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Abstract. Based on recent results of the joint moments of proper delay
times of open chaotic systems with ideal coupling, a new insight to
obtain the partial delay times distribution, for an arbitrary number
of channels and symmetry, is given. This distribution is completely
verified for all symmetry classes by means of random matrix theory
simulations of ballistic chaotic cavities. In addition, the normalization
constant of the Laguerre ensemble is obtained.

1 Introduction

The delay experienced by a quantum particle due to interactions with a scattering
region has been the subject of intense investigation for more than thirty years in
several areas of physics that include nuclear and condensed matter physics [1–7]. The
interest in this subject has resurged due to the recent appearance of theoretical inves-
tigations in chaotic systems [8–14] and atomic physics [15–18]; the later motivated by
experiments of interaction of light with matter during a mean time with attosecond
precision [19].
The delay time first introduced by Wigner for the one channel case [1] and its

multichannel generalization by Smith [2], in the so-called Wigner-Smith time delay
matrix, is written in terms of the scattering matrix S and its derivative with respect
to the energy ε. In units of the Heisenberg time τH , it is given by

Q
W
= −i �

τH
S−1
∂S

∂ε
. (1)

The eigenvalues of QW represent the delay time on each channel and the Wigner
time delay is the average of these proper delay times. In the context of mesoscopic
systems the electrochemical capacitance of a mesoscopic capacitor is described by
the Wigner time delay [20–22]. Some other transport observables that depend on the
proper delay times are the thermopower [23], the derivative of the conductance with
respect to the Fermi energy [24], the DC pumped current at zero bias [25], among
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others (see for instance Ref. [26] and references therein). For ballistic systems with
chaotic classical dynamics, these physical observables fluctuate with respect to small
variations of external parameters, like an applied magnetic field, the Fermi energy or
the system shape [26–28]. The proper delay times are of interest in the characterization
of those fluctuations, which only depend on the symmetry present in the problem.
The distribution of the proper delay times is given in terms of the joint distribution
of their reciprocals, known as the Laguerre ensemble [26,28]. An interesting feature
of this ensemble is the presence of repulsion between the proper times, as occurs in
the spectral statistics.
Alternatively, the partial delay times defined as the energy derivative of the phase

shifts are also useful in the characterization of chaotic scattering [27]. Although the
partial times are correlated, this correlation is of different nature than that of between
the proper delay times; they do not show the level repulsion [29]. In the one channel
situation the proper and partial delay times are identical to the Wigner time delay
whose distribution is known for all symmetry classes [27,30,31]: β = 1 (4) in the
presence of time reversal and presence (absence) of spin-rotation symmetry and β = 2
in the absence of time reversal symmetry. For the general case of arbitrary number
of channels the distribution of the partial times is known for any β, except by a
normalization constant [29]. With a suitable normalization this result encompasses
a previous one for β = 2 [27,32]. Numerical simulations for β = 1 and 2 have been
given in reference [33], but only the β = 2 case was successfully compared with the
appropriate theoretical result. The β = 4 symmetry is seldom discussed.
In the present paper, an alternative approach to verify the general expression for

the properly normalized probability distribution of the partial delay times is obtained.
This was done by extracting the essence that comes from the level repulsion in the
joint distribution of proper delay times that transcends to the kth moment of a
proper delay time [34]. This procedure leads to the distribution of partial times in
the equivalent channels situation, that we test by means of random matrix theory
simulations, for all symmetry classes and several number of channels. In addition,
this method also allows us to obtain the normalization constant of the Laguerre
distribution.
In the next section we establish the theoretical framework of the proper and partial

delay times; we review the known results for the kth moment of the proper delay
times, from which we obtain the general expression of the probability distribution
of the partial times, for all symmetry classes and any number of channels. Also, it
is in this section where we present our findings of the normalization constant of the
Laguerre distribution. In Section 3 we compare this general distribution with the
numerical predictions from random matrix theory. We conclude in Section 4.

2 Distributions of proper and partial delay times

2.1 Scattering approach

Single-electron scattering by a ballistic cavity attached ideally to two leads which
support N1 and N2 propagating modes (channels), respectively, can be described by
an N ×N scattering matrix S, where N = N1 +N2. When the dynamics of the cav-
ity is classically chaotic, the scattering matrix belongs to one of the three circular
ensembles from random matrix theory (RMT) [35,36]. The Circular Unitary Ensem-
ble (CUE) is obtained when flux conservation is the only restriction in the problem,
such that S†S = 1N , where 1N denotes the unit matrix of dimension N . In the Dyson
scheme this case is labeled by β = 2. Additionally, in the presence of time reversal
invariance (TRI) and integral spin or TRI, half-integral spin, and rotation symmetry,



Nonlinearity, Nonequilibrium and Complexity 521

S is a symmetric matrix, S = ST (the upper script T means transpose). This case
is denoted by β = 1 and the corresponding ensemble is the Circular Orthogonal En-
semble (COE). In the presence of TRI, half-integral spin, and no rotation symmetry,
S is self-dual and the ensemble is the Circular Symplectic Ensemble (CSE), labeled
by β = 4.
In the diagonal form, the S matrix can be written as

S = UEU†, (2)

where U is anN ×N unitary matrix, the matrix of eigenvectors, and E is the diagonal
matrix of eigenphases,

Eij = e
iθi δij , (3)

with δij the Kronecker delta.

2.2 Proper delay times

A symmetrized form of the Wigner-Smith time delay matrix can be written in
dimensionless units as [26,28]

Q = −i �
τ
H

S−1/2
∂S

∂ε
S−1/2, (4)

where ε is the energy and τH is the Heisenberg time (τH = 2π�/Δ, with Δ the mean
level spacing). The matrix Q is Hermitian for β = 2, real symmetric for β = 1, and
quaternion self-dual for β = 4. Its eigenvalues, qi’s (i = 1, . . . , N), are the proper
delay times measured in units of τH . The distribution of the qi’s is given by the
Laguerre ensemble in terms of their reciprocals xi = 1/qi [28], namely

pβ({xi}) = C(β)N
N∏

a<b

|xb − xa|β
N∏

c=1

xβN/2c e−βxc/2, (5)

where C
(β)
N is a normalization constant. It is worth mentioning that the repulsion be-

tween the proper delay times is inherited from the level repulsion of the Hamiltonian
eigenvalues. The normalization constant for the energy level distribution is well

known [37], but the constant C
(β)
N in equation (5) has not been given yet, although

the Laguerre distribution has been widely used.

Here, we follow an inductive method to obtain a general expression for C
(β)
N .

A summary of the results for this normalization constant previously reported in
reference [34], as well as new others, is shown in Table 1. We notice that the re-
sults for β = 2 suggest a general dependence on N , namely

C
(2)
N =

1

N !

2N−1∏

n=0

1

n!
, (6)

that gives an indication for the other two symmetry classes. For example, for β = 4
the normalization constant can be written as

C
(4)
N =

2(2N)
2

(2N)!

2N−1∏

n=0

1

(2n)!
. (7)
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The dependence on N of the normalization constant for β = 1 is more complicated
than the corresponding one for β = 2 and 4, but it can be obtained in a similar manner
with the result

C
(1)
N =

[(
1
2

)
!
]N

2N(N+1/2)
(
N
2

)
!

2N−1∏

n=0

1(
n
2

)
!
. (8)

From the last three expressions it is straightforward to arrive at the general result for

C
(β)
N ; that is

C
(β)
N =

[(
β
2

)β(N−1/2)+1 (
β
2

)
!

]N

(
βN
2

)
!

2N−1∏

n=0

1(
βn
2

)
!
. (9)

What is very interesting of this result is its similarity with the normalization constant
of the joint probability density of the eigenvalues of the Hamiltonian for the Gaussian
ensembles [37].
In addition, let us note that the kth moment of a proper delay time, valid for any

symmetry and an arbitrary number of channels, given by [34]

〈
qki
〉(β)
=

(
β

2

)k
(
βN
2 − k

)
!

(
βN
2

)
!
K
(β)
N (k, 0, . . . , 0), (10)

with 0 ≤ k < 1 + βN/2, shows the underlying part that comes from the repulsion in
equation (5) through the factor K

(β)
N (k, 0, . . . , 0).

2.3 Partial delay times

The partial delay times, defined as the energy derivative of the diagonal form of the
scattering matrix as in equation (1), are given, in dimensionless units, by [27,33]

τ̂ = −i �
τ
H

E−1
∂E

∂ε
. (11)

This is an N ×N diagonal matrix whose elements are

τs =
�

τ
H

∂θs

∂ε
. (12)

Once the inherent part of the repulsion in the kth moment of the proper times has
been identified, it is straightforward to arrive at the expression of the kth moment
of the partial times since they do not show that repulsion; for equivalent channels it
is [34]

〈
τks
〉(β)
=

(
β

2

)k
(
βN
2 − k

)
!

(
βN
2

)
!
. (13)

This expression is in agreement with the results that can be obtained directly from
the distribution for N = 1 in reference [30]. Also, equation (13) includes the known
results for β = 2 and arbitrary N [27,32] and it is consistent with the distribution

Pβ(τs) =
2/β(
βN
2

)
!

(
β

2τs

)2+βN/2
e−β/2τs . (14)
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Fig. 1. Comparison between the numerical simulations (histograms) and theory (continuous
lines), equation (14), for the distribution of τs (we take s = 1) in the β = 1 case.

Our expression, equation (14), encompasses the existing results in the literature for
β = 2 [27,30–33] and agrees with the distribution of partial times previously obtained
in reference [29]1.
In what follows we verify our findings with random matrix theory simulations.

3 Numerical calculations

The Hamiltonian approach, also known as the Heidelberg approach, is the best suited
for the calculation of the energy derivative of the scattering matrix since it is written
explicitly in terms of the energy, namely [37–39]

S(ε) = 1N − 2iπW † 1

ε1M −H + iπWW †W, (15)

whereH is anM -dimensional Hamiltonian matrix that describes the chaotic dynamics
of the system, with M resonant single-particle states, and W is an M ×N matrix,
independent of the energy, which couples these resonant states to the N propagating
modes in the leads; 1n stands for the unit matrix of dimension n. For ideal coupling of
uncorrelated equivalent channels,Wμn =

√
MΔ/π (μ = 1, . . . , M and n = 1, . . . , N)

for the matrix elements of W [39].
For chaotic systems,H is a random matrix chosen from one of the Gaussian ensem-

bles: orthogonal (β = 1), unitary (β = 2) or symplectic (β = 4). The matrix elements
of H are uncorrelated random variables with a Gaussian probability distribution with
zero mean and variance λ2/βM ; the later determines the mean level spacing at the
center of the band, Δ = πλ/M [37]. An ensemble of Hamiltonian matrices leads to
an ensemble of S-matrices, which represents the several realizations of systems for
which the statistical analysis is performed. To implement the simulations we follow
the same method as in reference [40] for β = 1 and 2, while for β = 4 the subroutine
given in reference [41] was used to generate the random Hamiltonian.

1 A misprint appears in the normalization constant in equation (11) of reference [29].
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Fig. 2. The same as in Fig. 1, but for β = 2.

For each realization we diagonalize the matrix S to determine its eigenvalues. We
are only interested in one of them, Es(ε) = exp[iθs(ε)] let say, but evaluated at three
energies in order to calculate the energy derivative. That is,

τs = − i

2πε

Es(ε/2)− Es(−ε/2)
Es(0)

, (16)

where ε = ε/Δ.
In Figure 1 we compare the theoretical distribution of equation (14), for β = 1,

with the numerical results obtained from the random matrix simulations with 105

realizations of τs, calculated as in equation (16) for M = 100 and ε = 0.001. We
observe a good agreement for the several cases of N presented. This result is an
important one since it had not been verified numerically before. Figure 2 shows the
corresponding comparison for β = 2, which is in agreement with those of reference [33].
For β = 4 the theoretical result fits well with the numerical simulation as can be seen
in Figure 3. Let us note that this is the first time that the distribution of the partial
times is verified for β = 4.

4 Conclusions

Based on known results of the joint moments of proper delay times, we obtained
the distribution of the partial delay times, for an arbitrary number of channels and
any symmetry, in the equivalent channels situation. This was done following an
inductive method by extracting the underlying part coming from the level repul-
sion that trascends to the kth moment of the proper delay times. This distribu-
tion was tested by random matrix theory simulations of ballistic chaotic cavities
with ideal coupling, extending its numerical verification to all symmetry classes.
This result reproduces the existing expressions for the distribution of partial delay
times previously obtained in the literature when properly normalized. Also, we were
able to provide the normalization constant for the joint distribution of the proper
delay times.
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Fig. 3. The same as in Figure 1, but for β = 4.
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22. M. Büttiker, A. Prêtre, H. Thomas, Phys. Rev. Lett. 70, 4114 (1993)



Nonlinearity, Nonequilibrium and Complexity 527

23. S.A. van Langen, P.G. Silvestrov, C.W.J. Beenakker, Superlatt. Microstruct. 23, 691
(1998)

24. P.W. Brouwer, S.A. van Langen, K.M. Frahm, M. Büttiker, C.W.J. Beenakker, Phys.
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33. P. Šeba, K. Życzkowski, J. Zakrzewski, Phys. Rev. E 54, 2438 (1996)
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