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Abstract. We present large-scale molecular dynamics simulations for a
coarse-grained model of polymer melts in equilibrium. From detailed
Rouse mode analysis we show that the time-dependent relaxation of
the autocorrelation function (ACF) of modes p can be well described
by the effective stretched exponential function due to the crossover
from Rouse to reptation regime. The ACF is independent of chain sizes
N for N/p < Ne (Ne is the entanglement length), and there exists a
minimum of the stretching exponent as N/p→ Ne. As N/p increases,
we verify the crossover scaling behavior of the effective relaxation time
τeff,p from the Rouse regime to the reptation regime. We have also pro-
vided evidence that the incoherent dynamic scattering function follows
the same crossover scaling behavior of the mean square displacement
of monomers at the corresponding characteristic time scales. The de-
cay of the coherent dynamic scattering function is slowed down and a
plateau develops as chain sizes increase at the intermediate time and
wave length scales. The tube diameter extracted from the coherent
dynamic scattering function is equivalent to the previous estimate from
the mean square displacement of monomers.

1 Introduction

The dynamics of polymer chains in a melt is a complicated many-body problem where
the motion of chains depends not only on different length scales but also time scales.
It is well known that for short unentangled chains in a melt, excluded volume and
hydrodynamic interactions are screened, and the viscoelastic properties of chains can
be approximately described by the Rouse model [1–3]. If the polymer chains become
long enough, the topological constraints dominate the dynamics of the chains. At
intermediate time and length scales, the chains are assumed to move back and forth
(reptation) within a tube-like region created by surrounding entangled chains and
depending on the entanglement length Ne. The dynamic behavior within this time
frame is well described by the reptation theory of de Gennes, Doi and Edwards [2–4].
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Rouse mode analysis provides a straightforward way of understanding the dynam-
ics of single chains in a melt by mapping the trajectories of the chains into orthogonal
Rouse modes. The chains are assumed to be Gaussian in this analysis. This has been
applied widely to the analysis of experimental data and simulation data. Besides the
original predictions of this model, in the literature [5–9] there also exist modified the-
oretical predictions including the excluded volume interaction, the intrinsic stiffness
of chains, the intramolecular correlations in chains, and the topological constraints
for analyzing the relaxation of Rouse modes.
In our recent work [10], we have investigated the chain conformations of fully

equilibrated and highly entangled polymer melts and compared our simulation re-
sults to the related theoretical predictions in detail. The fully equilibrated and highly
entangled polymer melts were generated by a novel and very efficient methodology
through a sequential backmapping of soft-sphere coarse-grained configurations from
low resolution to high resolution, and finally the application of molecular dynamics
(MD) simulations of the underlying bead-spring model [11–14]. We have also studied
the dynamics of fully equilibrated polymer melts, characterized by the mean square
displacement of monomers, and determined the characteristic time scales: the char-
acteristic time τ0, the entanglement time τe ≈ τ0N2e , the Rouse time τR ≈ τ0N2, and
the disentanglement time τd ≈ τ0N2(N/Ne)1.4, according to the predictions given by
the Rouse model and the reptation theory, where Ne is the entanglement length and
N is the chain size. For N < Ne in the Rouse regime, there exist exact solutions of
almost all physical observables. Therefore, based on this work, we are interested in
understanding to what extent the dynamics of single chains can be analyzed through
the Rouse mode analysis and check the scaling predictions of the relaxation of the
Rouse modes in the literature [1–9,14–16] whenever it is possible. On the other hand,
Rouse mode decay should display a similar slowing down of the dynamic structure
factor. The tube diameter introduced in the reptation theory can be extracted from
the single chain dynamic structure factor measured via neutron spin echo (NSE)
experiments [17–19]. Therefore we also study the dynamic scattering function from
single chains in a melt, and check the consistency of the tube diameter estimated from
different physical quantities [3,14,15,20,21]. We use the ESPResSo++ package [22]
to perform the standard MD simulations with Langevin thermostat at the tempera-
ture T = 1ε/kB where kB is the Boltzmann factor to study fully equilibrated poly-
mer melts consisting of 1000 chains of sizes N = 500, 2000 for kθ = 1.5 (τ0 ≈ 2.89τ ,
Ne ≈ 28 [10,12]) and of sizes N = 1000, 2000 for kθ = 0.0 (τ0 ≈ 1.5τ , Ne ≈ 87 [12])
in the framework of the standard bead-spring model [14] with a bond bending inter-
action parameter kθ at a volume fraction φ = 0.85.
The outline of the paper is as follows: Section II describes the theoretical back-

ground of the Rouse model and the Rouse mode analysis of highly entangled polymer
melts. Section III describes the scaling behavior of dynamic structure factors and the
comparison between theory and simulation. Finally, our conclusions are summarized
in Section IV.

2 Rouse mode analysis

In the Rouse model, neglecting inertia effects Rouse chains undergo Brownian motion
and therefore the Langevin equation of motion for the ith monomer is thus given by

ζ
dri
dt
=
∂U(r0, . . . , rN−1)

∂ri
+ fRi (t) (1)
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with the Rouse potential

U(r0, . . . , rN−1) =
3kBT

2b2

N−1∑

i=1

(ri+1 − ri)2 (2)

where b is the effective bond length, ri is the position vector of the ith monomer, and
fRi (t) is a random force. The friction ζ and the random force f

R
i (t) are related by the

fluctuation dissipation theorem, i.e.,

〈fRi (t) · fRj (t′)〉 = 6kBTζδijδ(t− t′) . (3)

The Rouse modes Xp(t) are defined as the cosine transforms of position vectors ri at
time t for i = 1, . . . , N as given in reference [23],

Xp(t) =

(
2

N

)1/2 N∑

i=1

ri(t) cos
[pπ
N
(i− 1/2)

]
, p = 0, . . . , N − 1 . (4)

Here the p > 0 modes describe the internal relaxation of a chain of N/p monomers
while the 0th (p = 0) mode corresponds to the motion of the center-of-mass of chain.
Since each Rouse mode Xp(t) for p > 0 performs a Brownian motion in a harmonic
potential, independent of each other, the cross-correlations should vanish, the nor-
malized autocorrelation function is expected to follow an exponential decay,

〈Xp(t)Xp(0)〉
〈Xp(0)Xp(0)〉 = exp(−t/τp) (5)

with

〈X2p〉 = 〈Xp(0)Xp(0)〉 = b2
[
4 sin2

( pπ
2N

)]−1 p/N�1−→ b2
(pπ
N

)−2
, (6)

and

τp = τ0

( p
N

)−2
=

ζb2

3kBTπ2

( p
N

)−2
. (7)

For p = N , τN = τ0 is the shortest relaxation time of the Rouse model, where τ0 =
ζb2/(3kBTπ

2) is the characteristic relaxation time, while τ1 for p = 1 is the longest
relaxation time equal to the Rouse time, i.e. τ1 = τR.
However, as the excluded volume interaction and topological constraint are taken

into account, it has been pointed out in the literature [5,6,24] that simulation re-
sults of the normalized autocorrelation function are well described by the stretched
exponential Kohlrausch-Williams-Watts (KWW) function, i.e.

〈Xp(t)Xp(0)〉
〈Xp(0)Xp(0)〉 = exp[−(t/τ

∗
p )
βp ] , (8)

where the KWW characteristic relaxation time τ∗p and the stretching exponent βp
depend on the mode p, and both are measures of importance of excluded volume
interactions and topological constraints. The effective Rouse time of mode p is thus
given by

τeff,p =

∫ ∞

0

dt exp[−(t/τ∗p )βp ] =
τ∗p
βp
Γ

(
1

βp

)
, (9)

where Γ (x) is the gamma function.
Figure 1 shows the typical relaxation of the time-dependent normalized autocor-

relation function of modes p, 〈Xp(t)Xp(0)〉/〈X2p 〉, according to the definition of Rouse
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Fig. 1. (a) Semi-log plot of the normalized autocorrelation function of Rouse modes,
〈Xp(t)Xp(0)〉/〈X2p〉, versus time t[τ ] for polymer melts of size N = 500 and N = 2000.
N/p = 5, 10, 25, 50, 125, 250, and 500 from left to right. (b) ln[〈Xp(t)Xp(0)〉/〈X2p〉] versus
tp2/N2[τ ] for N=500, and for several chosen values of p, as indicated. (c) Same data for
N = 500 as shown in (a), but including the curves which present the best fit of our data
using Equation (8) for comparison. All data are for kθ = 1.5.

modes Xp(t) given in Equation (4). Data are for polymer melts of chain sizes N = 500
and 2000 with kθ = 1.5. The data sets shown in Figure 1a from left to right corre-
spond to N/p = 5, 10, 25, 50, 125, 250, and 500. We see that for N/p < Ne (Ne ≈ 28
for kθ = 1.5) the relaxation of 〈Xp(t)Xp(0)〉/〈X2p 〉 is independent of chain size N ,
namely, data for N = 500 and N = 2000 are on top of each other. Similar results are
also observed for polymer melts of chain sizes N = 1000 and 2000 with kθ = 0.0 where
the entanglement length Ne ≈ 87 [12] (not shown). In the regime where N/p > Ne
the deviation between two data sets corresponding to the same value of N/p be-
comes more prominent as N/p increases since the entanglement effect between chain
segments becomes more important. In Figure 1b, the plot of ln[〈Xp(t)Xp(0)〉/〈X2p 〉]
versus t/τp with τp = (N/p)

2 (see Eq. (5)) shows that the exponential decay is only
valid for small values of N/p at initial relaxation time t. As p becomes small and
t increases, one sees systematic deviations from the exponential decay due to the
crossover from Rouse to reptation behavior. In Figure 1c, the curves indicate the
best fit of our data for N = 500 to the theoretical prediction (Eq. (8)) with two
fitting parameters βp and τ

∗
p . Polymer chains containing N/p monomers are relaxed

completely as 〈Xp(t)Xp(0)〉/〈X2p 〉 → 0 for t� 1. Therefore, one can estimate roughly
the required relaxation time to relax very long chains in a melt through this curve
fitting procedure. Fitted values of the stretching exponent βp and the estimates of
the effective relaxation time τeff,p from βp and τ

∗
p (Eq. (9)) are shown in Figure 2.
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Fig. 2. (a) Values of exponent βp from fitting the stretched exponential function, Equa-
tion (8), to the normalized autocorrelation function of Rouse modes as shown in Figure 1
plotted versus N/p. (b) Effective relaxation times τeff,p plotted as a function of N/p. In (a)
N/p ≈ Ne are indicated by arrows for kθ = 0.0 and 1.5. In (b) two scaling laws τeff,p ∼ (N/p)2
and τeff,p ∼ (N/p)3.4 predicted by Rouse model and reptation theory, respectively, are also
shown for comparison.

We see that βp reaches a minimum around N/p ≈ Ne for both cases kθ = 1.5 and 0.0
in Figure 2a. For chains having the same intrinsic stiffness, βp is independent of size N
for N/p < Ne while βp decreases with increasing size N for N > Ne. Our results agree
with the argument that the development of a minimum in βp is due to kinetic con-
straints on the chains [5,6], and the recent work [16] using the same simulation model
but different cut-off for the LJ potential. At short length scales, the local constraints
on the motion of monomers is related to the chain connectivity and the excluded
volume interactions between monomers while at long length scales, the entanglement
effect sets in that the motion of entangled chains is strongly hindered by topological
constraints. Results of the effective relaxation time τeff,p show the crossover behavior
from the Rouse regime (τeff,p ∼ (N/p)2) to the reptation regime (τeff,p ∼ (N/p)3.4) as
N/p increases.
In previous Monte Carlo simulations of polymer melts based on the bond fluctua-

tion model [7], the authors showed that the Rouse model overestimates the correlation
as p/N > O(10−1) due to the lack of considering the intrinsic stiffness of the chains.
Replacing random walk chains by freely rotating chains with a specific bond angle θ,
the analytical expression of the amplitude 〈Xp(0)Xp(0)〉 is as follows,

〈Xp(0)Xp(0)〉

= b2

{[
4 sin2

( pπ
2N

)]−1
−
[
1− | 〈cos θ〉 |2
4 | 〈cos θ〉 | + 4 sin

2
( pπ
2N

)]−1
(1 +O(N−1)

}
.

(10)

Figure 3a presents the rescaled amplitude of the autocorrelation function of Rouse
mode p, 〈Xp(0)Xp(0)〉/b2, plotted versus p/N . Here b2 is determined by the best
fit of our data to Equation (6) for small values of p/N . b2 = 2.74σ2 for kθ = 1.5 and
b2 = 1.74σ2 for kθ = 0.0. Our fitted values of b

2 for both cases satisfy the relation b2 =

2bC∞ predicted for freely rotating chains, where C∞ is Flory’s characteristic ratio
(C∞ = 2.88, 1.83 for kθ = 1.5, 0.0, respectively), and 
b = 0.964σ is the mean bond
length [10,12]. Theoretical predictions given in Equations (6) and (10) are also shown
for comparison. The deviation from the Rouse prediction for p/N > O(10−1) is indeed
seen as shown in reference [7]. Taking the estimates of 〈cos θ〉 from our simulations,



698 The European Physical Journal Special Topics

10-2

 1

102

104

106

10-3 10-2 10-1  1

<
 X

2 p 
>

 / 
b2

p / N

kθ=0.0, N = 2000
kθ=0.0, N = 1000
kθ=1.5, N = 2000
kθ=1.5, N = 500  

10-2

 1

102

104

106

10-3 10-2 10-1  1

<
 X

2 p 
>

 / 
b2

p / N

1/[4sin2(pπ/(2N))]
(πp/N)-2, Eq.(6)

Eq.(10)
 0

 0.8

 1.6

 2.4

 3.2

 1  10  100  1000

4s
in

2 (π
p/

(2
N

))
 <

 X
p2  >

N / p

kθ=1.5, N = 2000
kθ=1.5, N = 500  
kθ=0.0, N = 2000
kθ=0.0, N = 1000

Eq.(11)

(b)(a)

Fig. 3. Rescaled amplitude of the autocorrelation function of the Rouse modes, 〈X2p〉/b2
(a) and 4 sin2(πp/(2N))〈X2p〉 (b), plotted versus p/N and N/p respectively. Two chain sizes
N = 500, 2000 are chosen for kθ = 1.5, and N = 1000, 2000 for kθ = 0.0, as indicated. In (a),
theoretical predictions given in Equations (6) and (10) are shown for comparison. b2 = 2.74σ2

for kθ = 1.5 and b
2 = 1.74σ2 for kθ = 0.0. In (b), Equation (11) with C = 0.23 and 0.32 for

kθ = 1.5 and kθ = 0, respectively, are also shown for comparison.

our data are described quite well by Equation (10) for p/N > O(10−1). For small p/N
(large N/p), one should expect that 4 sin2(pπ/(2N))〈X2p 〉 reaches a plateau value b2.
However, since at short length scale the local intramolecular correlations in the chains
(the correlation hole effect) are important, a correction term [8,9,16] O((N/p)−1/2)
is needed to be considered as follows,

4 sin2(pπ/(2N))〈X2p 〉 = b2[(1− C(N/p)−1/2] (11)

where C is a fitting parameter. The prediction is also verified as shown in Figure 3b.
Since the entanglement effect already sets in at N/p ≈ 28 for kθ = 1.5, we see that for
chains of size N = 2000, the data for kθ = 1.5 fluctuate more than that for kθ = 0.0.

3 Dynamic structure factors

Dynamic behavior of polymer chains in a melt can also be described by the dynamic
scattering from single chains. The coherent and incoherent dynamic structure factors
Scoh(q, t) and Sinc(q, t) for single chains are defined by

Scoh(q, t) =
1

N
〈
N∑

i=1

N∑

j=1

exp{iq · [ri(t)− rj(0)]}〉 , (12)

and

Sinc(q, t) =
1

N
〈
N∑

i=1

exp{iq · [ri(t)− ri(0)]}〉 . (13)

The average 〈· · · 〉 denotes an average over all chains, many starting states (t = 0),
as well as over orientations of the wave vector q having the same wave length. Note
that Scoh(q) is the q-space representation of the Rouse modes.
In the Rouse model, the displacement between monomer positions is

Gaussian distributed since the force has a Gaussian probability distribution.
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Therefore, Equations (12) and (13) can be written as

Scoh(q, t) =
1

N

N∑

i=1

N∑

j=1

exp{−1
6
q2〈[ri(t)− rj(0)]2〉}, (14)

and

Sinc(q, t) =
1

N

N∑

i=1

exp{−1
6
q2〈[ri(t)− ri(0)]2〉} (15)

where 〈[ri(t)− ri(0)]2〉 ∼ g1(t) is simply the mean square displacement of monomers.
For short chains (N < Ne), the scaling predictions of Scoh(q, t) and Sinc(q, t) for

t < τe (N < Ne) and q > 2π/Rg(N) (Rg(N) is the radius of gyration of chains con-
taining N monomers) predicted by the Rouse model are as follows,

ln[Scoh(q, t)/Scoh(q, 0)] = −q2(Wt)1/2/6 , (16)

and
lnSinc(q, t) = −q2(Wt)1/2/6 (17)

where the factor W = 12kBTb
4

πζ
and Rg is the radius of gyration of the chain of size

N . For t� τe one expects the standard diffusion behavior, i.e.
ln[Scoh(q, t)/Scoh(q, 0)] = q

2Dt. (18)

For long chains (N > Ne), the entanglement effect due to the topological constraints
between chains in a melt becomes important. According to the reptation theory, local
reptation processes for short time and escape processes from the tube (creep motion)
for longer times and small values of q should be considered. Thus a pronounced plateau
in Scoh(q, t) is predicted and can loosely be interpreted as a Debye-Waller factor for
τe � t� τd,

Scoh(q, t)

Scoh(q, 0)
= 1− q2d2/36 . (19)

Note that here the tube diameter is defined by d = Re(Ne) whereRe(Ne) is the end-to-
end distance of chains of sizeNe [3,15]. In our previous work [10], the definition of tube

diameter dT is different by a factor of
√
3, i.e. our simulation estimate of tube diam-

eter dT = (2〈R2g(Ne)〉)1/2 = (〈R2e(Ne)〉/3)1/2 = d/
√
3. In the deep-reptation regime,

an analytic expression of the coherent dynamic structure used often in the neutron-
spin-echo (NSE) measurements for the determination of the tube diameter is given
by [3,14,15,20,21]

Scoh(q, t)

Scoh(q, 0)
=

{[
1− exp

(
−q
2d2

36

)]
f(q2(Wt)1/2)

+ exp

[
−q
2d2

36

]}
8

π2

∞∑

n=1,odd

exp[−tn2/τd]
p2

(20)

with f(u) = exp(u2/36)erfc(u/6).
Figure 4 shows the results of the incoherent dynamic structure factor Sinc(q, t)

according to Equations (13) and (17) for polymer melts of sizes N=500 and 2000 with
kθ=1.5. The characteristic time scales, τ0, τe, and τR,N=500 taken from reference [10]
are indicated by arrows. Since lnSinc(q, t) ∼ g1(t), the scaling laws of g1(t) showing
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Fig. 5. lnScoh(q, t)/Scoh(q, 0) plotted versus q
2t1/2/6[σ−2τ1/2] for polymer melts of size

N = 2000 and for kθ = 0.0 (a) and kθ = 1.5 (b). The scaling law predicted by the Rouse
model, t1/2 is shown by a straight line.

the crossover behavior from the Rouse regime to the reptation regime as t increases are
also shown for comparison. In the Rouse regime where q > 2π/dT ≈ 1.25σ−1, we see
that lnSinc(q, t) ∼ t for t < τ0 while lnSinc(q, t) ∼ t1/2 for τ0 < t < τe. In the reptation
regime one should expect that lnSinc(q, t) ∼ t1/4 for τe < t < τR and 2π/Rg(N) <
q < 2π/dT . We see that indeed Sinc ∼ t1/4 for 0.4σ−1 < q < 1.25σ−1 in Figure 4a
and for 0.2σ−1 < q < 1.25σ−1 in Figure 4b. Here for kθ = 1.5, Rg ≈

√
0.4839Nσ [10].

In Figure 4a, we have also observed that lnSinc(q) ∼ t1/2 for t > τR and q < 0.4σ−1.
Therefore, our results are in perfect agreement with the theoretical predictions.
For checking the scaling behavior of the normalized coherent dynamic structure

factor predicted by the Rouse model, we plot ln[Scoh(q, t)/Scoh(q, 0)] versus q
2t1/2/6

for polymer melts of size N = 2000 with kθ = 0.0 and 1.5 in Figure 5. We see that
in the intermediate time regime τ0 < t < τe, our data are also in perfect agreement

with the scaling law t1/2 for q > 2π/dT ∝ N−1/2e σ−1. For τd � t� τe, one would
expect that Scoh(q, t)/Scoh(q, 0) reaches a plateau predicted by the reptation theory
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Fig. 6. Semi-log plot of normalized coherent dynamic structure factor, Scoh(q, t)/Scoh(q, 0),
versus q2t1/2/6 for kθ = 0.0 (a) and kθ = 1.5 (b). Five values of q and two chain sizes N are
chosen, as indicated.
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Fig. 7. Normalized coherent dynamic structure factor, Scoh(q, t)/Scoh(q, 0), plotted versus t
for polymer melts of sizesN = 500 (a) and 2000 (b) with kθ = 1.5. Five values of q are chosen,
as indicated. The curves show the best fit of our data by adjusting the fitting parameter d
using Equation (20).

(Eq. (19)). Therefore, in Figure 6, we show the similar data as shown in Figure 5
but plot Scoh(q, t)/Scoh(q, 0) versus q

2t1/2/6. We see that first data tend to collapse
onto a single master curve for τ0 < t < τe as q increases and Scoh(q, t)/Scoh(q, 0) is
independent of chain size N . As t > τe, Scoh(q, t)/Scoh(q, 0) for two different chain
sizes N start to deviate from each other. For polymer chains of size N = 2000 in both
cases (kθ = 0.0 and kθ = 1.5), Scoh(q, t)/Scoh(q, 0) slows down as t� τe. It gives the
first evidence from simulations that a pronounced plateau in Scoh(q, t) shall occur

as chain size N increases. Finally, we determine the tube diameter dT = d/
√
3 for

kθ = 1.5 by fitting our simulation data of Scoh(q, t)/Scoh(q, 0) to Equation (20) (see
Fig. 7). Our results show that dT ≈ 7.10σ for N = 500, and dT ≈ 5.95σ for N = 2000
which are compatible to our previous estimate of dT ≈ 5.02σ [10].

4 Conclusion

By extensive molecular dynamics simulations and accompanying theoretical predic-
tions in the literature, we have investigated the dynamic properties of polymer melts
in equilibrium by analyzing the chain Rouse modes, and the dynamic coherent and
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incoherent structure factors for chains of two different sizes and stiffnesses. The relax-
ation of time-dependent autocorrelation functions of Rouse modes p is independent
of chain size N for N/p < Ne (Fig. 1a) where the entanglement length Ne is obtained
through the primitive path analysis (PPA) [10,12,25]. Estimates of the stretching
exponent βp also show that the minimum of βp occurs in the vicinity of N/p ≈ Ne
(Fig. 2(a)). The crossover behavior of effective relaxation times τeff,p from the Rouse
regime to the reptation chain as N/p increases is verified as well. Since all these es-
timated quantities for N/p < Ne behave differently from that for N/p > Ne, we see
that Ne can also be determined roughly via the Rouse mode analysis of large poly-
mer melt systems of two different chain sizes, and the value is consistent with that
obtained through PPA. Our results are also in perfect agreement with the extended
theoretical predictions considering the excluded interaction, topological constraint,
the intramolecular interactions, and chain stiffness (Fig. 3).
The scaling behavior of coherent and incoherent dynamic structure factors

strongly depends on the time t and wave length q. Therefore, it is a delicate matter to
analyze the dynamic structure factors. However, we have provided evidence that the
scaling behavior of Sinc(q, t) (Fig. 4) is compatible with the mean square displacement
of monomers g1(t), and the crossover points characterized by the characteristic time
scales τ0, τe, and τR and the corresponding wave length scales (the inverse of length
scales) are consistent with each other. The slowing down of Scoh(q, t) (Fig. 6) gives
the first evidence that Scoh(q, t) exhibits a plateau for τe � t� τd as the chain size
N increases. The tube diameter dT = d/

√
3 extracted from Scoh (Fig. 7) is also in

perfect agreement with dT obtained from g1(t) in reference [10].
We hope that the present work showing the detailed analysis of the dynamic

properties of highly entangled chains covering the scaling regimes from Rouse to
reptation will help for the further understanding of the dynamic behavior of the
deformed polymer melts, polydisperse polymer melts, and the related experiments.
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24. Y. Li, M. Kröger, W.K. Liu, Phys. Rev. Lett. 109, 118001 (2012)
25. R. Everaers, S.K. Sukumaran, G.S. Grest, C. Svaneborg, A. Sivasubramanian,
K. Kremer, Science 303, 823 (2004)

Open Access This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.


	1 Introduction
	2 Rouse mode analysis
	3 Dynamic structure factors
	4 Conclusion
	References



