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Abstract. We introduce a new Self-Organized Criticality (SOC) model
for simulating price evolution in an artificial financial market, based
on a multilayer network of traders. The model also implements, in a
quite realistic way with respect to previous studies, the order book dy-
namics, by considering two assets with variable fundamental prices. Fat
tails in the probability distributions of normalized returns are observed,
together with other features of real financial markets.

1 Introduction

The dynamics of financial markets, with its erratic and irregular behavior at different
time scales, has stimulated important theoretical contributions by several physicists
and mathematicians like Mandelbrot, Stanley, Mantegna, Bouchaud, Farmer, Sor-
nette, Tsallis, [1–6], among many others, since long time. In particular statistical
physics has provided the newborn field of “Econophysics” with new tools and tech-
niques that allow to model and characterize in a quantitative way the apparently
unpredictable behavior of price and trading time dynamics. The recent use of agent-
based approaches in financial markets models has also given very useful insights in
understanding the often counterintuitive interactions among heterogeneous agents
operating in realistic markets [4]. Recently, herding and imitative behavior among
agents has been successfully simulated with Self-Organized-Criticality (SOC) models
and the adoption of random strategies has been shown to be an efficient and powerful
way to moderate dangerous avalanche effects, diminishing the occurrence of extreme
events [7–12]. Often these models have adopted topologies like scale-free and small
world networks to describe the social interaction among agents. Such topologies can
be further refined for a detailed and realistic description. Very recently multilayer
networks have been introduced for a more appropriate framework of several social
networks. In this paper we use a multilayer network, which as far as we know, has
not been used up to now for trading agents, to investigate price dynamics by means
of an order book based on two assets.
The paper is organized as follows: in Section 2 we describe the new model; in

Section 3 simulation results are discussed; in Section 4, conclusions are presented.
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Fig. 1. The multilayer network considered in the present model. The top layer is the infor-
mative layer, while the bottom one is the trading layer. The nodes in the two layers represent
the same traders, but the meaning and the topology of the links are different (see text).

2 The multilayer network model

In order to simulate the operations of a financial market, the model here presented
extends, on one hand, the network framework contained in [11], where only one (in-
formative) layer was considered, by augmenting it with a second layer, devoted to
the order book mechanism. On the other hand, it also extends the single-asset model
presented in [12], by considering a two-assets order book, which makes the trading
dynamics more various and interesting. In such a way, we obtain an order-book-driven
Multi-Layer Contagion-Financial-Pricing model (ML-CFP henceforth), as shown in
Figure 1. Technically, this kind of multilayer network is called multiplex, since the
nodes (traders) are the same in both the layers, changing only the meaning of the
edges [15].
In brief, the role of the two layers of the ML-CFP model is the following:

i) in the informative layer, according to the link configuration given by the
network topology, agents collect and share information, therefore deciding their
status (bidder, asker or holder) and the (ask or bid) price of their possible orders
for the two assets, depending on the global price of the assets at time t and on
the herding effect, which induces avalanches of identical investments;

ii) in the trading layer, investors put their orders in the order book, which pro-
vides a sort of compensation room to execute them, and the next global prices
for the two assets emerge from the mutual interaction among all the agents.

Let us now explain these features more in detail.

2.1 The informative layer

The informative layer (the top one in Fig. 1) consists of a community of traders Ai
(with i = 1, ..., N) connected among themselves in a two-dimensional square lattice
with a Small World (SW) topology and with open boundary conditions. The SW
network, introduced in [16], is usually adopted to describe realistic communities in
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social or economical contexts, thanks to the presence of a small number of long-range
links (weak ties) among the regular short-range ones (strong ties). See reference [8]
for more details.
Each trader in the network is exposed to two flows of information: a global one

and an individual one [8–11]:

(a) Global flow: this informative pressure reaches all investors uniformly at every
time-step, from external sources. Each trader is endowed with a real variable
Ii(t) (i = 1, 2, ..., N) that represents her information at time t. Initially, at
t = 0, the informative level of each trader is set randomly, in such a way that
Ii(t) ∈ [0, Ith], where Ith = 1.0 is a threshold assumed to be the same for all
agents. Then, at any time-step t > 0, the information accumulated by each
trader in her awareness tank is increased by a quantity δIi, different for each
agent and randomly extracted within the interval [0, (Ith − Imax(t))]. Such an
accumulation process may lead a given trader Ak, before the other, to exceed
her personal threshold value at a given time t = tav. In this case, that trader
becomes active and transmits her opinion, as an informative signal, to her
neighbors;

(b) Individual flow: it is represented by the opinion spreading among traders, since
every one may receive signals from her neighbors, who have possibly passed
their threshold. If it happens, it may cause, in turn, that also other agents
exceed their thresholds because of this supplementary amount of information,
which is additive with regards to the global one (a). Such a process explains
how the informative cascades may generate herding in the market.

The information transfer is realized according to the following simple mechanism,
analogous to the energy transmission in earthquake dynamics [13,14]:

Ik > Ith ⇒
{
Ik → 0,
Inn → Inn + α

Nnn
Ik,

(1)

where nn denotes the set of nearest-neighbors of the active agent Ak. Nnn is the
number of direct neighbors, and the parameter α controls the level of dissipation of
the information during the dynamics (α = 1 if there is no dissipation): it is realistic
to presume that part of the information content is lost in transmission, therefore in
our simulations we always adopted α < 1.
When, at a given time t, an agent – that we call trigger agent – overcomes her

threshold, i.e. when she reaches a level of knowledge that she considers satisfying,
she transmits the (individual) information about her status and, possibly, price for
the two assets to her neighbors in the network. In turn, the neighbors can overcome
their threshold too: in this case they imitate both status and prices of the first agent
and transmit the same information to their neighbors following equation (1), and so
on (notice that this is another difference with respect to [12], where only the status
of the first active agent was imitated). In such a way, the herding avalanche can
develop. At the end of each avalanche, all the traders involved in the herding process
operate in the same way, while the others act independently. After a given number
of time-steps, such a dynamical rules drive the system into a self-organized critical
state, where herding avalanches of every size can happen. In Figure 2 it is shown
that a transient of 5000 time-steps is largely enough for the system to enter into
such a critical state. At this point, the trading layer dynamics come into action and
all the orders are organized in the order book, which operates the matching for the
transactions to be actually done. Then, the new price for each of the two assets is
determined as explained in the next subsection.
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Fig. 2. Time series of herding avalanches (see text).

2.2 The trading lsayer

The topology of the trading layer (the bottom one in Fig. 1) is that of a fully con-
nected network, since each agent can trade with all the others through the order
book dynamics. In our model we consider an ideal financial market where only two
assets exist, each one with its own order book, and where money has an ancillary
function, just for transactions regulation. Let us imagine, first, that the trading layer
is not influenced by the herding avalanches of the informative layer. In this case
we could consider the process of status setting and price formation for an individ-
ual agent as independent from the behavior of the other agents. The traders Ai
(with i = 1, ..., N) are endowed, at the beginning of each simulation (i.e. at t=0), with
an equally valued portfolio, composed by the same initial quantity of moneyMi(0) =
M (∀i) and same initial quantities of the two assets Q1i(0) = Q1 and Q2i(0) =
Q2 (∀i). At each time step, the total wealth of each trader is therefore defined as:
Wi(t) =Mi(t) +Q1i(t) · p1(t) +Q2i(t) · p2(t), where p1(t) and p2(t) are the global
prices of the two assets at time t. At t = 0, of course, all traders will have the same
initial wealth Wi(0) =Mi(0) +Q1 · p1(0) +Q2(t) · p2(0), being p1(0) and p2(0) the
initial asset prices.
Two groups of traders do exist in the market: fundamentalists and chartists. At

each time-step, traders will behave differently according to their character.
Fundamentalists: They presume the existence of a fundamental value for each

asset, FV1 for asset 1 and FV2 for asset 2, and believe that the market prices will always
tend to those fundamental values. At variance with [12], where the fundamental value
was fixed at the beginning and did not change in time, here FV1 and FV2 change every
tf time-steps following the rules:

FV 1(t+ tf ) = FV 1(t) +D1(t) (2)

FV 2(t+ tf ) = FV 2(t) +D2(t) (3)

where FV1(0) = 0 and FV2(0) = 0, while D1(t) and D2(t) are random variables ex-
tracted from two normal distributions with zero mean and standard deviations σ1f
and σ2f , respectively. This corresponds to the assumption that, in both cases, divi-
dends follow a random walk. The fundamental values are then used by each funda-
mentalist in order to build a personal opinion about the correct prices for the assets,
named fundamental prices, pF 1(t) and pF 2(t), being computed as

pF 1(t) = p1(0) + FV 1(t) + Θ (4)

pF 2(t) = p2(0) + FV 2(t) + Θ (5)
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where Θ is a parameter randomly chosen in the interval (−θ, θ), in order to account
for the heterogeneity of investors. Thus, fundamentalists form their expected prices
for the two assets according to

E[p1(t+ 1)] = p1(t) + φ · [pF 1(t)− p1(t)] + ε (6)

E[p2(t+ 1)] = p2(t) + φ · [pF 2(t)− p2(t)] + ε (7)

where the parameter φ is a sensitivity parameter that describes the expected speed
of convergence to the fundamental prices and ε is a stochastic noise term, randomly
chosen in the interval (−σ, σ). In order to limit the number of parameters, we let the
value of φ be unique and fixed even if, in principle, it could be different for the two
assets and for each trader of this group.
Chartists: They decide their behavior according to their inspection of past prices.

Therefore, before defining their expectation for the future, they will analyze the past
dynamics of the two asset price series. In particular, they consider the information
coming from such an inspection as two past reference values PRV 1(t) and PRV 2(t),
computed at any t by averaging the previous prices over a time window of length T ,
different for each chartist and randomly chosen in the interval (2, Tmax):

PRV 1(t) =
1

T

t∑
j=t−T

p1(j) (8)

PRV 2(t) =
1

T

t∑
j=t−T

p2(j). (9)

For sake of simplicity, we consider the same value of T for both the assets. Then, the
expected prices for the next time-step are determined by each chartist as

E[p1(t+ 1)] = p1(t) +
κ

T
· [p1(t)− PRV 1(t)] + ε (10)

E[p2(t+ 1)] = p2(t) +
κ

T
· [p2(t)− PRV 2(t)] + ε (11)

where κ (a constant) is the sensitivity parameter and ε is, again, a stochastic noise
term defined as in equation (6) and equation (7).
In order to choose the status of the traders a sensitivity threshold τ – common

to both the assets – has been introduced in the model, in such a way that, if the
expectations are not sufficiently strong, i.e. if p1(t)− τ < E[p1(t+ 1)] < p1(t) + τ
and p2(t)− τ < E[p2(t+ 1)] < p2(t) + τ , the trader will decide to hold on, without
setting any order. On the other hand, if E[p1(t+ 1)] > p1(t) + τ or E[p2(t+ 1)] >
p2(t) + τ traders will expect a rise in the market price of the corresponding asset
and decide to buy, setting their status on bidder. If, on the contrary, E[p1(t+ 1)] <
p1(t)− τ or E[p2(t+ 1)] < p2(t)− τ , traders will expect a fall in the market price of
the corresponding asset and they will decide to sell, setting their status on asker. Of
course, traders who decide to buy must have a positive amount of money (Mi > 0)
and, similarly, those who decide to sell must have a positive amount of the assets
(Q1i > 0 or Q2i > 0).
Once the individual status and about the two assets has been decided, each trader

sets her orders in each of the two books by choosing the preferred prices for the
transactions. As in [12], we keep the order mechanism as simple as possible and allow
for a maximum of a single order-quantity for each asset. Both in case of sales and
purchases, the prices chosen by each trader for the transcription in the order books
(personal bid price for bidders and personal ask price for askers) are functions of the
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expectations that inspired the status of the same trader about the two assets. Since
orders are always of quantity 1, bid (ask) prices are decided by traders by means of
simple price setting rules that describe their willingness to pay (to accept) according
to their expectations, instead of being defined by means of function optimization
procedures. The heterogeneity of traders is embedded in the model by defining feasible
intervals from which each investor can extract her bid/ask prices. The rules, that are
exactly the same for both the two assets considered independently one from each
other, are the following:

i) if the status is bidder, the chosen bid price will be extracted (with uniform
probability) from a range whose minimum and maximum are defined as follows.
min: since it is not convenient for any buyer to set a bid price too low, because

no seller would accept to sell, the lower bound for the bid price setting at
time t+ 1 is equal to the best ask price (i.e. the lowest one) observed at
time t;

max: since the reason why the investor is bidding is that her expected price is
higher than the current one, the upper bound for the bid price setting is
exactly that expected price (but, of course, in case the trader has not enough
money, the maxmum value that she can bid is limited to the owned money);

ii) if the status is asker, the chosen ask price will be extracted (with uniform
probability) from a range, whose minimum and maximum are defined as follows.
min: since the reason why the trader is selling is that her expected price is lower

than the current one, the lower bound for the ask price setting is the worst
scenario that she infers, i.e. the expected price;

max: since it is not convenient for any seller to set an ask price too high, because
no buyer would accept to buy, the upper bound for the ask price setting in
t+ 1 is the expected price plus β times the difference between the current
price and the expected one, where β is an adjustable parameter chosen in
order to balance the number of askers and bidders.

After status and price setting activities, orders for a “+1” or “−1” quantity are
posted in the two books. This is exactly the point where the interaction between the
fully connected trading layer and the SW informative one becomes crucial. Actually,
as anticipated in the previous subsection, in presence of herding avalanches all the
traders involved in the avalanche, regardless of their character (fundamentalist or
chartist), will imitate both the status and the price of the agent who started the
avalanche itself. And this, of course, strongly influences the order books aspect.
Once posted all the orders in the two books, considered as independent one from

the other, both sides (buy and sell orders) are ranked accordingly with their associated
prices. Bid prices are ranked in decreasing order of willingness to pay: in such a way,
the trader who has set the highest bid price (namely the best-bid) will be the top of
the list and will have the priority in transactions. Conversely, ask prices are ranked
in increasing order of willingness to accept: the trader with the lowest willingness
to accept (who sets the so-called best-ask) will be the top of the list and will have
the priority in transaction execution. Then, the matching is done by comparing the
best ask and the best bid for the two assets. The number of transactions NT 1 and
NT 2that actually does occur for each asset between askers (whose total number is,
respectively, Na1 and Na2) and bidders (whose total number is, respectively, Nb1 and
Nb2) strictly depends on such a comparison. Actually, only if best-bid > best-ask we
have NT 1 > 0 or NT 2 > 0, i.e. a given number of transactions do occur, depending
on the matching among ask and bid prices present in the order book. After the first
transaction, occurring among traders who posted their own order at the best price,
both from the demand or the supply side, transactions continue following the order
in both the books (ascending for the ask list and descending for the bid list) until the
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bid price is greater than the ask price and all the transactions are regulated at the ask
price. Finally, if pL1 and pL2 are, respectively, the ask prices of the last transactions
occurred in the two order books, the new global asset prices for the two assets will
be determined as

p1(t+ 1) = pL1 + δ · ω2 (12)

p2(t+ 1) = pL2 + δ · ω1 (13)

where ω1 and ω2 are the market imbalances for the two assets, defined as{
ω1 = Nb1 −NT 1 if Nb1 ≥ Na1 > 0
ω1 = −(Na1 −NT 1) if 0 < Nb1 < Na1

(14)

{
ω2 = Nb2 −NT 2 if Nb2 ≥ Na2 > 0
ω2 = −(Na2 −NT 2) if 0 < Nb2 < Na2

(15)

while δ is a parameter which quantifies the degree of correlation between the two
asset prices.
In such a way, we introduce a feedback mechanism that, according to the unsat-

isfied side of the market (i.e. either bidders or askers who could not trade for missing
counterparts) for a given asset, do influence the price of the other asset, which re-
ceives a proportional shift δ · ω. Thus, for example, in case of an excess of demand
for, say, asset 2 (i.e. bidders are greater in number than askers and therefore some
of them cannot trade the asset 2 at the desired price), the price of asset 1 will be
increased proportionally to the excess itself. Conversely, if askers are greater in num-
ber than bidders for asset 2, the price of asset 1 is decreased proportionally to the
excess of supply. Of course, the same happens by inverting the labels of the two
assets.
In the next section we will combine the herding dynamics of the informative layer

with the order book mechanism of the trading layer, in order to explore the behavior
of the two asset prices through several numerical simulations.

3 Numerical results

We present here the numerical results of a typical run of the ML-CFP model, analyz-
ing both its macroscopic and microscopic details, and plotting the final distributions
of its main quantities.
We consider a network of N = 900 traders, with 25% of fundamentalists (225

agents) and 75% of chartists (675 agents). The (typical) initial setup for the values
of the control parameters of the model is the following: p1(0) = p2(0) = 500 (initial
asset prices), α = 0.95 (level of conservation of information), σ1f = σ2f = 1 (standard
deviations of the normal distribution for the fundamental values FV 1(t) and FV 2(t)),
tf = 10 (time increment for FV 1(t) and FV 2(t)), Θ = 30 (range of variation for the
fundamentalists’ heterogeneity), φ = 0.5 (sensitivity parameter for fundamentalists),
Tmax = 100 (maximum extension of the window for chartists), κ = 2.0 (sensitivity
parameter for chartists), σ = 30 (maximum intensity of the stochastic noise for the
expectation values), τ = 15 (sensitivity threshold for the status setting), M = 40000
(initial quantity of money) and Q1 = Q2 = 200 (initial endowment of the two assets).
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Fig. 3. Top panel: typical time series for the global prices of the two assets (p1(t) and p2(t))
in absence of correlations (δ = 0) and for the weighted average price p(t) (1 + 2). The initial
price is also indicated as an horizontal dashed line. Middle panels: normalized returns of
the three price series. Bottom right panel: probability density distributions (PDFs) of the
normalized returns compared with Gaussian distributions of unitary variance (dashed lines).

3.1 Uncorrelated assets

Let us first take into account the case δ = 0, i.e. a situation where there is no corre-
lation between the two assets.
In the top panel of Figure 3 we show a typical time evolution of the two global

asset prices p1(t) and p2(t), and for the weighted average price p(t) defined as

p(t) = p1(t) · w1 + p2(t) · w2 (16)

where the weights w1 = Q1/(Q1 +Q2) and w2 = Q2/(Q1 +Q2) are fixed by the initial
endowment of the two assets. According to our parameter’s choice, w1 = w2 = 0.5,
therefore p(t) is simply the average of p1(t) and p2(t).
In this panel we plot the first 10000 time-steps after a transient of 5000 time-steps,

starting from the common initial price (500), which is highlighted by an horizontal
dashed line. Although weakly fluctuating, due to the effect of the herding avalanches,
in absence of mutual correlations the two asset prices follow distinct time evolutions.
In this case, the volatility of both the prices, as well as that one of the averaged price,
remain almost normal. This can be shown by plotting the normalized returns of the
prices, generally defined as rnormt = (rt − rav)/rstdev, where rt = log(pt+1)− log(pt)
are the logaritmic returns while rav and rstdev are, respectively, their mean and stan-
dard deviation calculated over the whole time series. In the middle panels we re-
port the three time-series while in the bottom panels their corresponding PDFs. The
Gaussian shape of the three curves is evident if compared with normal distributions
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Fig. 4. Top panel: typical time series for the global prices of the two assets (p1(t) and
p2(t)) and for their average p(t) in presence of correlations (δ = 0.03). The initial price is,
again, indicated as an horizontal dashed line. Middle panels: normalized returns of the three
price series. Bottom right panel: probability density distributions (PDFs) of the normalized
returns compared with Gaussian distributions of unitary variance (dashed lines).

with unitary variance, also reported as dashed lines. This means that, if the asset
prices are not correlated, one does not observe extreme events in the market fluc-
tuations, since the system evidently self-organizes, maintaining a dynamical balance
between purchase orders and sales.

3.2 Correlated assets

Quite different is the situation if one consider an even though weak correlation be-
tween the two assets, by setting δ = 0.03 in equations (12) and (13).
In Figure 4 we show the same plots than in Figure 3, but now the fluctuations

of the two prices p1(t) and p2(t) are visibly much stronger than before. Furthermore,
their time evolutions (top panel) appear to be strongly coupled: reversals in the
price values can be observed at 2000 and 6500 time-steps, where sudden price falls
of, respectively, p2 and p1, take place. Such a dynamics, due again to the presence
of herding avalanches but also to the newly introduced prices correlation, induces
in turn a higher volatility, as shown in the time series of the middle panels. As
a consequence, fat tails start to appear in the corresponding PDFs of the bottom
panels, thus confirming the presence of extreme financial events.
In Figure 5, an enlargement of the PDF for the normalized returns of the aver-

age price pt (asset 1 + 2) is reported: deviations from the normal behavior (dashed
curve) are clearly visible and the fat tailed shape can be quite well fitted by a q-
Gaussian curve (full line) with q = 1.35. The latter is a fat tailed distribution, typical
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Fig. 5. The probability distribution of the normalized returns for the average price p(t)
(asset 1 + 2) can be well fitted by a fat tailed q-Gaussian curve with q = 1.35.

Fig. 6. Final distributions of asset quantity, money and wealth for, respectively, fundamen-
talists (left column) and chartists (right column). The initial values of the three quantities,
equal for all the traders, are also reported as dashed vertical lines.

of non-extensive statistical mechanics, defined as y = A(1− (1− q)βx2)1/(1−q), where
the entropic index q measures the deviation from Gaussian behavior (for q = 1 the
Gaussian shape is recovered).
Let us now look to the microscopic details of some interesting quantities as they

appear at the end of the simulation. In Figure 6, the final distributions of asset quan-
tity, money and wealth for, respectively, fundamentalists (left column) and chartists
(right column), are plotted. The initial values of the three quantities, equal for all
the traders, are also reported as dashed vertical lines. As one could see, fundamen-
talists accumulate a great quantity of asset 1, while mainly tend to sell asset 2: as a
consequence, at the end of the simulation all of them have less money with respect
to the beginning, but their total wealth stay always above the initial value. On the
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other hand, chartists mainly tend to sell asset 1, while have a quite neutral behavior
with respect to asset 2: in such a way, many of them increase their initial capital in
terms of money, even if their total wealth always remain well below the initial value.
Such a scenario is consistent with the details about the average percentage of fun-
damentalists and chartists who buy or sell, calculated over the whole simulation. In
this respect, at a first sight, the situation does appear quite equilibrated: actually, for
fundamentalists, we have 26% of buyers and 24% of sellers, while, for chartists, 25%
of buyers and 26% of sellers. However, although very small, in the long term these
slight discrepancies account for the different attitude of the two kind of traders and,
in turn, for their different wealth and portfolio.
The features observed for this typical run are quite robust and remain substan-

tially unchanged if one varies not only the relative proportion of fundamentalists and
chartists, but also the initial value of the asset price, the initial asset endowment or
the initial money quantity. On the other hand, they are quite sensitive with respect
to variations in some control parameters, like the sensitivity for expectation prices
or the sensitivity threshold for the status setting: by changing these parameters,
the previously observed quite good equilibrium between bidders and askers becomes
much more unstable and, typically, one of the two trading groups, fundamentalists
or chartists, start to buy the asset much more than the other one, thus generating a
spiral effect that leads fundamentalists or chartists to spend all its money thus taking,
in fact, out of the market.

4 Conclusions

We have presented a new model of order book, the ML-CFP model, able to describe
price dynamics in a financial market with two assets, realized through a multilayer
network of heterogeneous agents. This realistic framework produce interesting numer-
ical results, which – despite the simplifying assumptions about assets and orders –
adhere to some typical features of real financial markets. Further numerical explo-
rations of this model, as for example a more detailed parametric analysis and the
influence of random traders are in progress, but will be reported elsewhere.

We would like to dedicate this paper to Alberto Robledo for his 70th birthday. One of us
(A.R.) would like to thank the organizers of the conference in honor of Alberto Robledo for
the warm hospitality and the financial support. This study was partially supported by the
FIR Research Project 2014 N.ABDD94 of the University of Catania.
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