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Abstract. We evaluate the implication and outlook of an unanticipated
simplification in the macroscopic behavior of two high-dimensional sto-
chastic models: the Replicator Model with Mutations and the Tangled
Nature Model (TaNa) of evolutionary ecology. This simplification con-
sists of the apparent display of low-dimensional dynamics in the non-
stationary intermittent time evolution of the model on a coarse-grained
scale. Evolution on this time scale spans generations of individuals,
rather than single reproduction, death or mutation events. While a
local one-dimensional map close to a tangent bifurcation can be derived
from a mean-field version of the TaNa model, a nonlinear dynamical
model consisting of successive tangent bifurcations generates time evo-
lution patterns resembling those of the full TaNa model. To advance
the interpretation of this finding, here we consider parallel results on a
game-theoretic version of the TaNa model that in discrete time yields
a coupled map lattice. This in turn is represented, a la Langevin, by
a one-dimensional nonlinear map. Among various kinds of behaviours
we obtain intermittent evolution associated with tangent bifurcations.
We discuss our results.

1 Introduction

A characteristic feature of a complex system constituted by many individual agents
or degrees of freedom is the occurrence of different levels of behavior separated by
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differing spatial and time scales. The connections between these levels are intriguingly
complex due to the presence of nonlinearities. But this very presence makes difficult,
if not impossible, the decomposition of the dynamics of the high-dimensional problem
into many independent ones, like the so-called normal modes of linearized dynamics.
An alternative approach to the investigation of complex systems is to capture their
important properties by means of simplified high-dimensional models (i.e., those in-
volving many interacting individual agents), as it is e.g., done in the Tangled Nature
(TaNa) model of evolutionary ecology [1]. This is clearly also the spirit that led to the
definition of coupled map lattices (CMLs) introduced independently in the 1980s by
Kaneko [2] and Kapral [3]. A CML is a system with discrete space and time variables
but with a continuous local variable described by a nonlinear function. Therefore it
is a collection of a large number of coupled nonlinear low-dimensional iterated maps.
Interestingly, macroscopic collective behavior can arise in CMLs as shown con-

vincingly some time ago by Chaté and Manneville [4]. Namely, the emergence of
low-dimensional behavior in the coarse-grained description of the high-dimensional
dynamics. But very recently another example of this occurrence has been exhibited
for the high-dimensional TaNa model under mean-field approximations [5], such that
effective low-dimensional dynamics is displayed in the macroscopic non-stationary in-
termittent evolution of the model. Recently, a game-theoretic rendering of the TaNa
model described by a set of coupled replicator equations that incorporate stochastic
mutations has been derived and studied [6], and found to exhibit macroscopic non-
stationary intermittent evolution similar to that in the TaNa model. Noticeably, in
relation to the above, the discrete time version of the game-theoretic model that
operates in the limit of many strategies constitutes a coupled map lattice.
The next step we consider is a radical simplification of the game-theoretic CML

replicator-mutation equations into a one-dimensional nonlinear map. This attempt
aims at probing the possible connection between the macroscopic intermittent be-
haviors of the above-mentioned high-dimensional models with the low-dimensional
established sources of intermittency, such as the tangent bifurcation [7] with known
1/f noise spectra [8]. In doing so, we reduce the many-strategy game-theoretic prob-
lem to a classic version of two strategies, where one of them represents the chosen
agent or species and the other assemblages all the others. Finally, we recall that a
one-dimensional nonlinear dynamical model can be constructed [5] such that its time
evolution consists of successive tangent bifurcations that generate patterns resembling
those of the full TaNa model in macroscopic scales. The parameters in the model are
based on identified mechanisms that control the duration of the basic quasi-stable
event generated by a local mean-field map derived from the TaNa model [5].

2 The Replicator Model with Mutations

Here we briefly present the intermittent behavior of the Replicator Model with Muta-
tions, details of which can be found in [6]. The replicator equation [9] was introduced
in evolutionary game theory in order to capture the frequency-dependent nature of
the evolution process. We are interested in the limit of many strategies. Players may
leave the system (say go bankrupt or extinct) or may change their strategy (mutate).
This means that the number of players choosing a given strategy and the number of
available strategies are in constant evolution. This version of the replicator dynam-
ics set-up was studied by Tokita and Yasutomi in [10]. The authors focused on the
emerging network properties. Here we continue this study but with an emphasis on
the intermittent nature of the macro-dynamics.
The model is described in terms of a configuration vector n(t) which contains

the relative frequencies of all the allowed d different strategies, so the components
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ni(t) ∈ [0, 1] for all i = 1, 2, ..., d. A d× d payoff matrix J contains the payoffs of
every pairwise combination. The matrix J is a random and fixed interaction network
on top of which the replicator dynamics will evolve. Each strategy distinguishes itself
from the others in its payoffs or interactions with the rest of the strategy space. We
used an uncorrelated, large matrix of dimension d ∈ (102, 104). In the initial config-
uration, No < d strategies start with the same frequency ni = 1/No and for all the
other strategies ni(0) = 0. The empty strategies can become populated only by one
of the active strategies mutating into them. Once this happens, their frequency will
evolve according to the replicator equation, equation (1), in which these newly occu-
pied strategies interact with the active strategies which they are linked through the
matrix J .
A time step of the replicator dynamics consists of calculating the fitness, hi(t) =∑
j Jijnj(t) of each active strategy and compare it with the average fitness h̄(t) =∑
ij Jijni(t)nj(t). The frequencies are updated according to

ni(t+ 1) = ni(t) +

⎛

⎝
∑

j

Jijnj(t)−
∑

k,j

Jkjnk(t)nj(t)

⎞

⎠ni(t). (1)

When the frequency of a strategy i goes below a preset extinction threshold
ni(t) < n

ext, the strategy is considered extinct and its frequency is set to zero
ni(t+ 1) = 0. Right after an extinction event the system is immediately renormalised
in order to maintain the condition

∑
i ni(t) = 1.

The stochastic element consists in the following updates. With probability pmut

each strategy mutates into another one, this is done by transferring a fraction αmut of
the frequency from the considered strategy to another strategy. The label of the latter
strategy is chosen in the vicinity of the first by use of a normal distribution N(i,Δ)
centred on label i ∈ {1, 2, ..., d} with variance Δ with periodic boundary conditions,
i.e., label d+ 1 is identified with label 1. The closer the labels of two strategies are
the more likely it is for one to mutate into the other.
The systemic level dynamics is described by n(t) and is shown in Figure 1, where

we present the occupancy plot (left panel) and the evolution of the frequencies of the
single strategies (right panel).
The parameters used in the simulations are d = 256, next = 0.001, αmut = 0.01,

pmut = 0.2 and Δ = 15 and were chosen for reasons of computational performance.
The meta stable states are typically characterised by two strongly occupied strategies
which are surrounded by 7 to 8 “cloud” strategies. These are populated by mutations
and quickly die out.

2.1 Mean field description

The random mutations are the only source of stochasticity in the model’s dynamics.
These stochastic events can make the frequency of a strategy grow as a result of inflow
from different strategies mutating on to the given strategy and can lead to a strategy
looses part of its frequency due to mutations onto other strategies. The gain is on
average given by αmutnj(t+ 1) which happens with probability pmut

∑
j∈Na pj→i,

where Na is the number of active strategies and

pj→i =
e
−|i−j|2
2Δ2√
2πΔ2

(2)



344 The European Physical Journal Special Topics

Fig. 1. Left panel: occupancy distribution of the types. The genotypes are labelled arbitrar-
ily and a dot indicates a type which is occupied at the time t (i.e., n(t) > 0). The punctuated
dynamics is clearly visible: quasi-stable periods alternate with brief periods of hectic tran-
sitions. Right panel: the frequencies of the strategies. Each colour belongs to a different
strategy. Once again the transitions from one meta stable configuration (approximate fixed
point) to another is clear.

is the probability of i mutating into j (and viceversa). A fraction of players αmut
are lost, which happens with probability pmut. We therefore get the mean field
description as

ni(t+ 1) � ni(t) +
⎛

⎝
∑

j

Jijnj(t)−
∑

jk

Jikni(t)nk(t)

⎞

⎠ni(t)

(3)

+ pmutαmut

⎛

⎝
∑

j

nj(t)pj→i − ni(t)
⎞

⎠ .

We now bravely reduce equation (3) to a one dimensional map intending to capture
the evolution of the occupancy of a single strategy as it evolves and interact with all
other strategies and arrive at

n(t+ 1) = n(t) + J1n
2(t) + J2n

3(t) + αn(t). (4)

Here J1 represents the average effect of the Jijnj(t) term in equation (3), J2 the effect
of the Jikni(t)nk(t) term and α sums up the effect of the last term in the equation.
This mean field equation is of the same form as

xk+1 = f(xk) = xk + δxk(1− xk)[S + (1− T − S)xk], (5)

with α = δS, J1 = δ(1− T − 2S) and J2 = δ(1− T − ST ). This map has been studied
in detail in [11]. Note we have included a factor δ (omitted in [11]) to represent the
size of the time step when going from equation (1) to equation (2) in reference [11].
Here we simply present simulations in Figure 2 to demonstrate that the map can
reproduce behavior very similar to the simulation of the full model.
The fact that the intermittency of the high dimensional Replicator Model with

Mutations may be qualitatively related to tangent bifurcation of a one dimensional
map encourage us to discuss in the next section a similar strategy of dramatic dimen-
sional reduction for the fully stochastic Tangled Nature model.
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Fig. 2. Simulation of the replicator map in equation (5) near a period five periodic window
with control parameters S = T = 6.5950. Panel (a): The map (Eq. (5)) composed five times.
Panel (b): Trajectory obtained from the map without being composed, f(x), showing the
laminar episodes separated by chaotic bursts. Panel (c): Enlargement of the map in (a)
showing a local near-tangent piece. See the enclosed region inside the square in Panel (a).
Panel (d): Trajectory obtained form the map f (5)(x) showing the laminar episodes separated
by chaotic bursts. The value of the Lyapunov exponent is λ = 0.001391.

3 The Tangled Nature model

The Tangled Nature model is a model of evolutionary ecology, which studies the
macro-dynamics emerging from the dynamics of individual agents, co-evolving in a
web of mutual interactions. The systemic level dynamics exhibit intermittency. The
model was introduced in [1,12] and since then, the model framework has been used
by several authors see e.g., [13–17]. A summary of some of the models features and
predictions can be found in [18].

3.1 Description of the model

In contrast to the replicator model studied above the Tangled Nature model is fully
stochastic. Here is briefly how the model is updated. The dynamical entities of the
TaNa model consist of agents represented by a sequence of binary variables with fixed
length L [19]. We denote by n(Sa, t) the number of agents of type Sa = (Sa1 , S

a
2 , ..., S

a
L)

(here Sai ∈ {−1, 1}) at time t and the total population isN(t) =
∑2L
a=1 n(S

a, t). A time
step is defined as a succession of one annihilation and of one reproduction attempt.



346 The European Physical Journal Special Topics

-4
-3
-2
-1
0
1
2

<H
>

3000 3500 4000 4500 5000 5500
Times in Generations

0.3

0.4

0.5

0.6

<P
of

f>

Fig. 3. Left Panel: Total population as a function of time (in generations) for a single
realization of the TaNa model. The punctuated dynamics is clearly visible: quasi-stable pe-
riods alternate with periods of hectic transitions, during which N(t) exhibits large amplitude
fluctuations. Right panel: The averages of the weight function H and the reproduction prob-
ability poff . The parameters are L = 10, pkill = 0.4, pmut = 0.02, μ = 0.007, k = 40 the red
line indicates pkill.

Annihilation consists of choosing an agent at random with uniform probability and
then removing the agent with probability pkill, taken to be constant in time and
independent on the type. Reproduction: choose with uniform probability an agent,
Sa, at random and duplicate the agent (and remove the mother) with probability

pkill(S
a, t) =

exp (H(Sa, t))

1 + exp (H(Sa, t))
, (6)

which depends on the occupancy distribution of all the types at time t through the
weight function

H(Sa, t) =
k

N(t)

∑

b

J(Sa,Sb)nb(t)− μN(t). (7)

In equation (7), the first term couples the agent Sa to one of type Sb by introduc-
ing the interaction strength J(Sa,Sb), whose values are randomly distributed in the
interval [−1,+1]. For simplification and to emphasize interactions we here assume:
J(Sa,Sa) = 0. The parameter k scales the interactions strength and μ can be thought
of as the carrying capacity of the environment. An increase (decrease) in μ corresponds
to harsher (more favourable) external conditions.
Mutations occur in the following way: For each of the two copies Sa1 and Sa2 ,

a single mutation changes the sign of one of the genes: Sa1i → −Sa1i , Sa2i → −Sa2i
with probability pmut. We define a generation to consist of N(t)/pkill time steps, i.e.,
the average time needed to kill all the individuals at time t. These microscopic rules
generate intermittent macro dynamics [12] as shown in Figure 3. The long quiescent
epochs are called quasi Evolutionary Stable Strategies (qESS), since they do remind
one of John Maynard Smith’s notion of Evolutionary Stable Strategies introduced in
his game theoretic description of evolution [20].
The weight functionH will fluctuate about the value given by the stable dynamical

fixed point condition poff (H) = pkill. This suggests that the mean field value of H
may indeed evolve in an intermittent way that may be captured by a tangent map.
We will therefore derive the mean field map for 〈H〉.
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3.2 Derivation of mean field map for H

Since the model is fully stochastic, the derivation of the mean field equations for
the model has to estimate the on-average effect of reproduction, with or without
mutations and stochastic death processes. A detailed account of this derivation is
given in [5]. The final mean field map for the average 〈H〉 is of the form

〈H〉 �→ 〈H〉+A〈poff 〉ext −Bpkill, (8)

where the coefficients are given by

A =

(
kJ̄

N
− μ

)

(1− pmut)2L +
(
kJ̃

N
− μ

)

(P
(0)
mut + Lp

(1)
mut)Lp

(1)
mut (9)

B =
kJ̄

N
− μ, (10)

and depends on the probability for no mutation P
(0)
mut, one mutation p

(1)
mut and the

J coupling averaged over the highly occupied types of agents J̄ and the average of
the couplings over these types and the set of types they are connected to via single
mutations J̃ . The details are in [5].
To obtain a closed expression we expand poff (H

i) in equation (8) to second order
about x∗ and replace only 〈H2〉ext by 〈H〉2ext. This leads to a tangent map. To study
the intermittency of this map expand poff (H) in equation (8) to second order about
H∗ = ln[pkill/(1− pkill)],

poff(H) = a0 + a1(H −H∗) + a2(H −H∗)2 (11)

where

a0 = pkill,

a1 = p
′
off (H

∗) = pkill(1− pkill),

a2 =
1

2
p′′off (H

∗) =
1

2
a1(1− 2pkill).

The characteristic time to pass through the narrow passage where the map is parallel
to the tangent straight line is, to lowest order in the killing probability and only
including leading order mutation processes well approximated by

( π

T

)2
� − k
2N
(J̄ − J̃)(1− P0)

(
k

N
J̃ − μ

)

p2kill. (12)

We conclude that our mean field analysis suggests that the length of the qESS, i.e.,
the metastable quiescent epochs, is set by three mechanisms. First the rate of killing.
Second the mismatch between the characteristic interaction strength kJ̄ of the extant
types and the carrying capacity as given by the parameter μ in equation (7). And
thirdly the difference between the typical interaction strength between the extant
types, J̄ and the typical interaction strength, J̃ across the set of extant and mutant
types located in the perimeter of the set of occupied types.
It is natural that the duration of the qESS states increases if the rate of killing

decreases and it seems also reasonable that the qESS becomes longer if an equilibrium
is established between the web of inter-type interactions, as represented by the cou-
pling term in equation (7), and the demand expressed by the carrying capacity term
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in the same equation. Finally, loosely speaking at the level of mean field (see Ref. [5]
for details), if the surrounding mutants originating from the extant types experience
interactions significantly different from the existing coupling these mutants may very
well be able to out compete existing types and thereby destabilise the current qESS.
This is what the term (J̄ − J̃)(1− P (0)) represents.

4 A consecutive tangent bifurcation model

A simple nonlinear dynamical model is capable of imitating some features of the
macroscopic dynamics described above [5]. This model makes use of families of chaotic
attractors near tangent bifurcations present in low-dimensional iterated maps that
display intermittency of type I [7]. These families can be taken from those occurring
in quadratic maps, such as the quadratic logistic map, fν(x) = 1− νx2, −1 ≤ x ≤ 1,
0 ≤ ν ≤ 2. The dynamics at the vicinity ν � ντ of the tangent bifurcation at ν = ντ
displays intermittency. That is, the map trajectories consist of quasi-periodic motion
interrupted by bursts of irregular behaviour. The iteration time duration of the quasi-
periodic episodes increases as the tangent bifurcation is approached. At the tangent
bifurcation the duration of the episodes diverges and the motion becomes periodic.
A phenomenological procedure for generating successive qESS with durations ob-

tained from the criteria given by equation (12) is briefly described as follows [5].
First choose a control parameter value ν0 just left of a window of periodicity τ0 of
the logistic map with tangent bifurcation at ντ0 , δν0 ≡ ν0 − ντ0 � 0. The map tra-
jectory with initial condition x0 comes out of the bottlenecks, formed by f

(τn)(x)
and the identity line, it experiences a chaotic burst before it is re-injected close to
the bottlenecks, thus forming a new laminar episode. The map trajectory evolves in
this environment (performing one or more holdup passages and re-injections) until a
set of two stochastic conditions is fulfilled, in which case another control parameter
value ν1 is generated just left of a window of periodicity τ1 with δν1 ≡ ν1 − ντ1 � 0,
and so on for n = 2, 3, . . .. These two conditions refer to exceedances associated with
two random variables δ1 and δ2, distributed by a uniform and a normal distribution,
respectively. The conditions are δ1 > Γ1 and δ2 > Γ2 where Γ1 and Γ2 are two pre-
scribed thresholds. Only when the two thresholds are overcome simultaneously the
control parameter value is changed to that of a different window, otherwise the trajec-
tory remains close to the same window. The two implemented thresholds correspond
to critical values of the imbalances referred after equation (12),

δ1 =
k
N
J̃ − μ

p2kill(1− P0)
and δ2 =

k
2N (J̄ − J̃)
p2kill(1− P0)

. (13)

Depending on the threshold values one obtains different dynamical patterns. When
the values of Γ1 and Γ2 are small only one or at most a few bottleneck passages take
place before there is a change of periodic window. When these values are large the
number of bottleneck passages is large before there is a change in periodic window,
an indication that the system is robust to environmental variations. The dynamical
properties of the model are sensitive to the imbalances represented by δ1 and δ2 and
this sensitivity represents evolutionary changes. The repetition of this prescription
leads to the dynamical behavior shown in Figure 4 that can be compared with that
obtained from the TaNa model in Figure 3. The quasi-periodic episode of period τn
is identified with the quasi stable co-existence of n species for a time period Tn in the
TaNa model and the chaotic burst at its ending leads to some extinctions and new
mutated species of the following quasi-stable configuration.
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Fig. 4. Iterated time evolution of a trajectory generated by the consecutive tangent bifurca-
tion model. The figure is composed of segments, each of which corresponds to a fixed value of
the control parameter close to a tangent bifurcation, associated with a given period. Within
each segment, many laminar episodes occur separated by chaotic bursts. The periods of the
segments are consecutively, from left to right, 8, 7, 9,... Positions appear in the figure in
absolute values.

5 Discussion and conclusion

We have considered two related high-dimensional model systems designed to repre-
sent evolving ecological systems where agents or strategies are species that undergo
reproduction, death or mutation. One of them, the TaNa model is a fully stochastic
model, whereas the other, a game-theoretic adaptation of the former, contains both
deterministic and stochastic elements. Both models have been shown to display non-
stationary intermittent behavior on macroscopic (many individual generation) time
scales. Given that these model systems show macroscopic collective behavior rem-
iniscent of low-dimensional nonlinear intermittency, we have attempted to extract
from them expressions for simple nonlinear iterated maps by introducing approxima-
tions. The resulting low-dimensional dissipative maps display attractors associated
with intermittency near tangent bifurcations.
The successive simplifications that have been introduced in modeling high-

dimensi-onal complex systems and in exploring their properties follow this scheme:
First, the TaNa model was built up by selecting simple mechanisms at the individual
level for ecosystem evolution such as annihilation, reproduction and mutation to define
basic time steps, and then time evolution lets these contribute to form more com-
plicated interactions at the systems level. Second, the time evolution equations of a
mean-field deterministic approximation of the TaNa model suggest a game-theoretic
interpretation that leads to a replication-mutation model that preserves the non-
stationary intermittent behavior for the macroscopic evolution, but permits consider-
ations in the game theory language of strategies and pay-off values. Third, in discrete
time space the replication-mutation model becomes a CML with stochastic terms so
that the characteristics of the nonlinear maps that constitute it can be inspected.
And finally, the latter problem was seen to represent a two-strategy symmetric game
that within a time-discrete version constitutes a one-dimensional map with two con-
trol parameters. This was recognized [11] as a replicator bimodal map that displays
the routes to chaos familiar in unimodal maps that display period doublings, chaotic
attractors and intermittency.
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Therefore, pending stricter analysis, we preliminarily identify the macroscopic
behavior of the high-dimensional model systems we describe here as composed of
(effective) low-dimensional intermittency. The remarkable collapse of degrees of free-
dom that this circumstance entails may turn out to be more general than the few
instances in which similar conduct has previously been encountered [4,21]. This
prospect, and the advance in understanding it delivers, promotes a revitalization
of a close relation between nonlinear dynamical theory and the science of complex
systems.
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