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Abstract. Observed efficiencies of industrial power plants are often
approximated by the square-root formula: 1−√T−/T+, where T+(T−)
is the highest (lowest) temperature achieved in the plant. This expres-
sion can be derived within finite-time thermodynamics, or, by entropy
generation minimization, based on finite rates for the processes. In these
analyses, a closely related quantity is the optimal value of the inter-
mediate temperature for the hot stream, given by the geometric-mean
value:

√
T+T−. In this paper, instead of finite-time models, we propose

to model the operation of plants by quasi-static work extraction models,
with one reservoir (source/sink) as finite, while the other as practically
infinite. No simplifying assumption is made on the nature of the finite
system. This description is consistent with two model hypotheses, each
yielding a specific value of the intermediate temperature, say T1 and
T2. The lack of additional information on validity of the hypothesis that
may be actually realized, motivates to approach the problem as an ex-
ercise in inductive inference. Thus we define an expected value of the
intermediate temperature as the equally weighted mean: (T1 + T2)/2. It
is shown that the expected value is very closely given by the geometric-
mean value for almost all of the observed power plants.

1 Introduction

In recent years, there has been a great interest in extending thermodynamic models
to justify the observed performance of industrial power plants [1–4]. The observed
efficiencies are usually much less than the Carnot limit given by

ηC = 1− T−
T+
. (1)

The above value involves only the ratio of the highest (T+) and the lowest (T−)
temperatures for the particular plant. Naturally, real machines operate under irre-
versibilities caused by various factors, like finite rates of heat transfer and fluid flow,
internal friction, heat leakage and so on, unlike the idealized quasi-static processes of
a reversible cycle. Thus the analysis of irreversible models with finite-rate processes
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seems a reasonable goal to pursue. One often-studied measure is the efficiency at
maximum power of an irreversible model which is then compared with the observed
efficiency of these plants.
The earliest known such model is ascribed to Reitlinger [5], which involved a heat

exchanger receiving heat from a finite hot stream fed by a combustion process. An
analogous model was applied to a steam turbine by Chambadal [6]. The considered
heat exchanger in these models is effectively infinite. Novikov [7] considered the heat
transfer process between a hot stream and a finite heat exchanger with a given heat
conductance. Two, simple but significant, assumptions enter these models: i) constant
specific heat of the inlet hot stream and ii) validity of Newton’s law for heat transfer.
Further, there appears a floating, temperature variable in between the highest and
the lowest values, such as the temperature of the exhaust warm stream, over which
the output power can be optimized. This yields an optimal value of the intermediate
temperature which is usually found to be

√
T+T−, the geometric mean of T+ and T−.

Related to this fact, is the conclusion that the efficiency at maximum power is given
by an elegant expression:

ηCA = 1−
√
T−
T+
. (2)

Due to historical imperative [8], the above expression may be called Reitlinger-
Chambadal-Novikov efficiency. However, more recently it was rediscovered by Curzon
and Ahlborn (CA) [1]. Thus in the physics literature, it is more popularly addressed
as CA-value. This latter model considered finite rates of heat transfer at both the
hot and the cold contacts, but also explicitly considered the times allocated to these
contacts. The average power per cycle may be optimized over these times [1], or al-
ternately, over the intermediate temperature variables [9]. This model spawned much
activity and the new area borne thereforth was termed Finite-time Thermodynam-
ics [10]. In the engineering literature, the corresponding approach is called Entropy
Generation Minimization [2,11].
A positive indication for the simple thermodynamic approach is that the actu-

ally observed efficiencies of industrial plants happen to be quite close to CA-value.
Figure 1 shows this comparison as tabulated in Table 1. Although the agreement
is close, the observed values can be higher, or lower, than CA-value. This apparent
discrepency has stimulated further extensions of models, for instance using the low-
dissipation assumption [3], which predict the efficiency at maximum power, to be
bounded as:

ηC

2
≤ η ≤ ηC

2− ηC . (3)

It is then realized that most of the observed efficiencies fall within these bounds [3,4].
Naturally, the question of the actual working constraints and the real optimization
targets for each plant, is also relevant. Still, the effectiveness of these simple models,
in reproducing the gross features of diverse plants, cannot be denied.
Apart from finite-time models, the irreversibilities reducing the efficiency to a

lower-than-Carnot value, may also be treated within a quasi-static work extraction
models with finite source/sink [13–16]. Some of these studies also derive the optimal
value of an intermediate temperature which is the geometric-mean value, and conse-
quently the efficiency at maximum work equals the CA-value. However, here again,
the simplifying assumption of a constant heat capacity, say, of the source or the work-
ing medium, heavily determines the conclusion.
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Fig. 1. Data on the observed efficiencies (ηo) of power plants, plotted against the CA-value,

ηCA = 1−
√
T−/T+ for respective plants as given in Table 1. A point lying on the straight

line has the observed efficiency equal to CA-value. So for points above the line, ηo is below
the CA-value, while the converse is true for the points below this line.

Recently, it was observed [17] that within linear response theory, the bounds such
as equation (3), also follow within a quasi-static model of work extraction from finite-
sized heat source and sink. Reference [17] makes no specific assumption about the
nature of the heat source/sink. The finite size of source/sink is a consideration also
from a practical point of view. Thus the hot source may be a finite amount of fuel,
such as coal or natural gas in a power plant. Further, the sink may not be an infinite
environment, as for instance in a congested environment such as cities, where heat
dissipation is a concern in the overall design. The present study aims to carry for-
ward this analogy [17] between quasi-static engine models with finite reservoirs, and
finite-time models with infinite reservoirs, in the context of the performance of real
industrial plants.
More precisely, we address an inverse question. Instead of finding the optimal in-

termediate temperature and then from it, the efficiency of the process, we use the
information on the highest and the lowest temperatures, along with the value of
observed efficiency, to infer the intermediate temperature at maximum work. The
correspondence between this temperature and efficiency is as follows. If the former is
exactly equal to the geometric-mean value, then the efficiency is equal to CA-value.
The model of work extraction is based on one system as a finite source, or sink, and
the other as an infinite reservoir, which allows for two alternate scenarios: i) when
the source is finite and ii) when the sink is finite. The limited information on the
actual situation being realized out of these two possibilities, motivates to do an infer-
ence analysis. Thus we estimate an expected value of the intermediate temperature.
Interestingly, this value is found to be very close to the geometric mean of T+ and
T−. We also present a quantitative argument for this proximity to the geometric-
mean value. Thus our analysis indicates the role of geometric mean from a novel
angle which has two distinctive features: first, it is based on maximum work ap-
proach, and second, we do not assume a specific nature of the finite source or the
sink per se.
Our starting point is a reversible cycle, operating between two infinite heat reser-

voirs, for which the efficiency is the Carnot value ηC . As a first step that marks a
deviation from reversibility, we consider one reservoir to be finite, while the other
reservoir remains very large compared to the former, or practically infinite. Now, we
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Table 1. Observed efficiencies (ηo) of power plants working between temperatures T+ and

T−, compared with ηCA = 1−
√
T−/T+. The effective temperatures are defined as: T

(+)
m =

T+(1− η0), T (−)m = T−/(1− η0), T (av)m = (T
(+)
m + T

(−)
m )/2, and G(T+, T−) =

√
T+T−.

Industrial Plant T+ T− ηo ηCA T
(−)
m T

(+)
m T

(av)
m G(T+, T−)

Almaraz II 600 290 .34 .30 439.39 396.0 417.7 417.13
(Nuclear, Spain) [2]
Calder Hall 583 298 .19 .29 367.9 472.23 420.07 416.81
(Nuclear, UK) [2]
CANDU 573 298 .30 .28 425.71 401.1 413.41 413.22
(Nuclear, Canada) [1]
Cofrentes 562 289 .34 .28 437.88 370.92 404.40 403.01
(Nuclear, Spain) [2]
Doel 4 566 283 .35 .29 435.39 367.9 401.64 400.22
(Nuclear, Belgium) [2]
Heysham 727 288 .40 .37 480.0 436.2 458.1 457.58
(Nuclear, UK) [2]
Larderello 523 353 .16 .18 420.24 439.32 429.78 429.67
(Geothermal, Italy) [1]
Sizewell B 581 288 .36 .30 450.0 371.84 410.92 409.06
(Nuclear, UK) [2]
West Thurrock 838 298 .36 .40 465.63 536.32 500.97 499.72
(Coal, UK) [1]
Pressurized water 613 304 .33 .30 453.73 410.71 432.22 431.69
nuclear reactor [12]
Boiling water 553 304 .33 .25 453.73 370.51 412.12 410.02
nuclear reactor [12]
Fast neutron 823 296 .40 .40 493.33 493.8 493.57 493.57
nuclear reactor [12]
(Steam/Mercury, 783 298 .34 .38 451.52 516.78 484.15 483.05
US) [2]
(Steam, UK) [2] 698 298 .28 .35 413.89 502.56 458.22 456.08

(Gas Turbine, 963 298 .32 .44 438.24 654.84 546.54 535.7
Switzerland) [2]
(Gas Turbine, 953 298 .34 .44 451.52 628.98 540.25 532.91
France) [2]

first assume that system A acts as a finite heat sink at temperature T−, relative to
a very large heat source at temperature T+. The two are coupled by an ideal engine
which delivers work to a reversible work source, via infinitesimal heat cycles that suc-
cessively increase the temperature of A, till A comes in equilibrium with the source, see
Figure 2(i). At this point, the extracted work is maximal under the given conditions.
Suppose that in this process, the system A moves from an equilibrium state of energy
U− and entropy S− to another equilibrium state with the corresponding values of
U+ and S+. The heat extracted from the hot source is Q+ = T+(S+ − S−). The heat
discarded to the finite sink is q+ = U+ − U−. The work extracted, W+ = Q+ − q+, is
given by

W+ = T+(S+ − S−)− (U+ − U−). (4)

Then the efficiency at maximum work, η+ =W+/Q+, is evaluated to be:

η+ = 1− T
(+)
m

T+
, (5)
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Fig. 2. Schematic of the engine between a finite system and a heat reservoir, for a given
pair of initial temperatures (T+, T−): (i) System A as a finite sink at T− and an infinite
source at T+, coupled with a reversible work source. Work extraction W+, equation (4), is
completed when the temperature of A becomes T+. (ii) System B as a finite source at T+ and
an infinite sink at T−. Maximum extracted work is W−, equation (8), when the temperature
of B becomes T−.

where we define

T (+)m =
U+ − U−
S+ − S− , (6)

a quantity characteristic of system A. Further T
(+)
m may be regarded as an effective

temperature of an infinite reservoir [18], such that the present situation of an infinite
source and a finite sink, at temperatures T+ and T− respectively, is equivalent to
maximum work extraction from a reversible cycle between two infinite reservoirs at

temperatures T+ and T
(+)
m (< T+). In the latter case, the extracted work per cycle

is: W+ = (T+ − T (+)m )(S+ − S−), with (Carnot) efficiency 1− T (+)m /T+, which is the
same as equations (4) and (5).
Now, we assume that a complete information on the states of system A is not

available, or, in particular, T
(+)
m is not known. But if the quasi-static model, with an

infinite source and a finite sink, is a good model for the observed performance of an
industrial plant, then we may infer the relevant value of the effective temperature

T
(+)
m , by setting the theoretical efficiency (η+) for the model to be equal to the
observed value ηo. This implies that we can estimate

T (+)m = T+(1− ηo). (7)

Such values of the intermediate temperatures based on the observed efficiencies of
some of the industrial plants, are tabulated in Table 1, and also depicted in Figure 3
in comparison with the geometric mean value G(T+, T−) =

√
T+T−. The latter value

is chosen simply because when T
(+)
m = G, the observed efficiency is equal to CA-value.

Thus the spread of observed values of the efficiency around CA-value in Figure 1, is
translated here into a spread in the effective temperatures around the geometric-

mean values. More precisely, T
(+)
m ≷ G indicates ηo ≶ ηCA, as may be seen also from

Table 1. It is to be noted that inferring the effective temperature from the observed
efficiency does not determine the nature of the system A or the form of fundamental
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Fig. 3. The effective temperature T
(+)
m plotted against the geometric mean G(T+, T−) =√

T+T−, the two quantities being equal along the straight line.

relation U(S). The latter information is assumed not to be at our disposal within the
premises of our method.
Now, here enters the second important piece of the puzzle in our story. The sce-

nario of work extraction which we have assumed in the above, involving a finite system
coupled to an infinite reservoir via reversible process, is consistent with an alternate
picture too. The latter picture suggests that instead of the finite system acting as
a sink, it can well serve as a finite source, if we reverse the initial temperatures of
the reservoir and the system. This implies that, for the same initial temperatures T+
and T−, we consider a finite source (B) at T+, coupled to an infinite sink at T−, see
Figure 2(ii). For the second configuration also, we can extract work by utilizing the
temperature gradient between B and the reservoir, till B finally comes to be at temper-
ature T− [19]. Assuming that the system goes from some equilibrium state (U ′+, S′+)
to another one (U ′−, S′−), the heat removed from the source is Q− = U ′+ − U ′− and
the amount discarded to sink is q− = T−(S′+ − S′−). So the extracted work is [20]
W− = Q′− − q′−, or

W− = (U ′+ − U ′−)− T−(S′+ − S′−). (8)

The efficiency η− =W−/Q− is given by

η− = 1− T−
T
(−)
m

, (9)

where

T (−)m =
U ′+ − U ′−
S′+ − S′−

. (10)

It is clear from the expressions for W− and η−, that an equivalence exists between
the above model and that of work extraction in a reversible cycle from two infinite

reservoirs at T− and T
(−)
m (> T−).

Again, to apply the above model to an industrial plant, we can equate the observed
efficiency to the theoretical efficiency, as ηo = η− and infer the corresponding effective
temperature T

(−)
m from equation (9), as

T (−)m =
T−
1− ηo . (11)
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Fig. 4. The effective temperature T
(−)
m plotted against the geometric mean G(T+, T−) =√

T+T−, the two quantities being equal along the straight line.

It is clear that T+ > T
(−)
m > T−. The calculated values of T

(−)
m , based on the observed

efficiencies of the plants, are also tabulated in Table I, and shown graphically in Fig-
ure 4 in comparison to G(T+, T−).
A remark seems to be in place here. An analogy may be drawn between the above

model and an earlier irreversible model proposed by Chambadal [2,6], in which an
intermediate temperature Tw (of the warm exit stream) enters into the analysis and
the theoretical efficiency of the model is 1− T−/Tw (compare with Eq. (9)). For an
optimal value Tw =

√
T+T−, the power output becomes optimal with the correspond-

ing efficiency equal to CA-value. The crucial difference, from our model, is twofold:
a) we model work extraction by quasi-static processes so no notion of time enters
here; b) the nature of system B (finite source) is not specified, whereas in earlier
approaches, the warm stream is often assumed to follow a temperature-independent
heat capacity.
Now as observed in Figures 3 and 4, the values of effective temperatures seem

to be distributed apparently in a random fashion about the geometric-mean value.

However, it is remarkable to note that for a given plant, the calculated values of T
(+)
m

and T
(−)
m are such that, to a high accuracy, they are equidistant from the geomet-

ric mean G. More precisely, if we define an average value of temperature T
(av)
m , as

T
(+)
m − T (av)m = T

(av)
m − T (−)m , then this value T

(av)
m is very close to the G value for that

situation. In other words, we define an average scale of temperature as the arithmetic

mean of the two inferred temperatures T
(±)
m , and so given by

T (av)m =
1

2

[
T+(1− ηo) + T−

1− ηo

]
. (12)

Then the above average value is found to be closely approximated by G(T+, T−) for
most observed cases of industrial plants, see Figure 5, as well as Table 1.
Now, we turn to a more quantitative characterization of the above observation. It is

easy to see that T
(av)
m takes a minimum value of

√
T+T−, w.r.t to ηo (dT

(av)
m /dηo = 0,

and d2T
(av)
m /dη2o > 0), at ηo = 1−

√
T−/T+. This implies that any possible value of

T
(av)
m is equal to or greater than

√
T+T−, and so will lie on or below the straight line

plotted in Figure 5.
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Fig. 5. The average effective temperature T
(av)
m plotted against the geometric mean

G(T+, T−) =
√
T+T−, the two quantities being equal along the straight line. T

(av)
m values

calculated from the observed data on most of the power plants, is remarkably close to
G(T+, T−).

The second aspect is related to the observation made earlier that the deviations

in values of effective temperatures T
(±)
m from the corresponding G-values, reflect the

fact that the observed efficiency deviates from the CA value. However, deviations

from the G-values, are suppressed considerably in case of T
(av)
m . This may be argued

by considering small deviations (ε) in the observed efficiency from CA value, and

expanding T
(av)
m in powers of ε. Let ηo = ηCA + ε. Then we see that up to second

order:

T (av)m =
√
T+T− +

1

2

√
T 3+
T−
ε2 +O(ε3). (13)

Thus, the first non-zero correction from the geometric-mean value is of second order

in ε, while it is of the first order for ηo, or T
(±)
m . Clearly, the magnitude of fluctuations

is suppressed in the case of T
(av)
m .

Finally, we address the meaning of the average effective temperature. If we again
consider the two extreme situations envisaged in Figure 2, then they are mutually ex-
clusive, or one may say, they are counterfactual. The average temperature is not neces-

sarily seen in an actual realization, except for the special case T
(+)
m = T

(−)
m =

√
T+T−.

In this sense, the meaning one can attach to the definition of T
(av)
m , can be given best

in the language of inductive inference [21,22]. In latter terms, the average tempera-
ture represents an expected scale of the effective temperature, in view of our inability
to choose between two alternatives (i) and (ii), where each represents our hypothesis
for the model of work extraction applicable to the plant. In inference, when any of
the mutually exclusive hypotheses cannot be given a preference over the others, then
we must assign equal weights to the inferences derived from each hypothesis [22,23].
Any deviation from equal weights would imply that we have some extra piece of
information about the process, and thus would be inconsistent [24]. The effective

temperatures T
(±)
m are our inferred values from the given data on the observed ef-

ficiency, and, so T
(av)
m , defined with equal weights assigned to both the inferences,

represents the expected value of the effective temperature, commensurate with the
information at our disposal.
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Concluding, we have proposed to model the observed efficiencies of power plants,
using the quasi-static models of work extraction where one reservoir (hot or cold) is
finite while the other is practically infinite. This brings an extra scale of intermediate
temperature into the analysis. We note two models consistent with the hypothesis as
to which reservoir is taken as finite, and consequently, we get two possible values of the
intermediate temperature. The limited information on the working conditions does
not allow to prefer one model hypothesis over the other and so an equally-weighted
average represents the expected scale of intermediate temperature. For most of the
power plants, this inferred value is found to be quite close to the geometric mean
of the highest and the lowest temperatures. Thus we rediscover the significance of
the geometric-mean temperature, which was emphasized in earlier irreversible mod-
els of plants [5–7,25], but there it was often based on simplifying assumptions such as
constant heat capacity for the hot stream, and Newton’s law for heat transfer. Such
assumptions are not relevant in our analysis and we do not specify the particular na-
ture of the finite reservoir. In the present approach, if the deviations in the observed
efficiency from the CA-value are small, then the geometric-mean temperature appears
as a rational estimate for the intermediate temperature.
An inference based approach has been used earlier to study models of thermo-

dynamic machines with limited information. The emergence of CA efficiency from
inference has been noted in quantum heat engines [26] and mesoscopic models like
Feynman’s ratchet [27]. For classical models of work extraction from two finite reser-
voirs, the results for efficiency at maximum work are reproduced through inference,
beyond linear response [28]. Further, reversible models with limited information have
been related to irreversible models through inference based reasoning [29]. In the
present context, it is remarkable how simple, but general considerations can lead to
estimates close to the geometric-mean value for the intermediate temperature. More
research is needed for a deeper understanding of the connection between the use of
limited information and thermodynamic modelling.
The utility of inferential approach is that it may give insight into the actual

state of affairs, while incorporating the prior information normally not considered in
thermodynamic models. In this context, we note that although most of the data on
plants yield an expected value of the intermediate temperature close to geometric-
mean value, still there are a couple of significant deviations in Figure 5, near the
top right corner. A valid question is, why do these examples differ from the rest of
the cases? Does it indicate other measures of optimization being used in the actual
operation of these cases? As far as the available data is concerned, we note these
plants operate under higher temperature gradients than most other plants. It may be
the case that our model and the assumptions may not serve as good approximations
for large temperature differences. In any case, further studies on the actual working
conditions may yield information in order to extend the inference analysis, or may
help to improve the performance, at par with the other plants.

The author would like to thank the organisers of the conference, and also Prof. Alberto
Robledo for his pleasant company and support over these years.
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6. P. Chambadal, in Les Centrales Nucléaires (Armand Colin, Paris, France, 1957),
pp. 41–58

7. I. Novikov, J. Nucl. Energy II 7, 125 (1958)
8. A. Vaudrey, F. Lanzetta, M. Feidt, J. Noneq. Therm. 39, 199 (2014)
9. G. Lebon, D. Jou, J. Casas-Vázquez, Understanding Non-equilibrium Thermodynamics:
Foundations, Applications, Frontiers (Springer-Verlag, Berlin, Heidelberg, 2008)

10. B. Andresen, Angew. Chem. 50, 2690 (2011)
11. A. Bejan, J. Appl. Phys. 79, 1191 (1996)
12. M. Borlein, Kerntechnik (Vogel Buchverlag, Wurzburg, Germany, 2009)
13. W. Thomson, Phil. Mag. 5, 102 (1853)
14. M.J. Ondrechen, B. Andresen, M. Mozurchewich, R.S. Berry, Am. J. Phys. 49, 681
(1981)

15. H.S. Leff, Am. J. Phys. 55, 602 (1986)
16. B.H. Lavenda, Am. J. Phys. 75, 169 (2007)
17. R.S. Johal, R. Rai, Europhys. Lett. 113, 10006 (2016)
18. R.S. Johal, Phys. Rev. E 94, 012123 (2016)
19. Y. Izumida, K. Okuda, Phys. Rev. Lett. 112, 180603 (2014)
20. M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey, in Fundamentals of Engineering
Thermodynamics, 7th edn. (Wiley, New York, 2010), Chap. 7

21. H. Jeffreys, Theory of Probability, 2nd edn. (Clarendon Press, Oxford, 1948)
22. E.T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press,
Cambridge, 2003)

23. P.S. Laplace, Memoir on the Probabilities of the Causes and Events, Stat. Sc. 1, 364
(translated by S.M. Stigler, 1986)

24. E.T. Jaynes, The evolution of Carnot’s principle, in Maximum-Entropy and Bayesian
Methods in Science and Engineering, edited by G.J. Erickson, C.R. Smith (Kluwer,
Dordrecht, 1988)

25. J. Yvon, The Saclay Reactor: Two years experience in heat transfer by means of com-
pressed gas as heat transfer agent, in Proceedings of the International Conference on
Peaceful Uses of Atomic Energy (Geneva, Switzerland, 1955)

26. R.S. Johal, Phys. Rev. E 82, 061113 (2010)
27. G. Thomas, R.S. Johal, J. Phys. A: Math. Theor. 48, 335002 (2015)
28. P. Aneja, R.S. Johal, J. Phys. A: Math. Theor. 46, 365002 (2013)
29. R.S. Johal, R. Rai, G. Mahler, Found. Phys. 45, 158 (2015)


	1 Introduction
	References

