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Abstract. After a general discussion of the thermodynamics of con-
ductive processes, we introduce specific observables enabling the
connection of the diffusive transport properties with the microscopic
dynamics. We solve the case of Brownian particles, both analyti-
cally and numerically, and address then whether aspects of the classic
Onsager’s picture generalize to the non-local non-reversible dynamics
described by logistic map iterates. While in the chaotic case numeri-
cal evidence of a monotonic relaxation is found, at the onset of chaos
complex relaxation patterns emerge.

1 Introduction

Matter properties can be transported by convection or conduction [1]. While the for-
mer is related to the flow of the center of mass of the “material points” in which
the system under study may be decomposed, the latter is caused by interactions be-
tween neighboring particles. In many theoretical approaches, microscopic interactions
can be effectively represented at a coarse-grained level and conductive properties re-
lated to few thermodynamic parameters characterizing the system. On this basis,
Onsager [2,3] has been able to understand within a general framework how a slightly
perturbed system relaxes (or regresses) to equilibrium, linking its microscopic or
mesoscopic transport properties to a nonequilibrium thermodynamic description. In
view of the universal character of the Onsager approach, from a fundamental per-
spective it becomes particularly interesting trying to understand whether parts of
such description may also apply to domains in which the underlying dynamics is not
Hamiltonian, and, e.g., microscopic reversibility is lost. Nonlinear maps of the logistic
class are a specific and simple enough setting where this research perspective can be
tested, also thanks to the fact that a number of statistical mechanics techniques have
been successfully designed to their analysis [4–6].
The present study is a first effort in this direction. We offer a context in which

the thermodynamics of conduction can be directly related to simple dynamical ob-
servables. Such a context is analytically and numerically worked out for Brownian
particles, and explicit contact is established among the thermodynamic relaxation
properties, the system geometry, and dynamical coefficients. Finally, the Brownian
dynamics is replaced by logistic map iterations, and numerical studies are performed
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Fig. 1. N0 particles distributed within a cylinder of section A and length L.

both in the fully chaotic case and at the onset of chaos. We find that while results
for chaotic dynamics display a monotonic regression to equilibrium, at the onset of
chaos an involved oscillatory behavior emerges.

2 Thermodynamics of conduction

In this section, a general account of the thermodynamics of conduction is given. We
choose the language of continuum physics, where both extensive and associated in-
tensive thermodynamic variables becomes local fields. Although, in view of the appli-
cations that follow, we specialize our discussion to diffusion, analogous considerations
directly translate to other conduction processes, like e.g. the electric or thermal ones.

2.1 General discussion

Consider a system of N0 equal particles confined within a cylinder of section A and
radius much smaller than the length L (see Fig. 1). The cylinder is thermally, me-
chanically, and chemically isolated. In order to simplify the notations, particles are
assumed to be uniformly distributed in any cross-section of the cylinder, so that we
are basically reduced to a one-dimensional (1d) problem. Indicating as N(x, t) the
3d particle distribution function, we will be concerned below about its nth-order
moments:

Nn ≡ A
∫
dx xn N(x, t) (1)

(if not otherwise indicated, integrals over x are intended to span the inter-
val [−L/2, L/2]). Assuming local equilibrium, we may define an entropy density
σ(N(x, t)). The system’s (constrained) entropy becomes thus the functional

S[N ] = A

∫
dx σ(N(x, t)). (2)

A measure about how far the system is from equilibrium is given by the first variation

δS[N ] = −A
∫
dx
μ

T
(N(x, t)) δN(x, t), (3)

where
μ

T
(N(x, t)) ≡ − δS[N ]

δN(x)
= −∂σ(N(x, t))

∂N(x, t)
(4)
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is the local intensive parameter associated to the number of particles in the entropy
representation of thermodynamics [7], and the variations of the density profile δN(x, t)
must satisfy the impermeable-walls boundary condition δN0 = A

∫
dx δN(x, t) = 0.

While in general the equilibrium distribution Neq(x) could be non-uniform, the ex-
tremal requirement of zero first-variation δS[Neq] = 0 implies that at equilibrium μ/T
is the same in any position x, as one may verify considering the specific variation re-
allocating a particle from x1 to x2, δN(x) = [δ(x− x2)− δ(x− x1)]/A.
The so-called fluctuation approximation amounts to a Taylor expansion to

quadratic order of S around Neq:

S[N ] � S[Neq] + A
2

∫
dx
∂2σ

∂N2

∣∣∣∣
Neq(x)

δN(x, t)2. (5)

The expression of the functional derivative as

δS[N ]

δN(x)
=
∂2σ

∂N2

∣∣∣∣
Neq(x)

δN(x, t) (6)

manifests the (local) generalized force – linear in the fluctuation δN with intensity
regulated by the thermodynamic response ∂2σ/∂N2 – which drives the system back
to equilibrium. According to Einstein’s formula [8,9], the equilibrium probability for
a fluctuation is proportional to the exponential of the constrained entropy, implying

E
[
δN(x)2

]
=

∫ D(δN(x))
N δN(x)2 exp

[
A

2kB

∫
dx
∂2σ

∂N2

∣∣∣∣
Neq(x)

δN(x)2

]
. (7)

A Gaussian integration [10] thus shows that such response is directly linked to the
average squared local fluctuation: whence

E
[
δN(x)2

]
= −

[
AL

kB

∂2σ

∂N2

∣∣∣∣
Neq(x)

]−1
. (8)

2.2 Linearly varying intensive parameter

If a system is sufficiently close to equilibrium, even in the presence of possibly rough
density profiles Neq(x) the intensive parameter μ/T can be assumed to be spatially
smooth (see previous section). In those cases in which μ/T is linearly varying along
x, a number of the above general derivations assume a more transparent meaning.
Since in principle the distribution N(x, t) can be characterized in terms of all its

moments Nn, we may think of the entropy functional as a simple function of such
moments [11]:

S[N ] ≡ S(N0, N1, . . .). (9)

Retaining only the zero- and first-order moments in the right-hand side and taking
the functional derivative, we obtain the equation

δS[N ]

δN(x)
=
∂S(N0, N1)

∂N0

δN0

δN(x)
+
∂S(N0, N1)

∂N1

δN1

δN(x)
,

−μ
T
(x, t) = −μ/T + ∂S(N0, N1)

∂N1
x,

(10)
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where μ/T has been regarded directly as a function of (x, t), and μ/T ≡ ∂S(N0, N1)/
∂N0 = μ/T (0, t) is the global intensive parameter. The latter result implies

∂S(N0, N1)

∂N1
= −∇x μ

T
(0, t), (11)

with ∇x(μ/T ) uniform within this approximation. One thus recognizes that the
thermodynamic force restoring the fluctuation to equilibrium is now seen as the gradi-
ent in the intensive parameter μ/T . Since, in view of the impermeable boundaries, N0
is the same for any distribution, in what follows it is not a relevant thermodynamic
parameter and may be safely neglected. Indicating as N1,eq the first moment of Neq,
the fluctuation approximation can now be written as

S(N1) � S(N1,eq) + 1
2

∂2S

∂N21

∣∣∣∣
N1,eq

δN21 . (12)

The use of the Einstein’s formula [8,9] for the probability of a fluctuation δN1 gives,
for the generalized force,

−∇x μ
T
(0, t) � ∂

2S

∂N21

∣∣∣∣
N1,eq

δN1(t) = − kB

E[δN21 ]
δN1(t). (13)

The time derivative of δN1 is closely related to the number flux JN . Take, for
simplicity, a quasi-stationary state within the cylinder, i.e., a situation in which the
thermodynamic parameters are almost time-independent. A quasi-stationary state
can only be supported by the existence of uniform fluxes. In such a way, the number
of particles entering arbitrary small volumes in a given time interval is equal to those
leaving it. Assuming thus JN (x, t) = J(t) for x ∈ [−L/2, L/2] (slowly varying in t),
and JN (x, t) = 0 for x /∈ [−L/2, L/2], we have

∇xJN (x, t) = JN (t) [δ(x+ L/2)− δ(x− L/2)] . (14)

Plugging this result in the continuity equation,

∂t δN(x, t) = ∂tN(x, t) = −∇xJN (x, t), (15)

we indeed obtain
∂t δN1(t) = AL JN (t). (16)

2.3 Onsager regression dynamics

Consider a small fluctuation at time t0, which can be monitored through the first mo-
ment of the density profile, δN1(t0). According to Onsager [2,3], the thermodynamic
force determining the behavior of δN1 does not depend on whether the fluctuation
is spontaneous or generated by the application of an external field or reservoir. It
is possible to prove [12] that the most likely small-time behavior of δN1(t0 + τ),
δN1(t0 + τ), is linear both in the thermodynamic force and in time:

δN1(t0 + τ)
�

|τ |�1 δN1(t0)− |τ | Λ
2
∇x μ
T
(0, t0), (17)

where Λ is a (positive) coefficient encoding the transport properties of the system (see
below). Equation (17) applies to |τ | larger than the microscopic (molecular) time-scale
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of the dynamics, but still small with respect to the significant macroscopic evolution
of the system [12]. In terms of the number flux, equation (17) can be rewritten as

JN (t0 + τ) � 1

AL

δN1(t0 + τ)− δN1(t0)
|τ | = − Λ

2AL
∇x μ
T
(0, t0). (18)

If the intensive parameter μ/T can be split into chemical potential μ and temperature
T , and the latter can be assumed to be uniform along the system, this result is often
written as the first Fick’s law [13]:

JN = −D ∇xN, (19)

with

D ≡ Λ

2AL

1

T

∂μ

∂N
(20)

the diffusion coefficient.
More generally, the coefficient Λ is related to the fluctuation’s autocorrelation by

the Green-Kubo relation [14–16]:

Λ = − 2

kB |τ |
(
E[δN1(t0 + τ) δN1(t0)]− E

[
δN1(t0)

2
])
, (21)

where E
[
δN1(t0)

2
]
= E
[
δN21
]
is an average over the equilibrium distribution. Equiv-

alently, the system can be characterized in terms of a coefficient λ which singles out
the dynamical part of the response and is defined as

λ ≡ kB Λ

E[δN21 ]
= − 2|τ |

E[δN1(t0 + τ) δN1(t0)]− E
[
δN1(t0)

2
]

E [δN1(t0)2]
. (22)

In the case of simple diffusion, in the next Section we will explicitly show how λ is
related to the local transport coefficient D and to the global geometry of the system.
In terms of λ, equation (17) recasts into

δN1(t0 + τ)
�

|τ |�1 δN1(t0)− λ |τ |
2
δN1(t0). (23)

At larger τ , for dynamical evolutions both Gaussian and Markovian the Doob’s
theorem [17,18] ensures an exponential decay of the fluctuation given by

δN1(t0 + τ) = δN1(t0) e
−λ |τ|2 . (24)

In summary, we can appreciate that the nonequilibrium behavior of a macroscopic
observable can be synthesized in terms of a static response coefficient E

[
δN21
]
deter-

mining the strength of the force restoring equilibrium, and of a dynamic response
coefficient λ describing the time decay of the nonequilibrium fluctuation. Conversely,
by monitoring the time evolution of δN1(t) sensible information about λ can be
obtained.

3 Conduction and Brownian motion

One of the easiest setup in which the previous general nonequilibrium discussion can
be tested is perhaps that in which particles are endowed with a Brownian dynamics.
The typical situation within this context corresponds to the interaction of the N0
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particles with an heat bath of smaller ones (e.g., water) at a given temperature.
Although the underlying dynamics is assumed to be Hamiltonian, the interaction
with the heat bath may be effectively represented by a stochastic term, so that the
heat bath particles are not explicitly traced. Implicitly, the motion of the heat bath
particles is assumed to compensate that of the Brownian ones, in order to preserve
energy and momenta, and to be in conditions of zero convection. In the overdamped
regime [10], the equation of motion for the coordinate xi of each Brownian particle is
given by the Langevin stochastic differential equation

xi(t+ dt) = xi(t) +
√
2D dW (t), (25)

where W (t) is a Wiener process [18], and reflecting boundary conditions are applied
as xi = ±L/2. In Physics’ literature, equation (25) corresponds to a Gaussian white
noise evolution for dxi/dt [10].
On the basis of the (Lagrangian) particles coordinates xi, the distribution function

N(x, t) is defined as

N(x, t) ≡ 1
A

N∑
i=1

δ(x− xi(t)), (26)

where x is instead regarded as an Eulerian coordinate. In the present case, there are
two sources of randomness for N(x, t): one is the distribution of the initial condi-
tions {xi(t0)}; the other is because the dynamics itself is a random process. As a
consequence of the latter, the most likely time evolution of the distribution function,
N(x, t), satisfies the Fokker-Planck equation [10]

∂tN(x, t) = D ∇2xN(x, t). (27)

The solution is obtained by applying the appropriate Green function for reflecting
boundaries at x = ±L/2 to the initial distribution N(x0, t0) [19]:

N(x, t) =

∫
dx0
L

[
1 + 2

∞∑
n=1

e−
n2π2 D (t−t0)

L2 cos

(
nπ
2x+ L

2L

)

× cos
(
nπ
2x0 + L

2L

)]
N(x0, t0). (28)

Independently of N0, the equilibrium distribution turns out to be uniform: Neq(x) =

limt→+∞N(x, t) = N0/AL, and a straightforward calculation yields

δN1(t) = −4AL
+∞∑
n=1
n odd

e−
n2π2 D (t−t0)

L2

n2π2

∫
dx0 cos

(
nπ
2x0 + L

2L

)
N(x0, t0). (29)

If N(x0, t0) is sufficiently close to Neq, equation (29) is dominated by the n = 1 term,
and we recover equation (24) with

λ =
2π2D

L2
. (30)

As anticipated, we thus see that λ is affected by both local transport properties and
global aspects of the geometry of the system. In Figure 2 the numerical simulation
of a system of particles described by equation (25) is compared with the analytical
results.
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Fig. 2. Conduction and Brownian motion (simulation dimensionless units). Equations (25)
are numerically integrated for N0 = 10

5 independent particles with reflecting boundaries at
±1 (L = 2) and D = 0.08. To calculate N(x, t), the interval [−1, 1] is coarse grained in 100
cells; N(x, 0) ≡ (1 + aLx)N0/(AL), with x indicating the center of the cells and a = 0.2.
(a) Initial and long-term distribution. (b,c) Numerical evaluation of δN1(t) (circles) is com-
pared with equation (29) (line).

4 Conduction and chaotic dynamics

In this and in the following section we address the phenomenology of the regression
of a nonequilibrium distribution within the context of the logistic map. The basic
question we would like to explore is whether some of the general Onsager results do
generalize to such a dynamics. Before entering into details, some words of caution are
in order. In the case of the logistic map, basic assumptions ordinarily underlying the
Onsager discussion are posed into question. First, the logistic map’s dynamics is not
local: being conceptually the result of a Poincaré section on an orbit, for the logistic
map “t” becomes a discrete iteration time and at t+ 1 the iterates are mapped
to a space location typically far from that occupied at t. Second, the dynamics is
inherently non-reversible: the preimage of each iterate at time t corresponds to two
distinct points. In view of these remarks, the study of the regression to equilibrium
of a quantity as δN1(t) and its possible relation with local dynamical coefficients –
such as the Lyapunov exponent [4–6] – becomes thus particularly interesting at a
fundamental level. In what follows, our aim is to give a first numerical account of
such a study, which certainly deserves further insight in the future.
Taking for simplicity L = 2 (in natural dimensionless units), equations (25) are

now replaced by the logistic-map iterations

xi(t+ 1) = 1− μlm xi(t)2 (xi ∈ [−1, 1]). (31)

For each particle, the iterates tend to an attractor whose characteristics depend on
the value of the control parameter 0 ≤ μlm ≤ 2. Specifically, with μlm = 2 the at-
tractor’s dynamics is fully chaotic (positive Lyapunov exponent) [4–6]. Although the
dynamics in equation (31) is now deterministic, a positive exponential divergence of
two initially close initial conditions implies that any randomness in the definition of
the initial coordinates results in a random behavior for N(x, t). The latter is again
defined as in equation (26), with the Lagrangian coordinates xi(t) substituted now
by N0 independent copies of the logistic map’s coordinates, each evolving through
equation (31).
For the sake of simplicity, in Figure 3 we consider the same (linear) N(x, 0) used

for the Wiener process in the previous section. With a single iteration, the chaotic
map quickly drives this initial distribution close to the equilibrium one, Neq(x) =

limt→+∞N(x, t); the latter is in this case x-dependent with a characteristic “U”
shape (see Fig. 3a) [4,5]. In parallel, apart from the initial value, the time evolution
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Fig. 3. The same numerical analysis displayed in Figure 2 is performed replacing
equations (25) with equations (31) and μlm = 2. (a) Plots of the distribution N(x, t) at
different time. (b) Numerical evaluation of δN1(t) (the line is a guide to the eye). (c) The
numerical evaluation of δN1(t) for a single history (circles) is compared with averages over
many histories (lines).

of δN1(t) reported in Figure 3b displays features of a monotonic decay. The log-linear
plot of Figure 3c, where averages are also taken over different histories sharing the
same N(x, 0), provides evidence of an exponential decay1.

5 Conduction at the onset of chaos

At the chaos threshold μlm = 1.401155189092 . . . (the period-doubling accumulation
point [4–6]) the Lyapunov exponent collapses to zero and to get sensible informa-
tion about the microscopic dynamics one is forced to consider an infinite series of
specific time-subsequences and to replace exponential divergence (and convergence)
with a spectrum of power-laws. Correspondingly, the Lyapunov exponent must be
substituted by an infinite series of generalized ones [6,20–22].
Figure 4 displays the numerical analysis performed starting with the same (lin-

ear) N(x, 0) of the previous cases, for the logistic map at the onset of chaos
μlm = 1.401155189092 . . .. As to be expected, results are now much more involved.
In Figure 4a it is shown that the first iteration sets to zero N(x, 1) for x smaller
then about x = −0.5, in correspondence of the (first) gap formation [4–6,22]. Then,
the long-time distribution N(x, t� 1) reflects the multi-fractal properties of the at-
tractor at the edge of chaos, being characterized by many spikes and gaps. Indeed,
initially trajectories are spread out in the interval [−1, 1] and, except for the few that
are initiated inside the multifractal attractor, they get there via a sequence of gap
formations [4–6,22]. In practice most of them get into the attractor fairly soon, so,
after a few iterations, the first moment is built from positions of the attractor, which
are formed by bands (with inner gaps) separated by (main) gaps (see, e.g., Fig. 2 in
Ref. [22]). This implies N(x, t) � 0 for x not in the attractor, if t is sufficiently large.
A careful comparison of Figure 4a with Figure 4d also reveals that in the present

case it is not sufficient to take the long-time limit of N(x, t) to get the (invariant)
equilibrium distribution, since sensible differences can be appreciated, e.g., between
N(x, 210) andN(x, 210 + 1). With this in mind, our numerical study proceeds defining

δN1(t) ≡ A
∫
dx x

[
N(x, t)−N(x, t)] , (32)

1 Added Note. After the manuscript has been accepted, correspondence with A. Dı́az-
Ruelas and A. Robledo pointed out that even in the chaotic case the regression to equilibrium
may involve non-monotonic power-law patterns. The exponential decay reported in Figure 3c
may be due to the coincidence of the average procedure over the initial distributions with a
scarce cell-resolution (100 cells for the plotted results).
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Fig. 4. Conduction at the onset of chaos. The numerical analysis is performed with
equations (31) and μlm = 1.401155189092 . . .. (a,d) Plots of the distribution N(x, t) at dif-
ferent time. (b,e) Numerical evaluation of δN1(t) defined through equation (32) with t = 2

10

in (b) and t = 210 + 1 in (e) (the line is a guide to the eye). (c,f) Same as (b,e), in log-log
scale.

with t = 210 (Figs. 4b and 4c) and t = 210 + 1 (Figs. 4e and 4f). Specifically, in
Figures 4b and 4e we see that in both cases δN1(t) has an oscillating behavior in
which even and odd time iterations are well separated. For further specific time sub-
sequences, the log-log plots of |δN1(t)| in Figures 4c and 4f may recall power-law
behaviors reminiscent to those characterizing the generalized Lyapunov spectrum
[20,21], although deeper insight is certainly needed to get definite results.

6 Conclusions and perspectives

In this paper we studied the relaxation process of a nonequilibrium fluctuation in a
context in which the particles’ dynamics is described by logistic map iterations. This
allowed us to explore whether some of the features of the classic Onsager’s regression
description generalize to non-local, non-reversible microscopic dynamics.
After a general discussion of conductive processes in which simple thermodynamic

observables have been introduced, the conventional example of Browninan particles
has been analytically and numerically worked out. In this way, contact has been
established among the underlying dynamics and system’s geometry, and the thermo-
dynamic behavior.
Substituting the Brownian dynamics with logistic map iterations, we numerically

analyzed the same relaxation process. While evidence of a monotonic relaxation has
been found when the control parameter μlm is tuned to chaoticity

2, at the onset of
chaos a much more involved dynamical picture emerges, which may be rationalized
in terms of specific time subsequences. Clarification of the latter result demands for
a better construction of the invariant (equilibrium) measure than the one obtained

2 See, however, note 1.
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by simply taking the long-time limit of the particles’ distribution. More generally, a
statistical mechanics approach [23] linking the microscopic dynamics (e.g., in terms
of the Lyapunov or generalized Lyapunov exponents) to the observed nonequilibrium
thermodynamics is an intriguing open question.

A. Dı́az-Ruelas and A. Robledo are acknowledged for important discussions and remarks.
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