Umin

g(U ′)dU ′, where Umin is
the lowest energy to which the density of states converged in the simulation. Typically,
one does not reach the ground state with a converged g(U), but stays a few percent
above, however, covering the range of energies contributing to thermal pseudo phase
transitions in the model. The configurational microcanonical temperatures in the two
cases are given by T−1B (U) = dSB(U)/dU and T

−1
G (U) = dSG(U)/dU . The predic-

tions for the Gibbs and Boltzmann entropies in configuration space are contrasted in
Section 3.1.

1.1 Density of states in phase space

The definition of the thermodynamic quantities according to Boltzmann or Gibbs
remains identical to the discussion above, one only has to exchange the configura-
tional energy for the total energy E = U +K. The question which has to be ad-
dressed therefore is how to calculate the density of states, g(E), in phase space
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from the density of states, g(U), in configuration space that is determined numer-
ically in the simulations [33]. For given K and U the number of possible states is
g2 (U,K) = gid (K) · g (U), where gid is the number of possible momentum combi-
nations giving kinetic energy K. The density of states g (E) can then be found by
integration

g (E) =

Umax∫

Umin

dU

∞∫

0

dK g2 (U,K) δ (E −K − U)

or in the case of a discrete spectrum of potential energies, on which we will focus in
the following as this is the case for the two models we are discussing here

g (E) =

Umax∑
U=Umin

∞∫

0

dK g2 (U,K) δ(E −K − U). (9)

Here Umin and Umax are the minimal and maximal configurational energies possible
(resp. considered). This can be written as

g (E) =

Umax∑
U=Umin

∞∫

0

dK g (U) gid (K) δ (E −K − U)

=

Umax∑
U=Umin

g (U) gid (E − U)Θ (E − U) , (10)

where Θ is the Heaviside step-function.
Since gid depends only on the linear momenta (2mK =

∑
i p
2
i ), for N particles it

is proportional to the area of a hypersphere in d-dimensional space

gid (K) ∝ Kd/2−1. (11)

The exact value of the proportionality factor is not important for us, because the
configurational density of states is estimated by SAMC simulations, which only yield
information up to an unknown prefactor also. The value of the exponent depends
on what other conservation laws besides energy conservation are considered. It is
d = 3N for N particles in 3-dimensional space and d = (3N − 3) for N particles in
3-dimensional space with the total linear momentum conservation. The case of angular
momentum conservation is more involved and will be considered in more detail below.
Combining equation (10) and equation (11) we obtain

g (E) ∝
Umax∑
U=Umin

(E − U)d/2−1 g(U)Θ (E − U)

=

Umax∑
U=Umin

exp

{(
d

2
− 1
)
ln (E − U) + ln g (U)

}
Θ(E − U). (12)

These expressions can be evaluated numerically for any E ≥ Umin.
To calculate the Gibbs entropy, we should consider the total number of states with

energy less than E.

Ω (E) =

E∫

Umin

dE′g(E′) =
E∫

Umin

dE′
Umax∑
U=Umin

g (U) gid (E
′ − U)Θ(E′ − U). (13)
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By taking into account (11)

Ω (E) ∝
E∫

Umin

dE′
Umax∑
U=Umin

g (U) (E′ − U)d/2−1Θ(E′ − U)

=

Umax∑
U=Umin

g (U)

E∫

U

dE′ (E′ − U)d/2−1Θ(E′ − U) (14)

or after integration

Ω (E) ∝
Umax∑
U=Umin

g (U) (E − U)d/2Θ(E − U) (15)

which is similar to equation (12) except for the exponent of (E − U) which is larger
by 1 for the Gibbs entropy. It means that all relations derived below for derivatives of
the Boltzmann entropy can be applied to the Gibbs entropy after replacing (d/2− 1)
by d/2. For the inverse microcanonical temperature we obtain from equation (12)

T−1B (E) =
d ln g

dE
=
g′(E)
g(E)

=
1

g(E)

Umax∑
U=Umin

g (U)

[(
d

2
− 1
)
(E − U)d/2−2Θ(E − U) (16)

+ (E − U)d/2−1δ(E − U)
]
.

The second term in the sum of equation (16) is non-analytic, but has no contribution
to T−1B (E) for positive exponent d/2− 1:

T−1B (E) =
1

g(E)

(
d

2
− 1
) Umax∑
U=Umin

g (U) (E − U)d/2−2Θ(E − U) . (17)

The summation in equation (17) can be done numerically similarly to the summa-
tion in equation (12). In the microcanonical analysis we also need the determination
of maxima and minima and inflection points of the inverse temperature. The first
derivative of T−1B (E) is given by

dT−1B (E)
dE

=
d2 ln g(E)

dE2
=
g′′(E)
g(E)

−
(
g′(E)
g(E)

)2
=
g′′(E)
g(E)

− (T−1B (E))2 (18)

where after neglecting the non-analytical terms we obtain

g′′(E) =
(
d

2
− 1
)(
d

2
− 2
) Umax∑
U=Umin

g (U) (E − U)d/2−3Θ(E − U). (19)

Finally, the 2nd derivative of T−1B (E) is given by

d2T−1B (E)
dE2

=
d3 ln g(E)

dE3
=
g′′′(E)
g(E)

− 3dT
−1
B (E)

dE
T−1B (E)−

(
T−1B (E)

)3
(20)
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where similarly

g′′′(E) =
(
d

2
− 1
)(
d

2
− 2
)(
d

2
− 3
) Umax∑
U=Umin

g (U) (E − U)d/2−4Θ(E − U) . (21)

As stated above, the results for the inverse microcanonical temperature T−1G (E) ac-
cording to Gibbs can be obtained from above equations for the Boltzmann tempera-
ture by replacing d/2− 1 by d/2.

1.2 Conservation of angular momentum

To take into account the conservation of angular momentum one needs to go back to
the definition of the density of states as an integral over phase space,

g (E) ∝
∫
dq3N (E − U (q))d/2−1Θ(E − U (q)) , (22)

where we have already performed the integration over the momenta. The value of
the number of degrees of freedom, d, depends on the conservation laws considered.
Equation (22) corresponds to a system with total energy conservation only. In the
presence of additional conservation laws, equation (22) should be modified, because of
the reduction of the degrees of freedom and the change in integration variables. When
changing the variables, one needs in general to multiply the integrand by a Jacobi
determinant. In the case of linear momentum conservation, the determinant does not
depend on the coordinates of the particles, i.e. it is just a numerical factor, and it
can be included for the calculation of g(E) in the proportionality factor which we
ignore. But in the case of angular momentum conservation, the determinant depends
on the coordinates and can not be ignored. For the case of both linear and angular
momentum conservation, equation (22) should be modified as (see for instance [32])

g (E) ∝
∫

dq3N√
det I(q)

(
E − U (q)− P

2

2M
− 1
2
JT I−1(q)J

)d/2−1

Θ

(
E − U (q)− P

2

2M
− 1
2
JT I−1(q)J

)
, (23)

where d = 3N − 6, M is the total mass of the system, I(q) is the inertia tensor
depending on the particle coordinates q, J is the the total angular momentum, and P
is the the total linear momentum. The latter two are constants. In the simplest case
we choose P = 0 (can be done due to Galilei invariance) and also J = 0 and get

g (E) ∝
∫

dq3N√
det I(q)

(E − U (q))d/2−1Θ(E − U (q)) . (24)

In the case of a discrete spectrum of the configurational energy, equation (24) can be
written as

g (E) ∝
Umax∑
U=Umin

∫
dq3N√
det I(q)

(E − U)d/2−1Θ(E − U) δ (U (q)− U) . (25)

Only the δ-function and the determinant depend on the configuration, and
equation (25) can be rewritten as

g (E) ∝
Umax∑
U=Umin

(E − U)d/2−1Θ(E − U)
∫

dq3N√
det I(q)

δ (U (q)− U) . (26)
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The integral is proportional to the average value of 1/
√
det I. The number of micro-

states corresponding to the configurational energy U is g (U), and the probability of
a microstate is 1/g (U). Then p (q|U) = δ (U (q)− U) /g (U) is the conditional prob-
ability density to find the system in point q in configuration space where it has the
configurational energy U

∫
dq3N√
det I(q)

δ (U (q)− U) = g (U)
∫

dq3N√
det I(q)

δ (U (q)− U)
g (U)

= g (U)

∫
dq3N√
det I(q)

p (q|U) = g (U)
〈

1√
det I

〉
U

, (27)

where 〈· · · 〉U denotes the averaging at given configurational energy U . The value
of
〈
1/
√
det I

〉
U
in equation (27) can be estimated in a standard way in a SAMC

productive run [15].

2 Models and simulation techniques

We describe in this section two models which we have used to exemplify the ther-
modynamic predictions for small systems using either the Gibbs or the Boltzmann
entropy.

2.1 Model of a single semiflexible-flexible (SF) copolymer chain

We are considering single multi-block-copolymer chains consisting of an equal amount
of flexible (F) and semi-flexible (S) blocks of beads of diameter σ. The chain length
is fixed at N = 64, the block length can be varied. The bond length is allowed to
change freely in the small interval [0.8σ, 1.25σ], enabling elementary shift moves of
monomers and keeping the excluded volume condition fulfilled. In such a model the
momenta of the beads are not constraint. Stiffness is introduced into the model by
a square-well potential favoring bond angles in the interval [150◦, 170◦]. Non-valent
interactions are also of square well type and are equal between all monomer types,
the square well width being λ = 1.5 in units of the monomer diameter σ = 1. Calling
nst the number of angles in the preferred interval and nnv the number of monomer
pairs with a distance smaller than λ, the energy of a configuration is given by

U = −εnnv − εstnst, (28)

where εst is the energy scale for the bending energy. We set ε = 1 as the energy
scale of the model and can then consider phase behavior in the plane εst/ε, ε/T .
Results on the state diagram of this model have been reported in references [34–36].
Technically, we determined a two-dimensional density of states g(nnv, nst) from which
the configurational density of states is then calculated as g(U) =

∑′
nnv,nst

g(nnv, nst).

Here the sum is over all pairs (nnv, nst) fullfilling the condition U = −εnnv − εstnst.

2.2 Model of poly-alanine (PRIME20)

The PRIME20 model was first published in reference [37] in 2010 as an extension to
PRIME (Protein Intermediate-Resolution Model) [38], developed by the same group
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in 2001. While PRIME was mostly used to model poly-alanines, PRIME20 is designed
to include all 20 proteinogenic amino acids.
Each amino acid is represented by four beads or “united atoms”, one each for

the backbone amino group (N), the alpha carbon (Cα), the carboxyl group (C),
and the side chain (R). Bonds between these beads fluctuate freely within a narrow
range around their ideal length. Bond angles, l-isomerization of amino acids and
trans configuration of the peptide bond are imposed by pseudo-bonds with the same
characteristics between next neighbors as well as between two neighboring Cα beads.
All non-bonded beads interact by a hard-sphere repulsion. Side chain beads have

an additional square-well interaction whose strength depends on the interacting types.
To limit parameter space, the 20 different side chains are classified into 14 groups
depending on their properties such as polarity, charge, or the capability to form
hydrogen bonds. This way, the model only requires 19 energy parameters (i.e. well
depths) compared to up to 171 if each pair of side chains (discounting Glycine) were
assigned one parameter. Backbone (N-C) hydrogen bonds are modeled as a square
well with additional restraints: the involved N-H-O and C-O-H angles (H and O
positions are determined on demand) must be sufficiently straight, neither partner
may be part of another hydrogen bond, and they must be separated by at least 3
intervening amino acids. If all these criteria are met, a hydrogen bond is formed
with a well depth εHB = −1, which dominates the energy function as all side chain
energy parameters are between −0.585 (Cys-Cys interaction) and +0.253 (repulsion
of charged side chains). In this paper we focus on poly-alanines, which means that
the side chain well depth is always εAA = −0.084, and determine the configurational
density of states g(U) from the simulation.

2.3 SAMC algorithm

The Stochastic approximation Monte Carlo (SAMC) algorithm [8–10] is a recently
suggested mathematical generalization of the Wang-Landau (WL) algorithm [5–7]
with proven convergence to the true density of states. It is an iterative procedure,
optimizing an estimate for the density of states of a model system. Its applicability
for polymer systems has been established in references [34–36,39,40]. A Monte Carlo
simulation using a converged estimate for the density of states from this procedure
leads to a random walk over the allowed energies of the model system. During such
a simulation, averages of observables at fixed energy A(E) can be obtained. Their
temperature dependence in the canonical ensemble can then be calculated as

〈A〉(T ) = 1

Z(T )

∫
g(E)A(E) exp{−βE}dE, (29)

where β = 1/kBT and Z(T ) is the canonical partition function.
Finally, let us stress that it is important to be aware of the influence of the

numerical implementation of the density of states determination on the interpretation
of the results. For the SF copolymer, we can determine a density of states as a function
of a discrete configurational energy, g(Ui), for the poly-alanine with its many different
energy parameters, we select a discretization of the relevant configurational energy
range [Umin, Umax] in intervals of width ΔU . In the former case we determine the
number of states at fixed energy, i.e., the realization of equation (3). In the latter
case, we are determining the number of states in configuration space belonging to
energies in the interval [U,U +ΔU ], which is a volume ΔV in configuration space.
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Fig. 1. The microcanonical entropy defined according to Boltzmann (black lines), SB(U),
and to Gibbs (red lines), SG(U), vs. potential energy U for a SF-copolymer (left plot) and
for poly-alanine (right plot). For both systems the entropy is shifted to have zero value
at the maximal value of the potential energy (which is U = 0 for both models). For the
SF-copolymer chain the block length is b = 16 and the values of the stiffness energy pa-
rameter are εst = 0, 10, 20, from the right to the left, i.e., dotted, dashed and solid lines,
respectively. The inset shows the enlarged view at large energies, where oscillations both in
SB and in SG are visible for the largest stiffness εst = 20. For the poly-alanine model data for
chain lengths N = 10 and N = 16 are shown by the solid and the dashed lines, respectively.

We have

ΔV =
∫ U+ΔU
U

dx =

∫ U+ΔU
U

dσdn

=

∫ U+ΔU
U

dσ
dn

dU
dU � ΔU

∫
U

dσ

|∇U | , (30)

where the last equality holds because dU/dn = |dU/dn| = |∇U | for the orientation
of the surface normal, n̂, and considering that U only has a normal variation on
the selected surface. The numerical realization for g(U) in this case thus is closer to
equation (5) than to equation (3) and for infinitesimal width of the energy interval
it would actually approach the definition of the surface measure in equation (5). The
same holds true when looking at g(E) instead of g(U), which is determined from the
configurational density of states by an exact integration over the momentum variables.
As discussed in the theory section, this calculation is still a local in energy definition
of entropy, and we will continue in the following to use the term Boltzmann entropy
and contrast it with the Gibbs entropy.

3 Results

3.1 Gibbs and Boltzmann entropies as a function of configurational energy

We start with an analysis employing the direct result of the Monte Carlo simu-
lations, i.e., the density of states g(U) for the configurational energy only. This
is the way these simulations are commonly analyzed [15]. Comparing the
Boltzmann and Gibbs entropy results for both models in Figure 1, an expected finding
is that the Gibbs entropy is monotonously increasing with increasing energy, while the
Boltzmann entropy goes through a maximum. Consequently, the inverse microcanoni-
cal temperature according to Boltzmann goes through zero at this maximum followed
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Fig. 2. The inverse microcanonical temperature defined according to Boltzmann (black
lines) and to Gibbs (red lines) vs. potential energy U for SF-copolymer (left plot) and for
poly-alanine (right plot) systems. The line style code is the same as in Figure 1, i.e., it
encodes the intrachain stiffness for the SF-copolymer and the chain length for the poly-
alanine model. The right plot shows the data for N = 10 while the inset shows the data
for N = 16 separately, in order to avoid an overlap of curves in the graph. The scale of the
y-axis is the same in the main plot and in the inset for better comparison of the amplitudes.

by a range of negative temperatures, while the inverse Gibbs temperature is strictly
positive (see Fig. 2). Furthermore, both models share two important features in their
energy spectra; the first is the fact that they are discrete, the second is the existence
of two largely separate energy scales, at least if one chooses for the SF copolymer
model a large stiffness parameter like is done for the leftmost lines in the left plot of
Figure 1. This leads to undulations of the entropy in the high energy range, both for
the Gibbs and the Boltzmann definition. This is more clearly seen for the poly-alanine
model on the right of Figure 1. For the Boltzmann version the entropy has a series
of maxima and minima, while the Gibbs entropy stays monotonic. With increasing
the chain length, these features start to become smeared out. The mechanistic ex-
planation for this behavior in the case of the SF copolymer was given in [35], for the
poly-alanine it is the following: reducing the energy from zero means that hydrophobic
contacts (strength ε = 0.084) have to be formed. Going from 11 such contacts to 12
and an energy close to −1 one could as well close 1 hydrogen bond with energy −1 and
have 0 hydrophobic contacts, thereby largely increasing the configurational freedom of
the chain and thus its number of states and entropy. The same happens when further
hydrogen bonds are closed. This undulating behavior of the entropy has consequences
for the behavior of the inverse microcanonical temperature shown in Figure 2. From
the raw data in Figure 1 we can determine the Gibbs and Boltzmann microcanonical
temperatures as discussed in the theory section. But note that we can not determine
the derivative of the configurational entropy, ln g(U), with respect to the configura-
tional energy, U , in an analytical fashion (or numerically as precisely as we wish), as
we have a discrete spectrum for the configurational energy. So there is an arbitrariness
in defining this numerical derivative by either the left step or the right step or the
average one. This arbitrariness vanishes in the thermodynamic limit, as the density
of points for the configurational energy per particle u = U/N increases with N →∞
until we reach a continuous variation of u and arrive at a differentiable macroscopic
configurational manifold and the thermodynamic relations defined between the dif-
ferentials of the macroscopic variables. For small stiffnesses (the two right curves on
the left plot in Figure 2) the predictions for the inverse microcanonical temperature
using the Boltzmann and the Gibbs entropies are indistinguishable on the scale of the
figure, except for energies close to zero, where TB becomes negative. For both curves,
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Fig. 3. Left plot: the inverse microcanonical temperature defined from the Boltzmann en-
tropy in configuration space (solid black line, x-axis is U) and in phase space (dashed blue
line, x-axis is E). The solid blue line depicts the data of the dashed blue line plotted as
a function of the average configurational energy 〈U〉 at fixed total energy. Right plot: the
inverse microcanonical temperature defined from the Gibbs entropy in configuration space
(red solid line, x-axis is U) and in phase space (dashed magenta line, x-axis is E). The solid
magenta line depicts the data of the dashed magenta line plotted as a function of the average
configurational energy 〈U〉 at fixed total energy. The insets show the enlarged region of the
1st order transition with points indicating the temperatures at coexistence. All data are for
the SF-copolymer chain with block length b = 16 and stiffness εst = 20.

the inverse temperature shows an inflection point at the continuous collapse transition
of the model [34,36]. For the large stiffness, a first-order pseudo phase transition can
be identified by the looped region in the curve, and again, the Gibbs and Boltzmann
definitions agree in this regime. At larger energies the Boltzmann temperature shows
an oscillatory regime created by individual bond angles which assume their energeti-
cally favorable angle range [35] (similar to closing hydrogen bonds in the poly-alanine
model). The Gibbs temperature also shows these oscillations, but in a continuously
more damped fashion as the energy increases, because it averages over larger and
larger parts of configuration space with increasing energy. The poly-alanine inverse
temperatures are zick-zack curves for both definitions, with the Boltzmann definition
showing regions of negative temperature whenever a hydrogen bond closes. All the
remarks by Hilbert, Dunkel and Hänggi [24,25] on the inability to predict energy
flow from temperature for two bodies in contact for a non-invertible relation between
temperature and energy are clearly applicable to this protein model system.

3.2 Gibbs and Boltzmann entropies as a function of total energy

When we consider the microcanonical ensemble we have to, however, work at con-
stant total energy, not at constant configurational energy. The way to calculate the
density of states in phase space, g(E), from the density of states in configuration
space, g(U), is explained in the theory section. In Figure 3 we compare the result for
the inverse microcanonical temperature in the SF copolymer model, T−1(E) to the
result for T−1(U) shown in Figure 2, both for the Boltzmann definition (left plot)
and the Gibbs definition (right plot). The same comparison is shown for the poly-
alanine model in Figure 4. The first observation is that the range of oscillations in
inverse temperature – a feature one would call an artefact for large thermodynamic
systems – is absent now in both models and for both definitions of entropy. The con-
volution of energy contributions to the total energy from the discrete configurational
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Fig. 4. The inverse microcanonical temperature defined from the Boltzmann entropy (left
plot) and from the Gibbs entropy (right plot) both in configurational and in phase space.
The color codes and the line style codes are the same as in Figure 3. All data are for the
poly-alanine model chain of length N = 10.

Table 1. Inverse transition temperatures for the first order like transition in the SF copoly-
mer model. Averages and error bars are obtained based on 10 independent determinations
of g(U).

definition area U infl. U area E infl. E
Boltzmann 0.957± 0.001 0.973± 0.003 0.955± 0.001 0.960± 0.001
Gibbs 0.957± 0.001 0.967± 0.004 0.955± 0.001 0.958± 0.001

energy and the continuous kinetic energy has smoothened the densities of states lead-
ing to well-behaved curves for T−1(E). More interestingly, the looped region for the
first order transition in the SF copolymer model is shifted to the right (obviously, E is
always larger than U) but occurs at the same height, i.e., at the same transition tem-
perature. This is shown in more detail in the insets of Figure 3 where the horizontal
lines indicate the Gibbs double tangent construction and the points are the inflection
points in the transition region, which can also be used to determine the transition
temperature [41]. All transition temperatures found in this way are listed in Table 1.
Clearly, they agree very well with each other, except for the temperature determined
from the second numerical derivative of the discrete configurational entropy where
the numerical uncertainties add up.
Finally, Figures 3 and 4 contain a third data set. Here we plotted the inverse

temperature T−1(E) against the average potential energy 〈U〉(E) at fixed total
energy. The range of potential energies U accessible at a given total energy E is
Umin ≤ U ≤ min (E,Umax), but different potential energies occur with different prob-
abilities:

p (U |E) = (E − U)d/2−1 · g(U)Θ(E − U)
min(E,Umax)∑
U ′=Umin

(E − U ′)d/2−1 · g(U ′)
· (31)

Using equation (31) one can calculate the mean configurational energy or its distribu-
tion for known configurational density of states function g(U) and given total energy
E. These two data sets, given by the full blue resp. magenta lines in the plots in
Figure 3 and Figure 4 superimpose on the the predictions from the configurational
entropy, but do not exhibit any of the unusual behavior – from the point of view of
large system thermodynamics – found for the configurational entropy data. For the
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Fig. 5. Conditional probability p (U |E) for the SF-copolymer chain with block length b = 16
and stiffness εst = 20. Both 1st and 2nd order transitions are visible.

poly-alanine system shown in Figure 4, this analysis allows to identify the continuous
helix-coil transition in this model at low energies most clearly.
Figure 5 shows a color-coded height plot for the conditional probability of the

configurational energy (Eq. (31)) at fixed total energy. The gray line represents the
mean configurational energy, black lines are isolines. The conditional probability dis-
tribution p (U |E) has an area with two maxima of probability in the range of the 1st
order-like pseudo phase transition, whereas in the regime of the 2nd order-like transi-
tion just some widening of the distribution with a single maximum occurs. For large
energies (not shown here) it reflects the oscillatory features of the configurational
density function g (U).
Finally we want to comment on the fact that the differences between the mi-

crocanonical temperatures obtained from Boltzmanns and Gibbs definition are well
understood and are reflecting the behavior of the microcanonical specific heat [23,24]
following from the Gibbs definition

TG(E)

TB(E)
= 1− 1

CGV (E)
, (32)

which is defined as

CGV (E) =
1

1− Ω′′Ω
Ω′2
, (33)

with Ω given by equation (7). In Figure 6 we confirm that our data comply with the
exact result in equation (32).

3.3 Analysis and comparison of data for different conservation laws

The inverse microcanonical temperature according to Boltzmann and to Gibbs using
different conservation laws is shown in Figure 7 for the SF-copolymer chain (block
length b = 16 and stiffness εst = 20). Clearly, the overall influence of taking into
account conservation of linear and angular momentum is very small for this system.
However, taking into account the conservation of angular momentum leads to a visible
shift of the looped region of the first order pseudo phase transition, as shown in the
insets of Figure 7, while the influence of the conservation of linear momentum is
hardly visible. The inverse transition temperature of the first order like transition
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Fig. 6. Ratio of the inverse temperatures according to Boltzmann and to Gibbs for the
SF-copolymer chain with block length b = 16 and stiffness εst = 20 shown by the red line.
The function 1− 1/CGV (E) is shown by black circles.

Fig. 7. The inverse microcanonical temperature according to Boltzmann (left plot) and to
Gibbs (right plot) taking different conservation laws (full line: only energy conservation, dot-
ted line: energy and linear momentum conservation, dashed line: energy, linear and angular
momentum conservation) into account for the SF-copolymer chain (block length b = 16 and
stiffness εst = 20). The insets show an enlarged view in the region of the 1st order transition.

in the presence of angular momentum conservation is T−1(E) = 0.925, both for the
Boltzmann and Gibbs entropy definitions, a noticable shift by ΔTtr = 0.03 compared
to the results listed in Table 1. The calculation of the density of states in the presence
of angular momentum conservation involves the determination of the inertia tensor
of the particle distribution in space (see theory section), modifying the density of
states in phase space. This quantity is shown in Figure 8 for the SF copolymer chain.
It reflects the conformational changes of the chain giving rise to the oscillations in
the inverse configurational temperature and has a kink in the range of configurational
energies of the first order like pseudo phase transition, which seems to underly the shift
observable in Figure 7. In Figure 9 the effects of the conservation laws on the pseudo
phase transitions of the SF copolymer chain are analyzed using the microcanonical
specific heat. For the region of the first order like transition the conclusions are the
same as obtained from the inverse temperature. Conservation of linear momentum
has little effect, while conservation of angular momentum leads to a visible shift of
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Fig. 8. The average of one over the square root of the determinant of the inertia tensor of
the SF-copolymer as a function of configurational energy calculated using the Boltzmann
entropy. The inset shows the enlarged region of the first order pseudo phase transition.

the transition temperature (as also shown in the insets on the left figures). The peak
in the specific heat indicating the second order transition, however, shows shifts,
both with linear momentum conservation (to the left) and with conservation of linear
and angular momentum (to the right). Clearly, taking the conservation of angular
momentum into account in addition to energy and linear momentum conservation
has a non-negligible influence, at least for small systems. For large systems, all these
effects will, of course, vanish.

4 Discussion and conclusions

We have presented an analysis of the microcanonical properties of two coarse-grained
polymer models, a semi-flexible/flexible multiblock copolymer and an intermediate
resolution model for poly-alanine, based on either the Boltzmann or the Gibbs de-
finition of the microcanonical entropy. For finite systems, both definitions can lead
to predictions, for instance for the microcanonical inverse temperature, which could
be considered as artefacts when one has the behavior in the thermodynamic limit in
mind. One such example is given by the fact, that the Boltzmann temperature gets
negative for our models with a finite upper bound for the configurational energy, the
other is given by the oscillatory regimes occurring in the T−1(E) curves for both
models. However, these are well-defined and mechanistically understandable features
of the models, and they vanish in the thermodynamic limit. The Gibbs entropy has
the advantage that the associated microcanonical temperature stays positive for all
energies by definition, and the entropy generally shows a smoother behavior as a
function of energy, again by definition.
More importantly, when one takes into account that the microcanonical ensem-

ble is not defined as a constant configurational energy ensemble but as a constant
total energy ensemble, the “strange” microcanonical features discussed above all van-
ish. This is again due to an averaging procedure, as the number of states at fixed
energy, E, is given by a convolution of the number of states at fixed configuration
energy, U , with the number of states at the corresponding kinetic energy, E − U .
Interestingly, and fortunately, conclusions on the location of pseudo phase transi-
tions are little affected by the choice of entropy or total vs. configurational energy,
at least for our model systems. As these possess 192 (SF copolymer) resp. 120 or 192
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Fig. 9. The microcanonical specific heat according to Boltzmann (upper line) and to Gibbs
(lower line) using different conservation laws (encoded by the same line styles as in Fig. 7).
The regions of 1st order (left column) and 2nd order (right column) transitions are shown sep-
arately. The data are for the SF-copolymer chain (block length b = 16 and stiffness εst = 20).
Insets show the inverse microcanonical temperatures in phase space according to Boltzmann
and Gibbs).

(poly-alanine with N = 10 or N = 16) degrees of freedom in configuration space, we
can conclude that the limiting behavior, where the choice of Gibbs vs. Boltzmann en-
tropy does not matter any more, seems to be reached rather quickly. Of course, in a
high precision determination of phase transition temperatures in the thermodynamic
limit, a careful finite size scaling analysis would still show systematic trends [42].
We observed the strongest effect on an estimated transition temperature for a first

order transition upon inclusion of angular momentum conservation as a constraint in
the calculation of the densities of states (an observation also made in [43]). Linear
momentum conservation had almost no effect. We argued that the strong effect of
angular momentum conservation comes from a different weight which the density
of states at fixed configurational energy obtains by the averaged square root of the
inverse determinant of the inertia tensor, a quantity depending on the configuration
of the system.
For continuous degrees of freedom, the property of the Gibbs entropy to be a me-

chanical adiabatic invariant for any system size N and not only in the thermodynamic
limit, favors it over the Boltzmann entropy, if the latter is defined as the measure of a
surface at constant energy (cf. Eq. (3) or Eq. (5)), which only possesses this property
in the thermodynamic limit. The “Boltzmann” entropy calculated in numerical work
for a continuous variation of energy values is actually by numerical necessity deter-
mined from an integral over the density of states (defined by Eq. (5)) over some small
width ΔE. As a difference between two phase space volumes (contained within the
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hypersurface of energy E and the hypersurface of energy E +ΔE, respectively), which
are both invariant under a given adiabatic process due to the adiabatic theorem, this
is also an adiabatic invariant. Consequently, its logarithm is actually a type of local
Gibbs entropy and also an adiabatic invariant for finite system sizes. Because of its
locality in energy, it can lead to regimes of negative absolute temperature. However,
at finite N , there are other, and perhaps more or equally important approximations
usually taken, like the neglect of conservation laws every closed mechanical N -particle
system necessarily possesses which lead to effects which are numerically as important
as the different entropy definitions. And finally, there can occur problems with the
arbitrariness of the transition from differentials to finite differences in the application
of thermodynamic laws to finite sized systems.
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