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Abstract. We study analytically a non local stochastic partial differ-
ential equation describing a fundamental mechanism for patterns for-
mation, as the one responsible for the so called fairy circles appearing
in two different bio-physical scenarios; one on the African continent
and another in Australia. Using a stochastic multiscale perturbation
expansion, and a minimum coupling approximation we are able to
describe the life-times associated to the stochastic evolution from an
unstable uniform state to a patterned one. In this way we discuss how
two different biological mechanisms can be collapsed in one analytical
framework.

1 Introduction

The recent discovery of fairy-circle patterns in the remote outback of Australia [1]
shows the same geometrical characteristics of the well know patterns in Africa [2] and
open up the discussion about the fundamental causes of these mysterious patterns.
So-called Fairy circles are circular patches of land barren of any vegetation en-

circled by a ring of grass. These patterns vary between 4 to 13 meters [3]. Until
recently, the phenomenon was only observed in the arid grasslands of the Namib
desert, South Africa. In 2014, ecologists were alerted to similar rings of vegetation
outside of Africa [1], in a remote region of the Pilbara, Western Australia.
Biological phenomena that drive these surprising patterns are driven by differ-

ent mechanisms, mainly related with biomass-water feedback [4,5]. While Namibia’s
porous soils rainwater diffuses and plants will experience an intense competition for
water forming finally a patch of bare soil, in Australia the hard clay form a crust-like
terrain, forcing the water to flow to nearest plants. This flow reduces the seedling
establishment, and finally produces the particular patterns shown in the fairy circles.

a e-mail: fuentesm@santafe.edu

http://www.epj.org/
https://doi.org/10.1140/epjst/e2016-60178-1


444 The European Physical Journal Special Topics

– 2 – 1 0 1 2

– 0.2

0.0

0.2

0.4

0.6

0.8

1.0

x

G
(x
)

Fig. 1. Typical migration kernel G (x) showing two regimes. The positive effect near the
origin and a negative effect due to external competition at certain range. Here we chose
B = 2, A = 3 in equation (12).

In order to understand these structures, several models have been applied, most of
them related with Turing’s mechanisms [6], showing pattern morphologies changing
from labyrinths to spots [7–9].
Even though the ecological system appears to be completely different [1], common

characteristics of the geometrical structures appearing in Africa and Australia could
refer to certain universal principle present in the bio-physical mechanisms behind the
phenomena. In this work we explore the possibility of modeling this universal principle
throughout a minimal fundamental model in which classical birth/decay mechanism
is complemented by non-local migration and stochastic effects [10–12]. Then using
the framework of stochastic partial integro-differential equations, we will discuss how
a instability can appear unifying these two systems under a same equation.
In the next section we will introduce the mathematical model, then we will dis-

cuss the appearance of the pattern. Using a minimum coupling approximation and a
multiple scale expansion, we will obtain analytical results of relevant quantities like
the first passage time distribution, mean first passage time, etc.

2 The mathematical model

The model shown in the next equations, takes into account a local exponential growth
of the population, and a competition term, also local. This part of the model defines a
classical Lotka-Volterra-like dynamics. We denote it with a general non-linear function
f [u(x, t)], been u(x, t) the density of the biomass.
Subsequently, we introduce the non-local interactions, where a normalized ker-

nel function G (x) models the two mechanisms for the creation of these particular
patterns: uptake-diffusion feedback and infiltration feedback [1,2]. The fundamental
aspect of this non-locality is that at short range, there is a positive feedback mecha-
nism; while at long distances there is a negative one, that finally acts against seedling
establishment (see Fig. 1 and Fig. 2). The use of this type of non-local mechanisms
is typically used in ecology, after the pioneer research of Volterra in its classical
work [13].
The model ends with a Gaussian delta-correlated white noise that trigger the

patterns stochastically (note that in the critical state the fluctuation are very im-
portant for the appearance of the final structures). The noise field, in space and
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Fig. 2. (a) Namibia’s porous soils rainwater diffuses, forming a patch of bare soil at the
location where competition for water is most intense. (b) Australia’s hard clay, the overland-
water flow acts against seedling establishment. In both figures, the black arrows sketch the
water (nutrients) flow in the two scenarios.

time, corresponds to ξ(x, t) in the dynamical equation. This is a plausible ansatz
when the unspecified random contributions are more important at low density,
see Appendix 3 in [14]. We characterize the strength of the noise with a small
parameter ε.
Thus, to begin with our mathematical analysis we will write down the general one

dimensional model with the explicit properties mentioned before, for the kernel and
the stochastic field

∂u(x, t)

∂t
= f [u(x, t)] +

√
εξ(x, t) + g[u(x, t)]

∫ ∞
−∞
u (x− x′, t)G(x′)dx′, (1)

1 =

∫ ∞
−∞
G(x)dx (2)

〈ξ(x, t)〉 = 0, (3)

〈ξ(x, t)ξ(x′, t′)〉 = δ(x− x′)δ(t− t′). (4)

Here g[u(x, t)] can be also a general non-linear function, see for example [15].
The homogeneous stationary state comes from the deterministic analysis

0 = f [u0] + g(u0)u0.

Doing a linear analysis around the nontrivial stable point u0, we can use the
perturbation

u(x, t) � u0 + v(x, t), (5)

and arrive to the following equation.

∂v(x, t)

∂t
= f ′(u0)v(x, t) + u0g′(u0)v(x, t) + g(u0)

∫ ∞
−∞
v (x− x′, t)G(x′)dx′. (6)
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Introducing a Fourier wave for the perturbation around u0, i.e.,: v (x, t) ∝
exp (ϕt+ ikx). The equation for the growth/decay rate of the Fourier modes (the
so-called dispersion relation) is given by

ϕ = f ′(u0) + g′(u0)u0 + g(u0)G(k), (7)

with

G (k) =

∫ +∞
−∞

eikxG(x)dx. (8)

As we mention above, it is our intention to introduce the minimal fundamental
model that shows, with elegance and simplicity, a general migration mechanism with
a Lotka-Volterra dynamics. Then, for the general non-linear functions we use

f [u(x, t)] = u(x, t)− bu(x, t)2, (9)

g[u(x, t)] = D. (10)

With these features the dispersion relation becomes

ϕ = DG(k)− 2D − 1. (11)

2.1 The model for the migration kernel

For the case treated in this manuscript, i.e., an ecological model with two distinct
regimes at different length scales, the kernel must contains on the one hand a positive
region which takes into account the opportunities and lack of strong competition
near the origin, and on the other a negative effect which model the competition effect
outside a certain range [16], as it is schematically shown in Figure 2. This nonlocal
migration is well described by the kernel shown in Figure 1, which analytically can
be modelled by the function

G(x) = N (Be−Ax2 − e−x2). (12)

Here, N is a normalization factor

N−1 = √π
(
B√
A
− 1
)
. (13)

Notice that G (x) is not a probability. If this function is positive, its contribution
is asymptotically equivalent to the Laplacian operator.
We will use this particular function in this work, but the general results does

not depend on the specific functional form of G(x), but on the positive and negative
regions as shown in Figure 1. The Fourier transform of this kernel is the following

G(k) = N√π
(
B exp

(−k2/4A)√
A

− e−k2/4
)
, (14)

in Figure 3 we show this function, G(k), with parameters B = 2, A = 3.
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Fig. 3. Fourier transform of the nonlocal kernel G (x) for B = 2, A = 3.
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Fig. 4. Dispersion relation ϕ, see equation (11) for D = 1.5 and G(k) from Figure 3, as
a function of Fourier number k. The instability of the homogeneous mode occurs when
ϕ (k) > 0.

With all these characteristics, and noticing that G(k) has a peak with a positive
value, the dispersion relation ϕ will show an instability if

G(k) > 2 +
1

D
, (15)

as it is shown in Figure 4 (ϕ > 0).
As can be seen, a model which contains the shown fundamental interactions can

produce a selection in the mode for the occurrence of structures of the system. These
interactions are: the local growth and competition, and the nonlocal migration taking
into account the surrounding environment, see Figures 1 and 2. Finally fluctuations
are included, which are very important for the trigger mechanism from the unstable
homogeneous stationary state. In the next section we will present in detail an analyti-
cal procedure allowing to obtain the minimal set of equations that decrease drastically
the dimension of the mathematical problem presented in the full stochastic integro–
differential equation of the model.



448 The European Physical Journal Special Topics

3 The stochastic pattern formation

Due to the instability, around the fully populated state u0, a nonhomogeneous pattern
may occur if it is triggered by fluctuations. To study this phenomenon we introduce,
now explicitly, a finite system with periodic boundary conditions on x ∈ [−1, 1]. Thus
we will use – from now on – a discrete Fourier transform (kn = nπ, n = 0,±1,±2, · · · )
characterized by the expansion in modes

u(x, t) =
∞∑

n=−∞
An(t) exp(inπx), (16)

ξ(x, t) =
∞∑

n=−∞
ξn(t) exp(inπx), (17)

G(x) =

∞∑
n=−∞

Gn exp(inπx), (18)

2δn,l =

∫ 1
−1
eiπ(n−l)xdx, (19)

Gn =
1

2

∫ 1
−1
G(x)e−inπxdx, (20)

and similar inverse relations for An(t), ξn(t). We note here the relation that exists
among the discrete and continuous Fourier transform:

2Gn = G (k) . (21)

Introducing (16)–(18) in the field equation (1) and using (19) we arrive to an
infinite set of stochastic coupled Fourier modes. It is worth mentioning that this set
of equations is completely equivalent to the nonlocal stochastic partial differential
equation (1).

Ȧl = Al (t) (1 + 2GlD)− b
∞∑

n=−∞
An (t)Al−n (t) + ξl (t) , (22)

Gl = G−l, (23)

〈ξl〉 = 0, (24)

〈ξl (t) ξn (t′)〉 = δn+l,0 δ (t− t′) . (25)

Obviously, due to fluctuations, only in mean value we can consider that the modes
Al are symmetric.
In order to study the emerge of the pattern formation from this infinite set of

coupled modes, we can introduce a Minimum Coupling Approximation (MCA) con-
sidering only the coupling between A0, A±e, been this last mode the one that shows
a positive dispersion relation.
Then keeping this approximation in mind we arrive to the set of MCA equations

dA0

dt
= A0 (1 + 2G0D)− bA20 − 2bA2e +

√
εξ0 (t) , (26)

dAe

dt
= Ae (1 + 2GeD − 2bA0) +

√
εξe (t) , (27)



Nonlinearity, Nonequilibrium and Complexity 449

in this approximation Ae = A−e. The MCA is a good approximation during the initial
state of the pattern formation and it is enough to predict the random escape time [17].
The stochastic modes introduced in the MCA can be analyzed introducing a mul-

tiple scale expansion. Due to the fact that originally the initial state is the fully
populated state u0, we consider that An(0) = 0,∀n 	= 0. Then we can propose an
expansion for the homogeneous and the explosive modes in the form

A0 (t) = H0 +H1
√
ε+H2ε+ · · · , H0 = const., (28)

Hj(0) = 0,∀j ≥ 1,
Ae (t) = 0 + E1

√
ε+ E2ε+ · · · , (29)

Ej(0) = 0,∀j ≥ 1,
and then we introduce these expansions in (26) and (27). Therefore to O (ε0) we get

0 = H0 (1 +D)− bH20 ⇒ H0 = (1 +D) /b,
and to O (ε1/2) we get

dH1

dt
= H1 (1 +D)− bH0H1 + ξ0, (30)

⇒ H1(t) =
∫ t
0

ξ0(s)ds, (31)

dE1

dt
= E1 (1 + 2GeD − 2 (1 +D)) + ξe, (32)

⇒ E1(t) =
∫ t
0

eϕ(t−s)ξe(s)ds, (33)

here ϕ = 2GeD − 1− 2D is the dispersion relation in the discrete Fourier
representation.
The perturbation H1(t) is a Wiener process with mean value zero and it is

statistically independent of the process E1(t), this last process can be re-written
in the form

H1(t) = e
ϕth(t), (34)

with
dh

dt
= e−ϕt ξe(t). (35)

Note that the process h(t) is Gaussian with mean zero and dispersion

〈h(t)2〉 = 1− e
−2ϕt

2ϕ
. (36)

Therefore for times 2ϕt� 1 the process h(t) saturates and it is described by a
Gaussian random variable Ω, which is characterized by the pdf

P (Ω) =
e−Ω

2/2σ2

√
2πσ2

, (37)

σ2 =
1

2ϕ
, (38)

ϕ = 2GeD − 1− 2D.
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Fig. 5. First passage time distribution, equation (43), as a function of the dimensionless
time τe = ϕte for K = 10 (the universal group parameter of the model).

With all this information we can finally calculate the lifetime around the unstable
state u0, and therefore to study the random times for pattern formation we were
talking about. In order to do this we need to find the first passage time distribution,
for the process Ae(t), from the value 0 to some macroscopic (threshold) value A

∗
e. We

will do these calculations in the next section.

4 The first passage time distribution

The solution of H1(t), see (34)–(35), can be used as the mapping to define a random
escape times associated to the unstable mode Ae(t) to pass from the initial condition
to a given threshold value, i.e.: 0→ A∗e.
If t� 1/2ϕ we can approximate h(t) by the random variable Ω, then we get a

map for the random escape times te as a function of the random variable Ω

H∗1 ≡ H1(te) = exp (ϕte) Ω, (39)

⇒ te = 1

2ϕ
ln

(
H∗1
Ω

)2
. (40)

Now using the scaling (29)–(30) we write

te =
1

2ϕ
ln

(
A∗e√
εΩ

)2
, (41)

which can be used to calculate the lifetime as the mean value 〈te〉.
In addition, from this map, the first passage timedistribution can also be

calculated as

P (te) =

∫
D
δ

(
te − 1

2ϕ
ln

(
A∗e√
εΩ

)2)
P (Ω) dΩ, (42)

here the domain D have to be chosen in order to assure that te ≥ 0.
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Finally using a non dimensional unit of time, we get

P (τe) =
2K

erf (K)
√
π
exp
(−τe −K2 exp (−2τe)) , (43)

with

K = A∗e

√
ϕ

ε
, (44)

τe = ϕte = (2GeD − 1− 2D) te,
here 2Ge = G (ke) is given in (21) with ke = neπ and ne indicates the most unstable
modes (see Fig. 4). Note that this approach allows us to find the group of parameters:
A∗e
√
ϕ
ε
. Therefore all the stochastic dynamics can be described in terms of this unique

dimensionless universal parameter K. The distribution (43) fully characterizes the
description of the relaxation from the unstable state and the stochastic occurrence of
the pattern formation (Fig. 5).
Interestingly, we have arrived from first principles to the Gumbel distribution (43),

after E.J. Gumbel who described it in his original work published in 1935 [18]. It was
used to model the distribution of the maximum of a number of samples in various
distributions. It is used heuristically to represent the distribution of the maximum
level crossing. It is useful, for example, in predicting the chance that an extreme
earthquake, flood or other natural disaster will occur in nature. The applicability of
the Gumbel distribution to represent the distribution of maxima relates to extreme
value theory, as we have done in the present paper characterizing a threshold value of
level crossing from the dynamics of the most unstable Fourier’s mode of the harmonic
analysis of the concentration field u(x, t).
We should note that if the instability is non linear this universal parameter, K,

does not apply, for example, as in the stochastic relaxation from the state that loses
its stability in a saddle-node bifurcation [19].
Using (43) the mean first passage time can be calculated as

〈τe〉 =
∫ ∞
0

P (τe) dτe � ln (K) + E + ln 4
2erf (K)

, (45)

where

K � 1, (46)

E = Euler constant. (47)

This characteristic time is given in terms of the universal group K, see Figure 6,
it represents the mean time for the occurrence of the pattern formation.

4.1 Discussion

In this work we described an analytical, fundamental and minimal model to study
ecological systems where different mechanisms (activation or inhibition) occur at two
length scales, and where fluctuations trigger the stochastic pattern formation.
We would like to note that two mainly different, and highly non–trivial, models

can also be tackled using the present approach. First: when the generalized migration
is associated to an interaction term. The second possibility arises when the effects of
fluctuations have a multiplicative character. Therefore, in general, we can write the
following stochastic evolution equation for the concentration field u(x, t)
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Fig. 6. Mean first passage time (in dimensionless units, see Eq. (45)) as a function of the
universal parameter K (see Eq. (44) for its definition).

∂u(x, t)

∂t
= f [u(x, t)] + h [u(x, t)]

√
εξ(x, t) + g [u(x, t)]

∫
u (x− x′, t)G(x′)dx′.

(48)

Here, we have a full nonlinear non-local problem with a multiplicative noise field.
Interestingly if this dynamic presents a change of stability as the result of the non-local
migration, then the theory of the first passage time that we have presented-using the
MCA and the multiple scale transformation-can also be applied to study the lifetime
of the unstable sate, and therefore precluding a complex pattern formation scenario.

MAF and MOC thank grant CONICET, PIP 112-201501-00216 CO. Argentina. MAF thanks
FONDECYT 1140278.
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