
Eur. Phys. J. Special Topics 226, 427–431 (2017)
© EDP Sciences, Springer-Verlag 2017
DOI: 10.1140/epjst/e2016-60200-8

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Efficiency at maximum power for an isothermal
chemical engine with particle exchange
at varying chemical potential

Jesper Koning1, Kenichiro Koga2,3, and Joseph. O. Indekeu1,a

1 Institute for Theoretical Physics, Celestijnenlaan 200D, KU Leuven, B-3001 Leuven,
Belgium

2 Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530,
Japan

3 Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530,
Japan

Received 30 June 2016 / Received in final form 26 August 2016
Published online 6 March 2017

Abstract. We calculate the efficiency at maximum power (EMP) of an
isothermal chemical cycle in which particle uptake occurs at a fixed
chemical potential but particle release takes place at varying chemical
potential. We obtain the EMP as a function of Δμ/kT , where Δμ is
the difference between the highest and lowest reservoir chemical poten-
tials and T is the absolute temperature. In the linear response limit,
Δμ� kT , the EMP tends to the expected universal value 1/2.

Studies of the efficiency at maximum power (EMP) of an engine (thermal or chemical)
are being considered important in the field of irreversible thermodynamics in recent
years and results of general interest have been obtained [1]. These results are relevant
to various fields in science and engineering, and impact on a wide range of disciplines,
from macroscopic (irreversible) thermodynamics to the biophysics and biochemistry of
nanosized systems such as, e.g., molecular motors. For a thermal engine, for which the
Carnot cycle is the maximum-efficiency paradigm in the reversible limit, it has been
established that the EMP for an irreversible cycle is universal and equals ec/2, with
ec the Carnot efficiency, in the linear response limit [2–6]. For an isothermal chemical
engine similar efforts have suggested that the EMP takes the universal value 1/2 in
linear response. Moreover, beyond linear response theory upper and lower bounds
were derived, both of which converge to 1/2 in the linear response limit [7]. The
robustness of this value was recently tested in a specific implementation of a chemical
engine, being a four-phase isothermal cycle in which particles are taken up at a fixed
chemical potential and released at a fixed lower chemical potential. An EMP equal
to 1/2 was confirmed in the linear response regime [10].
In this manuscript we pose and answer the following fundamental questions. How

is the EMP of a chemical cycle affected when the uptake or release of particles occurs
at varying chemical potential instead of constant chemical potential? Is the EMP in
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Fig. 1. Three-phase isothermal chemical cycle in a p− V diagram. Phase AB consists of an
isothermal and isobaric expansion with uptake of particles at constant chemical potential.
Phase BC corresponds to an isovolumetric release of particles into chemical reservoirs at
varying chemical potential. Phase CA represents an isothermal and isocardinal (constant
particle number) compression. The enclosed area equals the total mechanical work.

the linear response regime possibly modified by this generalization, or is the universal
value 1/2 recovered as might be expected? Our generalization is motivated by its
analogous counterparts in the family of thermal engines, where it is natural to consider
(non-Carnot) cycles with uptake and release of heat at varying temperature, instead
of constant temperature (Carnot cycle).
For concreteness we take as working fluid an ideal gas of N particles in a volume

V with s active degrees of freedom (s = 3 for a monoatomic gas, etc.). We recall that
the chemical potential is then given by (in three dimensions)

μ = kT ln(ρΛ3), (1)

with k Boltzmann’s constant, T the absolute temperature and Λ the thermal de
Broglie wavelength. For our purposes Λ is a constant.
The engine we study is the three-phase cycle shown in Figure 1. The process AB is

an isothermal and isobaric expansion with uptake of ΔN particles from a reservoir at
constant chemical potential μA. The number density ρ remains constant. The process
BC is an isothermal and isovolumetric transformation in which ΔN particles are
released at a chemical potential that decreases (because ρ decreases) from μB = μA
to μC . An isothermal compression, process CA, in which the particle number N is
kept constant (and equal to NA), closes the cycle. We first discuss properties of this
cycle in the reversible limit and then proceed to calculate the EMP for the irreversible
cycle.
The change in internal energy ΔU , the exchanged heat Q, the mechanical work

W done on the gas (through the motion of a piston) and the chemical work input
from a reservoir, W chem, are given in Table 1 for each process. Energy conservation
implies, for each process,

ΔU = Q+W +W chem = Q+W +

∫
μdN, (2)

where the integral anticipates that μ depends on N during the particle release phase.
We recall that in a reversible isothermal chemical engine the chemical energy of

particle exchange is entirely converted into useful mechanical work. Also some heat is
taken up from a thermal reservoir, but the same amount of heat is released into the
same reservoir. Therefore, the heat exchange is irrelevant and the efficiency η equals
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Table 1. Overview of the thermodynamic quantities in the reversible cycle. For each phase
of the cycle the change in internal energy ΔU , the mechanical work W , the chemical energy
W chem and the heat exchange Q are given. We have defined Δμ ≡ μA − μC > 0 and use has
been made of the equality ΔN/NA = e

Δµ/kT − 1, derived by considering phase BC.
Phase ΔU W Wchem Q

AB s
2
ΔN kT −ΔN kT µAΔN ( s+2

2
kT − µA)ΔN

BC − s
2
ΔN kT 0

(
kT − µA − Δµ

eΔµ/kT−1

)
ΔN

(
µA − s+2

2
kT + Δµ

eΔµ/kT−1

)
ΔN

CA 0 Δµ

eΔµ/kT−1
ΔN 0 − Δµ

eΔµ/kT−1
ΔN

Total 0

(
Δµ

eΔµ/kT−1
− kT

)
ΔN

(
kT − Δµ

eΔµ/kT−1

)
ΔN 0

unity in the reversible limit. A reversible engine, however, has zero power because a
reversible cycle takes an infinitely long time.
In order to obtain nonzero power, we follow closely the procedure proposed earlier

for a thermal cycle [8] and for a chemical cycle [9,10]. One considers that irreversible
particle uptake (phase AB) and irreversible particle release (phase BC) each take a
finite time, τ1 and τ2, respectively. Also in accord with earlier procedures, we consider
that the particle current is governed by a (linear) transport law akin to Fick’s law of
diffusion,

dN

dt
= λ(μ− μ∗), (3)

where λ is a transport coefficient. The chemical potential μ is that of the reser-
voir and μ∗ is an adjustable value with respect to which the power of the cycle can
be maximized. The cycle is running between chemical potentials μ∗A (< μA) and μ

∗
C

(> μC). The process CA is assumed to remain (quasi-)reversible and to take a (long
but formally still finite) time (q − 1)(τ1 + τ2) so that the cycle period is q(τ1 + τ2).
The power P is the total mechanical work divided by this period. Assuming that
μ− μ∗ is constant during a process, we obtain

P =

1
q

(
Δμ∗

eΔµ
∗/kT−1 − kT

)
1

λ1(μA−μ∗A) +
1

λ2(μ∗(ρ)−μ(ρ))
, (4)

where Δμ∗ ≡ μ∗A − μ∗C and λ1 and λ2 pertain to phases AB and BC, respectively.
During phase AB we have constant values μ = μA and μ

∗ = μ∗A. We define μA − μ∗A ≡
x1 kT . The difference μ

∗(ρ)− μ(ρ) ≡ x2 kT is also constant, while both μ(ρ) and μ∗(ρ)
decrease during phase BC. This is why we make their density dependence explicit.
Since the chemical potential of the working fluid in the cycle is continuous, also in B,
we have μ∗A = μ

∗(ρB).
The power can now be optimized with respect to x1 and x2. For calculational

ease, one may choose instead as independent variables x and x2, with x kT ≡ Δμ∗ =
Δμ− (x1 + x2)kT . The requirement ∂P/∂x2 = 0 leads to the symmetry relation

√
λ2

λ1
=
x1

x2
, (5)

while the requirement ∂P/∂x = 0 leads to an equation, which, after substitution
of (5), simplifies to the following expression that is independent of the transport
coefficients,

Δμ

kT
= x+

(ex − 1− x)(ex − 1)
xex − ex + 1 , (6)
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Fig. 2. The efficiency at maximum power (EMP), denoted by ηMP, is displayed as a function
of Δμ/kT (solid upper curve) or as a function of 1− exp(−Δμ/kT ) (dashed lower curve).
The latter representation covers the entire physical range of Δμ/kT . Clearly, 1/2 ≤ ηMP ≤ 1.
which, when inverted, gives the optimal x as a function of Δμ/kT . We note that for
small Δμ/kT , and therefore also small x, we obtain Δμ/kT ∼ 2x, where the symbol
∼ means “asymptotically equal to”.
We now proceed to calculate the EMP, which is defined as the total work per-

formed by the cycle divided by the available total chemical energy between uptake
and release into the reservoirs, evaluated at maximum power,

ηMP =

(
1− x

ex−1
)

1− Δμ/kT
eΔµ/kT−1

, (7)

where x is the function of Δμ/kT implied by (6). Asymptotic analysis for the linear
regime leads to

ηMP =
1

2
+
1

48

Δμ

kT
+O
((
Δμ

kT

)2)
(8)

and in the opposite limit, for large Δμ/kT , we obtain

ηMP ∼ 1− kT
Δμ
. (9)

The EMP versus Δμ/kT , or versus the suitable alternative variable 1−
exp(−Δμ/kT ), is shown in Figure 2.
Remarkably, the precise way in which the cycle is made irreversible does not

affect the EMP. In fact, the same ηMP as a function of Δμ/kT results if only one
particle exchange process is made irreversible instead of two. Moreover, in that case
it doesn’t matter which phase, AB or BC, is made irreversible. In all cases exactly
the same function results for the EMP versus Δμ/kT , but the calculation with
only one irreversible process is simpler because it features only one parameter with
respect to which the power must be maximized, instead of two. This invariance can
be understood mathematically from the observation that, in the calculation with
two irreversible processes, the EMP is independent of the transport coefficient ratio
λ2/λ1.
This kind of invariance holds also to some extent for the four-phase cycle in which

particle uptake and release are assumed to happen at two different, but constant,
chemical potentials [10]. In that cycle, for the special case of a linear transport law



Nonlinearity, Nonequilibrium and Complexity 431

(without nonlinear corrections) the EMP equals 1/2, independently of Δμ/kT and
independently of whether one or both particle exchange processes are made irre-
versible. However, this invariance is no longer guaranteed when nonlinear correction
terms are present in the transport law [10].
Finally, a similar invariance holds for the irreversible thermal cycle considered by

Curzon and Ahlborn [8], starting from the reversible Carnot cycle. Indeed, making
only one isothermal phase of the Carnot cycle irreversible, instead of both, leads to the
same EMP, as one can readily verify. This invariance, in the case of the thermal cycle,
can be understood mathematically from the observation that the EMP is independent
of the ratio of the two thermal conductivities involved.
In conclusion, we have considered a fairly generic isothermal chemical cycle in

which particles can be exchanged at varying chemical potential. This cycle generalizes
the earlier proposed paradigm of an isothermal chemical cycle in which particle uptake
is performed at a constant chemical potential and particle release is also performed
at a constant (but lower) chemical potential [10]. We have derived the EMP for the
cycle. It is a nontrivial function of the reduced chemical potential difference Δμ/kT .
The EMP takes the (presumably universal) value 1/2 in the linear response limit
(Δμ/kT � 1) and slowly approaches the maximum achievable efficiency, 1, in the
limit of large Δμ/kT .
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