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Abstract. We take advantage of a recently established equivalence,
between the intermittent dynamics of a deterministic nonlinear map
and the scattering matrix properties of a disorderless double Cayley
tree lattice of connectivity K, to obtain general electronic transport
expressions and expand our knowledge of the scattering properties at
the mobility edge. From this we provide a physical interpretation of
the generalized localization length.

1 Introduction

Very recently, it has been found that the electronic scattering properties of a layered
linear periodic structure and those of a regular nonlinear network model are described
exactly by the dynamics of intermittent low-dimensional nonlinear maps [1–3]. The
presence of these maps is a consequence of the combination rule of scattering matrices
when the scattering systems are built via consecutive replication of an element or
motif. This new insight implies an equivalence between wave transport phenomena
in classical wave systems, or electronic transport through quantum systems, and the
dynamical properties of low-dimensional nonlinear maps, specially at the onset of
chaos. This is a remarkable property in that a system with many degrees of freedom
experiences a radical reduction of these, so that its description is completely provided
by only a few variables.
In particular, the band structure associated with scatterers arranged as a regular

double Cayley tree (see Fig. 1) corresponds to dynamical properties of attractors of
dissipative low-dimensional nonlinear maps [1]. The properties of the dimensionless
conductance in the crystalline limit reflect the periodic or chaotic nature of the attrac-
tors. The transition between the insulating to conducting phases can be seen as the
transition along one of the known routes to (or out of) chaos, the tangent bifurcation
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Fig. 1. Scheme of double Cayley trees of connectivityK = 1,K = 2 andK = 3 at generation
N . The leads indexed by 1 are coupled by the nodes, each described by the scattering matrix
Snode. SN−1 is the scattering matrix at generation N − 1.

that exhibits intermittent dynamics in its vicinity [4]. While the conductance displays
an exponential decay with size in the evolution towards the crystalline limit, it obeys
instead a q-exponential form at the transition. A similar behavior can be found for
a locally periodic structure where the wave function also decays exponentially in a
regular band (or regular attractor) and a q-exponential decay with system size at the
mobility edge (or onset of chaos) [3]. In the latter model, the typical decay length
is related to the mean free path. It is expected that the same occurs for the former
model.
In the present paper we generalize our treatment for the scattering properties

across a double Cayley tree of arbitrary connectivity K. We focus on the conduc-
tance. Our purpose is to find the most general expressions for the band edges at the
borderline behavior of the conductance toward the crystalline limit. We also deter-
mine a general expression for the length scale at the transition. In the next section
we establish the recurrence relation for the scattering matrices of double Cayley trees
of consecutive sizes. Next, we diagonalize this relation in order to reduce the matrix
expression to two equivalent nonlinear maps for their eigenphases. This allows us to
analize the system size dependence of the sensitivity to initial conditions for the dif-
ferent types of attractors of the map, including that at the transition. In Section 3
we consider the implications for electronic transport. We conclude in Section 4.

2 Scattering and deterministic maps

2.1 Recurrence relation for the scattering matrix of a double Cayley tree

We consider an ordered double Cayley tree of connectivity K ≥ 1. In Figure 1 we
show the double Cayley trees for K = 1, K = 2 and K = 3. We assume that the leads
which connect two adjacent nodes, separated by a lattice constant a (they are indexed
by 2, 3, . . .K + 1 in the figure), are one-dimensional perfect wires. Also, we assume
that each node is described by the same symmetric scattering matrix, which is of
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dimension K + 1 and of the form

Snode =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S11 S12 S12 · · · S12 S12
S12 S22 S23 · · · S23 S23
S12 S23 S22 · · · S23 S23
...
...
...
. . .

...
...

S12 S23 S23 · · · S22 S23
S12 S23 S23 · · · S23 S22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1)

The matrix Snode couples symmetrically the incoming lead 1 to the leads 2, 3, . . .K +
1, which are assumed to be equivalent. Flux conservation restricts Snode to be a
unitary matrix; this condition is expressed by the three equations

|S11|2 +K|S12|2 = 1, (2)

S∗11S12 + S
∗
12 [S22 + (K − 1)S23] = 0, (3)

|S12|2 + |S22|2 + (K − 1)|S23|2 = 1. (4)

Equation (2) restricts S12 to |S12| ≤ 1/
√
K. Also, this equation can be written in

terms of the reflection and transmission coefficients of the node, Rnode and Tnode,
respectively, as

Rnode + Tnode = 1, with Rnode = |S11|2 and Tnode = K|S12|2. (5)

A recursion relation for the scattering matrix can be found using the combination
rule of scattering matrices. We obtain the 2× 2 scattering matrix at a given generation
N , SN , by couplingK scattering matrices SN−1, at the previous generation, by means
of the K + 1-dimensional scattering matrices of the nodes. The result is

SN = SPP + SPQ
1

I2K − e2ikaSN−1SQQ e
2ikaSN−1SQP , (6)

where In denotes the n× n identity matrix and SN−1 is the 2K × 2K matrix

SN−1 =

⎛
⎜⎜⎝

SN−1 02 · · · 02
02 SN−1 · · · 02
...

...
. . .

...
02 02 · · · SN−1

⎞
⎟⎟⎠ , (7)

where 0n denotes the n× n null matrix. Here, SPP = S11I2, is a 2× 2 matrix that
gives the reflection to the outside of the system, while SQQ is a 2K × 2K matrix,
responsible for the multiple scattering inside the system, which is given by

SQQ =

⎛
⎜⎜⎜⎝

S22I2 S23I2 · · · S23I2
S23I2 S22I2 · · · S23I2
...

...
. . .

...
S23I2 S23I2 · · · S22I2

⎞
⎟⎟⎟⎠ ; (8)

SPQ and SQP give the transmission from the outside to inside of the system and
viceversa, respectively. They are the 2× 2K and 2K × 2 matrices

SPQ = S12
(
I2 I2

)
and SQP = S12

(
I2
I2

)
, (9)
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respectively. Therefore, equation (6) is simplified to the expression

SN = S11I2 +
K
(
S12e

ika
)2

I2 − e2ika[S22 + (K − 1)S23]SN−1SN−1, (10)

whose physical interpretation is clear and the same as in equation (6). The factor
K in front of the second term on the right hand side of equation (10) is due to the
identical couplings of lead 1 to leads 2, 3, . . .K + 1.

2.2 Reduction to nonlinear iterated maps

The structure of the matrix Snode in equation (1) leads us to a left-right symmetric
system in the presence of time reversal invariance. In that case, SN has a block
symmetric structure, namely

SN =

(
rN tN
tN rN

)
, (11)

which is easily diagonalized by a π/4-rotation,

(
eiθN 0

0 eiθ
′
N

)
= R0SNR

T
0 , R0 =

1√
2

(
1 1
−1 1

)
, (12)

with RT0 the transpose of R0. Here, the eigenphases θN and θ
′
N are given by e

iθN =

rN + tN and e
iθ′N = rN − tN . The diagonal form of the recursion relation (10) leads

to a nonlinear map satisfied by both eigenphases. For instance, θN = f(θN−1), where

f(θN−1) = −θN−1 + 2arctan
Im
(
S11S

∗
12e
−ika + S12eikaeiθN−1

)
Re (S11S∗12e−ika + S12eikaeiθN−1)

. (13)

Here, we used the unitarity condition of Snode through equations (2) and (3). We
note that this map depends on S12 and on the phase of S11 through equation (3).
The dependence on K is implicit through equation (2). We assume that the two
branches of the double Cayley tree are perfectly joined at the middle. The initial
conditions for both maps at N = 0 are θ0 = 0 and θ

′
0 = π.

The bifurcation diagrams corresponding to K = 1, 2 and 3 are shown in the upper
panels of Figure 2 for S11 = −

√
1−K|S12|2 with S12 = 1/2 and an initial condition

θ0 = 0. We can observe that the map (13) presents ergodic windows (we show only
one on each panel) between windows of periodicity 1. This figure suggests that θN
reaches a fixed point solution. Looking for those fixed point solutions of equation (13),
we find that

eiθ∞(ka) =

{
eiθ±(ka) for |Re(S12eika)| >

√
K|S12|2

w±(ka) for |Re(S12eika)| ≤
√
K|S12|2

, (14)

where

eiθ±(ka) =
±
√
[Re (S12eika)]

2 −K|S12|4 + i Im
(
S12e

ika
)

S∗11S12eika
, (15)

w±(ka) = −
±
√
[Re (S12eika)]

2 −K|S12|4 + Im
(
S12e

ika
)

iS∗11S12eika
. (16)
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Fig. 2. Upper panels: Bifurcation diagrams for a double Cayley tree of connectivity K = 1
(left), K = 2 (middle) and K = 3 (right). For each value of ka we plot only the last 50 itera-
tions of N = 1000 starting with an initial condition θ0 = 0. Lower panels: Finite N Lyapunov
coefficient. The diamonds correspond to the iteration N = 1000 of equation (20), with an
initial condition θ0 = 0. Continuous and dashed lines represent the Lyapunov coefficient (22)

for the two roots of equation (14). For all cases S12 = 1/2 and S11 = −
√
1−K/4.

Note that for each value of ka there are two solutions. In the windows of periodicity
1, one of these solutions coincide with the result from the iteration shown in Figure 2.
This limiting value θ∞(ka) of θN (ka) corresponds to an attractor. The second solution
that does not appear in Figure 2 corresponds to a repulsor. If an initial condition θ0 is
just the value of the repulsor, that is θ0 = θrep, the solution will remain there forever.
Any other initial condition will converge to the attractor. In these windows the fixed
point solutions are of the form eiθ±(ka), as expected for an eigenphase. However, in an
ergodic window the fixed point solutions of equation (13) do not have modulus 1, but
they are of the form w±(ka) = |w±(ka)|eiθ(ka), with θ(ka) being the value around
which θN (ka) fluctuates with an invariant density. These solutions are marginally
stable [5]. From equation (14) we see that the critical values kc of k that separates
the ergodic and periodic windows, critical attractors, satisfy

∣∣Re (S12eikca
)∣∣ = √K |S12|2 . (17)

The points of tangency θ(kca) ≡ θc at the critical attractors are given by

tan θc =
Im
(
iS11S

∗
12e
−ikca)

Re (iS11S∗12e−ikca)
. (18)

2.3 Sensitivity to initial conditions

The dynamics of the map (13) is characterized by the sensitivity to initial conditions.
For finite N , it is defined by [1]

ΞN ≡ eNΛ1(N) ≡
∣∣∣∣
dθN
dθ0

∣∣∣∣ , (19)
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where θ0 is the initial condition and Λ1(N) is the finite N Lyapunov exponent. From
equation (13), we find the following recursive relation for ΞN ,

ΞN (ka) =
K|S12|4∣∣S∗12e−ika + S∗11S12eikaeiθN−1(ka)

∣∣2 ΞN−1(ka). (20)

In the limit N →∞, ΞN → ξN with ξN being the sensitivity to initial conditions,
defined by

ξN (ka) = e
Nλ1(ka), N � 1, (21)

with λ1(ka) the Lyapunov exponent

λ1(ka) = ln
K|S12|4∣∣S∗12e−ika + S∗11S12eikaeiθ∞(ka)

∣∣2 . (22)

In the lower panels of Figure 2 we show the behavior of λ1(ka) (or Λ1(ka) in the
limit N � 1) for the three cases: K = 1, 2 and 3. We observe that in the windows
of periodicity 1 the theoretical result λ1(ka) of equation (22) shows two values for a
given ka, which correspond to both roots expressed in equation (14). For the repul-
sor, λ1(ka) > 0 indicating that ξN (ka) diverges exponentially, while at the attractor
λ1(ka) < 0 and ξN (ka) decays exponentially with a typical length scale given by

ζ1(ka) =
a

|λ1(ka)| . (23)

As it happens for the fixed-point solutions, only the solution for the attractor agrees
with the Λ1(ka) obtained from the iteration of equation (20). For the ergodic windows
we have λ1(ka) = 0, so nothing can be said about the N -dependence of ξN (ka).
However, in those windows ΞN (ka) oscillates (not shown here) with N .
At the critical attractors (those for the tangent bifurcations) we find that

θN − θc = (θN−1 − θc)±
√
Rnode

Tnode
|θN−1 − θc|2 + · · · . (24)

This local nonlinearity leads, via the functional composition renormalization group
fixed-point map [4], to a q-exponential expression for the sensitivity for any N ,
namely [6]

ξN =

(
1− 1
2
λ3/2N

)−2
, (25)

where λ3/2 is the q-generalized Lyapunov coefficient for q = 3/2, which is given by

λ3/2 = ±2
√
Rnode/Tnode. The plus and minus signs corresponds to trajectories at

the left and right of the point of tangency θc. When θN − θc > 0, ξN grows with N
faster than exponential and when θN−1 − θc < 0, ξN decays with N with a power-law
behaviour, the typical decay length being given by

ζ3/2 =
a

|λ3/2| =
a

2

√
Tnode

Rnode
. (26)

This results on a diverging duration of the laminar episodes of intermittency and
large N intervals of vanishing ΞN between increasingly large spike oscillations.
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Fig. 3. Upper panels: Bands of the dimensionless conductance for a double Cayley tree of
connectivity K = 1 (left), K = 2 (middle), and K = 3 (right), for N = 30 and initial condi-
tions θ0 = 0 and θ

′
0 = π. Lower panels: Dimensionless conductance at the critical attractors

for N � 1 at kca = π/3 for K = 1, kca = π/4 for K = 2, and kca = π/6 for K = 3. Dashed
lines represent the theoretical result of equation (30) with S12 = 1/2 and S11 = −

√
1−K/4.

3 Consequences for the electronic transport

According to the Landauer formula, the dimensionless conductance g
N
at the gen-

eration N (conductance GN in units of 2e
2/h) is just the transmission coefficient

|tN |2 [7]. Using equations (11) and (12) we find a recursion relation for the conduc-
tance, namely

g
N
(ka) = g

N−1(ka)
ΞN (ka)

ΞN−1(ka)
Ξ′N (ka)
Ξ′N−1(ka)

. (27)

By iteration of this recursion relation we obtain

g
N
(ka) = ΞN (ka) Ξ

′
N (ka). (28)

For the initial conditions θ0 = 0 and θ
′
0 = π, Λ1 → λ1 and Λ′1 → λ1 for N � 1,

therefore
g
N
(ka) = e2Nλ1(ka). (29)

This means that in the ergodic windows, where λ1(ka) = 0, the conductance does
not decay but oscillates with N . However, in the windows of periodicity 1 λ1(ka) < 0
and g

N
(ka) shows an exponential decay with N , whose typical length scale is ζ1(ka)

of equation (23). In analogy to the scaling behaviour of the conductance with the
size of a disordered system [8,9], we name ζ1(ka) localization length. In the upper
panels of Figure 3 we observe the bands of the dimensionless conductance, where the
windows of periodicity 1 correspond to forbidden bands, while the chaotic windows
relate to allowed bands. Critical attractors also correspond to the band edges, at
which we expect that

g
N
= ξ2N =

(
1− 1
2
λ3/2N

)−4
. (30)
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That is, the conductance shows a power law decay, such that ζ3/2, in equation (26),
is the typical decay length over large N intervals located between increasingly large
spike oscillations. In analogy with ζ1 we define ζ3/2 to be a localization length too.
What is interesting about this length scale is its relation with the mean free path �
defined as [10]

1

�
=
1

a
· Rnode

1−Rnode . (31)

This implies that the localization length at the critical attractors is one half of the
geometric mean of the mean free path and the lattice constant,

ζ3/2 =
1

2

√
� a, (32)

which can be interpreted as the distance traveled by an electron before scattering. In
the lower panels of Figure 3 we observe that the power law decay fits very well with
the scaling behavior with N of the conductance.

4 Conclusions

We presented a generalized approach for the determination of the dimensionless con-
ductance of a double Cayley tree of charge scatterers of arbitrary connectivity. This
is done by studying its scattering properties, as a function of the system size (gen-
eration), through the sensitivity to initial conditions of the nonlinear map satisfied
by the eigenphases of the scattering matrix associated with the system. In the limit
of a very large system the conducting and insulating bands correspond, respectively,
to marginally chaotic windows and windows of periodicity 1. While in the conduct-
ing bands the conductance oscillates with the system size, in the insulating phase it
displays an exponential decay with the system size, with a typical length scale, as in
the scaling theory of localization. However, at the transition, on a band edge, when
the conductance decays as a power law, the typical length scale is a q-generalized
localization length, which is the geometric mean of the mean free path and the lattice
constant.
The insulator to conductor transition in electronic transport systems is

a condensed-matter phenomenon that still poses significant challenges before
unabridged understanding is attained. The occurrence of a robust analogy between
the size-dependent properties of an idealized network model of electron scatterers
and the dynamical properties of a low-dimensional nonlinear map displaying tangent
bifurcations is a remarkable finding. On the one hand this connection makes possible
an exact determination of the conductance at the transition, while on the other hand
reveals how a system composed of many degrees of freedom can undergo a drastic
simplification.
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