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Abstract. The so called q-triplets were conjectured in 2004
[C. Tsallis, Physica A 340, 1 (2004)] and then found in nature in
2005 [L.F. Burlaga, A.F. Vinas, Physica A 356, 375 (2005)]. A rel-
evant further step was achieved in 2005 [C. Tsallis, M. Gell-Mann, Y.
Sato, PNAS 102, 15377 (2005)] when the possibility was advanced that
they could reflect an entire infinite algebra based on combinations of
the self-dual relations q → 2− q (additive duality) and q → 1/q (multi-
plicative duality). The entire algebra collapses into the single fixed point
q = 1, corresponding to the Boltzmann-Gibbs entropy and statistical
mechanics. For q �= 1, an infinite set of indices q appears, correspond-
ing in principle to an infinite number of physical properties of a given
complex system describable in terms of the so called q-statistics. The
basic idea that is put forward is that, for a given universality class of
systems, a small number (typically one or two) of independent q in-
dices exist, the infinite others being obtained from these few ones by
simply using the relations of the algebra. The q-triplets appear to con-
stitute a few central elements of the algebra. During the last decade,
an impressive amount of q-triplets have been exhibited in analytical,
computational, experimental and observational results in natural, arti-
ficial and social systems. Some of them do satisfy the available algebra
constructed solely with the additive and multiplicative dualities, but
some others seem to violate it. In the present work we generalize those
two dualities with the hope that a wider set of systems can be handled
within. The basis of the generalization is given by the selfdual rela-
tion q → qa(q) ≡ (a+2)−aq

a−(a−2)q (a ∈ R). We verify that qa(1) = 1, and that
q2(q) = 2− q and q0(q) = 1/q. To physically motivate this generaliza-
tion, we briefly review illustrative applications of q-statistics, in order
to exhibit possible candidates where the present generalized algebras
could be useful.
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1 Introduction

The goal of statistical mechanics is, starting from the microscopic natural rules (clas-
sical, relativistic, quantum mechanics, chromodynamics) and adequately using prob-
ability theory, to arrive to the thermodynamical relations. Along these connections
between the macro- and micro- worlds, the ultimate link is made through the funda-
mental concept of entropy. This finding, accomplished against a stream of criticism,
surely is one of the most powerful and fruitful breakthroughs of the history of physical
sciences. It was achieved by Boltzmann in the last three decades of the nineteenth
century. His result, currently known by every pure and applied scientist, and carved
on his tombstone in Vienna, namely,

SBG = k lnW , (1)

is the mathematical link between the microscopically fine description (represented
by W , the total number of accessible microscopic states of the system) and the
macroscopic measurable quantities (represented by the entropy SBG, the very same
quantity introduced by Clausius in order to complete thermodynamics!). Apparently,
equation (1) has been explicitly stated in this form for the first time by Planck, but it
was definitively known by Boltzmann and is carved in his tombstone in Vienna. The
index G stands for Gibbs, who put Boltzmann’s ideas forward and overspread the
(classical) statistical mechanics concepts through his seminal book [1]. Equation (1)
is a particular instance of a more general one, namely

SBG = −k
W∑

i=1

pi ln pi

( W∑

i=1

pi = 1
)
. (2)

When every microstate is equally probable, i.e., when pi = 1/W ∀ i, we recover equa-
tion (1). Evidently quantum mechanics was unknown to Boltzmann and it was just
birthing when Gibbs’ book was published. It was left to von Neumann to extend
equation (2) in order to encompass quantum systems. He showed that the entropy
for a quantum system should be expressed by using the density matrix operator ρ̂,
namely

SBG = −kTr[ρ̂ ln ρ̂](Trρ̂ = 1), (3)

sometimes referred to as the Boltzmann-Gibbs-von Neumann entropy (or just von
Neumann entropy). Notice indeed that the above equation recovers equation (2) when
ρ̂ is diagonal.
The optimization of the entropy with appropriate constraints provides the thermal

equilibrium distribution, namely the celebrated BG exponential distribution, whose
consequences are consistent with classical thermodynamics. In what follows we shall,
however, see that entropic functionals different from the BG one must be used in order
to satisfy thermodynamics for complex systems which strongly violate the probabilis-
tic independence (or quasi-independence) hypothesis on which the BG entropy is
generically based. This is typically the case whenever there is breakdown of ergod-
icity. Several dozens of non-BG entropic functionals have been studied along quite a
few decades. We focus here on the following one (introduced in [2] with the aim to
generalize the BG statistical mechanics):

Sq = k
1−∑Wi=1 pqi
q − 1 = k

W∑

i=1

pi lnq
1

pi
= −k

W∑

i=1

pqi lnq pi = −k
W∑

i=1

pi ln2−q pi , (4)

where q ∈ R, and lnq z ≡ z1−q−1
1−q (ln1 z = ln z). We straightforwardly verify that

limq→1 Sq = SBG. The inverse of the q-logarithmic function lnq z is the q-exponential
function ezq ≡ [1 + (1− q)z]

1
1−q , if 1 + (1− q)z > 0, and zero otherwise (ez1 = ez).
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An entropic functional S is said additive if it satisfies[3], for any two probabilis-
tically independent systems A and B, that S(A+B) = S(A) + S(B); otherwise it is
said nonadditive. We easily verify that

Sq(A+B)

k
=
Sq(A)

k
+
Sq(B)

k
+ (1− q)Sq(A)

k

Sq(B)

k
. (5)

Therefore SBG is additive, and Sq (with q �= 1) is nonadditive. The generalization
of the BG thermostatistical theory is currently referred to as nonextensive statistical
mechanics [2,4–10] (see [11] for a regularly updated Bibliography. The entropy Sq sat-
isfies several interesting properties; among them, the uniqueness theorems proved by
Santos and by Abe [12,13], as well as the connection [14] with the Einstein likelihood
factorization principle deserve a special mention.
The natural, artificial and social complex systems to which Sq and its associated

statistical mechanics have been applied are very diverse. They include long-range
interacting many-body Hamiltonian systems (see [15–36] for an overview) of vari-
ous types and symmetries (let us incidentally mention that long-range versions of
the interesting types focused on in [37,38] have not yet been handled), as well as
non-Hamiltonian ones [39], low-dimensional dynamical systems [40–56], cold atoms
[57–59], plasmas [60–68], trapped atoms [69], spin-glasses[70], granular matter [71],
high-energy particle collisions [72–80], black holes and cosmology [81,82], chemistry
[83], economics [84–86], earthquakes [87], biology [88,89], solar wind [90], anomalous
diffusion and central limit theorems [91–99], quantum entangled and nonentangled
systems [100–102], quantum chaos [103], astronomical systems [104,105], signal and
image processing [106–110], self-organized criticality [111], mathematical structures
[112–116], scale-free networks [117,118], among others.

2 q-triplets

The optimization of SBG under appropriate constraints yields exponential forms for
the probabilities, as well as for other relevant thermostatistical quantities (relaxation
behaviors and sensitivity to the initial conditions are typical dynamical ones). It
happens, however, that virtually all those natural, artificial and social systems usu-
ally considered as complex violate this behavior. Indeed they asymptotically present
slower behaviors such as (very frequently) power-laws, and (occasionally) stretched
exponentials, to only mention the most typical ones1.
Let introduce now the q-triplet along the lines of [6]. We consider the following

ordinary differential equation

dy

dx
= a y (y(0) = 1) , (6)

1 By the way let us mention a very frequent error in the literature, namely a confusion
between asymptotic and strict power-law behaviors. The original Pareto law refers to a
distribution which only asymptotically behaves like a power law, say 1/xβ . In fact, no nonzero
distribution of a real positive unbounded random continuous variable can exist with a single
power law since it is non normalizable; indeed,

∫∞
0
dxx−β diverges for any real value of β.

The Lévy, q-exponential, q-Gaussian, (q, α)-stable distributions [92,94,97] are all different.
They constitute but a few among the infinitely many distributions which asymptotically
behave as a power law. They exhibit nevertheless important differences for finite values of
the random variable. It is therefore a severe misuse to plainly refer, as regretfully done very
frequently in the literature, to “Lévy distribution” every time that in a log-log plot a straight
line is observed along some decades. As said, Lévy distributions are only one case among
infinitely many which asymptotically behave as power-laws (for other similar misnomers, see
[119]).
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Table 1. Three possible physical interpretations of equation (7) within BG statistical
mechanics.

x a y(x)

Equilibrium distribution Ei −β Z1p(Ei) = e
−βEi

Sensitivity to the initial conditions t λ1 ξ(t) = eλ1 t

Typical relaxation of observable O t −1/τ1 Ω(t) = e−t/τ1

whose solution is given by
y = e a x . (7)

We may think of it in at least three different physical manners, related respectively
to the sensitivity ξ to the initial conditions, to the relaxation in phase space (of
say the BG entropy towards its value at thermal equilibrium), and, if the system is
Hamiltonian, to the distribution of energies (or analogous quantities such as the distri-
bution of velocities) at thermal equilibrium. In the first interpretation we refer to the
exponential divergence with time of two trajectories in phase space with slightly dif-
ferent initial conditions. In the second interpretation, we focus some relaxing relevant
quantity

Ω(t) ≡ O(t)−O(∞)
O(0)−O(∞) , (8)

where O is some dynamical observable essentially related to the evolution of the
system in phase space (e.g., the time evolution of entropy while the system approaches
equilibrium). We typically expect

Ω(t) = e−t/τ1 , (9)

where τ1 is the relaxation time (depending on the physical property that we are focus-
ing on, it might be 1/τ1 � λ1 or not, where λ1 is the maximal Lyapunov exponent).
Finally, in the third interpretation, we have

Z1pi = e
−βEi , (10)

where Z1 ≡
∑W
j=1 e

−βEj is the BG partition function. The various interpretations are
summarized in Table 1.
Let us now generalize these statements. The solution of the differential equation

dy

dx
= a yq (y(0) = 1) (11)

is given by

y = [1 + (1− q)a x] 11−q ≡ e a xq . (12)

These expressions respectively generalize expressions (6) and (7). As before, we may
think of them in three different physical manners, related respectively to the sensi-
tivity to the initial conditions, to the relaxation in phase space, and, if the system
is Hamiltonian, to the distribution of energies at a stationary state. In the first in-

terpretation we reproduce2 ξ = e
λqsen t
qsen . In the second interpretation, we typically

2 At the Feigenbaum point of z-logistic maps, the situation is more complex. Indeed, an
infinite number of {λqsen}’s emerges for specific sequences of times (see Eq. (6) in [47]; see
further details in [50]).
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Table 2. Three possible physical interpretations of equation (12) within nonextensive sta-
tistical mechanics.

x a y(x)

Stationary state distribution Ei −β Zqstat p(Ei) = e
−βEi
qstat

Sensitivity to the initial conditions t λqsen ξ(t) = e
λqsen t
qsen

Typical relaxation of observable O t −1/τqrel Ω(t) = e
−t/τqrel
qrel

expect

Ω(t) = e
−t/τqrel
qrel , (13)

where τqrel is the relaxation time. Finally, in the third interpretation, we have

Zqstatpi = e
−βqstatEi , (14)

where Zqstat ≡
∑W
j=1 e

−βqstatEj
qstat is the q-generalized partition function. The various

interpretations are summarized in Table 2. The set (qsen, qrel, qstat) constitutes what
we shall refer to as the q-triplet (occasionally referred also to as the q-triangle). In the
BG particular case, we recover qsen = qrel = qstat = 1. The existence of these three q-
exponentials characterized by the q-triplet was predicted in 2004 [120], and confirmed
in 2005 [90] in the solar wind (by processing the data sent to Earth by the spacecraft
Voyager 1); more along these lines can be found in [121].
A plethora of q-triplets (or of at least one of its elements) have been found in

solar plasma [90,122], the ozone layer [123], logistic map (see [40–42,47–50,53–56]),
El Niño/Southern Oscillation [124], geological faults [125], finance [126], and elsewhere
[127–129].

3 Generalizing the additive and multiplicative self-dual relations

Let us consider the following transformation:

qa =
(a+ 2)− aq
a− (a− 2)q , (15)

or, equivalently,
1

1− qa =
1

q − 1 + 1−
a

2
. (16)

We straightforwardly verify that q2 = 2− q (additive duality) and q0 = 1/q (multi-
plicative duality) [6,7,9,130]. Also, we generically verify selfduality, i.e., qa(qa(q)) =
q ,∀(a, q), as well as the BG fixed point, i.e., qa(1) = 1 ,∀a: See Figure 1. The duality
(15) is in fact a ratio of linear functions of q which satisfies these two important
properties (selfduality and BG fixed point). It transforms biunivocally the interval
[1,−∞) into the interval [1, a

a−2 ]. Moreover, for a = 3 and a = 5 we recover respec-
tively q3 =

5−3q
3−q [98] and q5 =

7−5q
5−3q [99].

Let us combine now two3 transformations of the type (15) (or, equivalently, (16)):

μ → qa(q) =
(a+ 2)− aq
a− (a− 2)q →

1

1− qa(q) =
1

q − 1 + 1−
a

2
, (17)

3 It is also possible to combine, along similar lines, three or more such transformations.
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Fig. 1. The self-dual transformation qa(q) as given by equation (15), for typical values of a;
q2(q) = 2− q recovers the additive duality; q0(q) = 1/q recovers the multiplicative duality.
For a > 2, when q varies within (−∞, 1], qa varies biunivocally within [ aa−2 , 1], when q varies
within [1, a

a−2 ], qa varies biunivocally within [1,−∞), and when q varies within [ aa−2 ,∞), qa
varies biunivocally within [∞, a

a−2 ]. For a < 2, when q varies within (−∞, a
−(2−a) ], qa varies

biunivocally within [ a
−(2−a) ,−∞), when q varies within [ a

−(2−a) , 1], qa varies biunivocally
within (∞, 1], and when q varies within [1,∞], qa varies biunivocally within [1, a

−(2−a) ].

and

ν → qb(q) =
(b+ 2)− bq
b− (b− 2)q →

1

1− qb(q) =
1

q − 1 + 1−
b

2
, (18)

with b �= a. It follows that

μν → qa(qb(q)) =
(b− a)− (b− a− 2)q
(b− a+ 2)− (b− a)q →

1

1− qa(qb(q)) =
1

1− q +
b− a
2
, (19)

and

νμ → qb(qa(q)) =
(a− b)− (a− b− 2)q
(a− b+ 2)− (a− b)q →

1

1− qb(qa(q)) =
1

1− q +
a− b
2
, (20)

with μ2 = ν2 = 1, νμ = (μν)−1, and qa(qa(q)) = q ,∀(a, q).
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For integer values of m and n, we can straightforwardly establish

(μν)m → q
(m)
a,b (q) ≡ qa(qb(qa(qb(...)))) =

m(b− a)− [m(b− a)− 2]q
[m(b− a) + 2]−m(b− a)q (21)

→ 1

1− q(m)a,b (q)
=

1

1− qa(qb(qa(qb(...)))) =
1

1− q +m
b− a
2
, (22)

and

(νμ)n → q
(n)
b,a (q) ≡ qb(qa(qb(qa(...)))) =

n(a− b)− [n(a− b)− 2]q
[n(a− b) + 2]− n(a− b)q (23)

→ 1

1− q(n)b,a (q)
=

1

1− qb(qa(qb(qa(...)))) =
1

1− q + n
a− b
2
. (24)

As we see, q
(1)
a,b = qa(qb(q)) and q

(1)
b,a = qb(qa(q)).

For a �= b and any integer values for (m,n), the above general relations can be
conveniently rewritten as follows:

2

b− a
1

1− q(m)a,b (q)
=

2

b− a
1

1− q +m (m = 0,±1,±2, ...) , (25)

and

2

a− b
1

1− q(n)b,a (q)
=

2

a− b
1

1− q + n (n = 0,±1,±2, ...) . (26)

For m = n = 1 and (a, b) = (2, 0) we recover the simple transformations q
(1)
2,0 = 2− 1q

(see Eq. (7) in [92], and footnote in page 15378 of [130]) and q
(1)
0,2 =

1
2−q .

We can also check that, with m = 0,±1,±2, ..., (μν)mμ and ν(μν)m correspond
respectively to

2

b− a
1

1− q(m,μ)a,b (q)
− 2− a
2(b− a) = −

[ 2
b− a

1

1− q −
2− a
2(b− a)

]
−m, (27)

and

2

b− a
1

1− q(ν,m)a,b (q)
− 2− b
2(b− a) = −

[ 2
b− a

1

1− q −
2− b
2(b− a)

]
+m. (28)

Analogously we can check that, with n = 0,±1,±2, ..., (νμ)nν and μ(νμ)n corre-
spond respectively to

2

a− b
1

1− q(n,ν)b,a (q)
− 2− b
2(a− b) = −

[ 2
a− b

1

1− q −
2− b
2(a− b)

]
− n , (29)

and

2

a− b
1

1− q(μ,n)b,a (q)
− 2− a
2(a− b) = −

[ 2
b− a

1

1− q −
2− a
2(a− b)

]
+ n . (30)

As we see, the algebras that are involved exhibit some degree of complexity. Let
us therefore summarize the frame within which we are working. If we have a unique
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parameter (noted a) to play with, we can only transform q through equation (15). If we
have two parameters (noted a and b) to play with, we can transform q in several ways,
namely through equations (22), (24), (27), (28), (29) and (30), with m = 0,±1,±2, ...
and n = 0,±1,±2, ...; the cases m = 0 and n = 0 recover respectively equations (17)
and (18). The particular choice (a, b) = (2, 0) yields the algebra introduced in [6,
7,9,130]. Also, the particular choice (a, b) = (−1, 0) within the transformation (19)
recovers the transformation q → 1+q

3−q , which plays a crucial role in the q-generalized
Central Limit Theorem [94]. More generally, the relation b− a = 1 recovers the γ =
1/2 case of equation (32) of [131] (see also [115,116,132,133]).

4 Some final remarks

The data observed in [90] for the solar wind are consistent with the q-triplet [130]
(qsen, qstat, qrel) = (−0.5, 7/4, 4).
If we identify, in equation (19), (q, q

(1)
a,b) ≡ (qsen, qrel) we can verify that, for

a− b = 2, the data are consistently recovered. Moreover, if we use once again equa-
tion (19) and a− b = 2, but identifying now (q, q(1)a,b) ≡ (qrel, qstat), once again the
data are consistently recovered. The particular case (a, b) = (2, 0) was first proposed
in [130]. In other words, it is possible to consider this q-triplet as having only one
independent value, say qsen; from this value we can calculate qrel by using equation
(19); and from qrel we can calculate qstat by using once again equation (19). This
discussion can be summarized as follows:

1

1− qsen −
1

1− qrel =
1

1− qrel −
1

1− qstat =
a− b
2
= 1 . (31)

It is occasionally convenient to use the ε-triplet defined as (εsen, εstat, εrel) = (1−
qsen, 1− qstat, 1− qrel). Let us mention that an amazing set of relations was found
among these by [134], namely, εstat =

εsen+εrel
2 , εsen =

√
εstat εrel , ε

−1
rel =

ε−1sen+ε
−1
stat

2 .
The emergence of the three Pythagorean means in this specific q-triplet remains still
today enigmatic.
Let us now focus on a different system, namely the well known logistic map at its

edge of chaos (also referred to as the Feigenbaum point). The numerical data for this
map yield the q-triplet (qsen, qstat, qrel) = (0.244487701..., 1.65± 0.05, 2.249784109...)
[41,51,53,135] 4.
A heuristic relation has been found [142] between these three values, namely,

εsen + εrel = εsen εstat (using ε ≡ 1− q). This relation straightforwardly implies
qstat =

qrel−1
1−qsen . Through this relation we obtain qstat = 1.65424... which is perfectly

compatible with 1.65± 0.05. In the generalized algebra that we have developed here
above we have three free parameters (q, a, b) in addition to the integer numbers (m,n).
It is therefore trivial to make various analytical identifications with (qsen, qstat, qrel).
The real challenge, however, is to find a general theoretical frame within which such
identifications (and, through the freedom associated with (m,n), infinitely many
more, related to physical quantities) become established on a clear basis, and not
only through conjectural possibilities. Such a frame of systematic identifications re-
mains up to now elusive and certainly constitutes a most interesting open question.

4 The value of qstat deserves a comment. It is neither obtained by doing
lim(a−ac)→0 limN→∞ nor limN→∞ lim(a−ac)→0 [136–138], but through the simultaneous limit
limN→∞, (a−ac)→0, as numerically exhibited in [53] and argued in [139–141] on the basis of
the Huberman-Rudnick scaling.
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Along this line, a connection that might reveal promising is that, if we assume that q
is a complex number (see, for instance, [143,144]), then equation (15) corresponds to
nonsingular [with (a+ 2)(a− 2)− a2 = −4 �= 0 ,∀a] Moebius transformations, which
form the Moebius group, defining an automorphism of the Riemann sphere.

I have benefited from fruitful remarks by D. Bagchi, E.M.F. Curado, A.R. Plastino,
P. Rapcan, G. Sicuro, P. Tempesta, U. Tirnakli and C. Vignat. I also acknowledge par-
tial financial support from CNPq and Faperj (Brazilian agencies), as well as from the John
Templeton Foundation (USA). It is both a great pleasure and a honor to dedicate this man-
uscript to my friend Alberto Robledo, wishing him a very happy beginning for his second
70 years!
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