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Abstract. Memristor and time–delay are potential candidates for
constructing new systems with complex dynamics and special features.
A novel time–delay system with a presence of memristive device is
proposed in this work. It is worth noting that this memristive time–
delay system can generate chaotic attractors although it possesses no
equilibrium points. In addition, a circuitry implementation of such
time–delay system has been introduced to show its feasibility.

1 Introduction

There has been increasing attention to chaotic systems because of their broad range
applications, such as in secure communications, cryptography, biology, robotics or
modelling multi–disciplinary phenomena [1–4]. Various chaotic systems were intro-
duced over the last decades [5–9]. Recently, chaotic systems with hidden attractors
from a computational point of view [10–12] have been investigated. These chaotic
systems include for example the systems with only one stable equilibrium [13–15],
with a line containing infinitely many equilibrium points [16], and especially with
no equilibria [17,18]. We face a challenge of discovering hidden attractor because
there is no systematic way to find initial conditions that lead to these attractors
except by extensive numerical search [19–21]. Hidden attractors are important in en-
gineering applications due to their appearance that allow unexpected and disastrous
responses [12,16,22].
The limit of the calculation speed, memory effects, finite transmission velocity etc.

lead unavoidable presences of time delays in various fields such as engineering [23,24],
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neural system [25], physics [26] or biology [27,28]. In addtion, different practical mod-
els, for example a single vehicle induced by traffic light and speedup [29], broadband
bandpass electro–optic oscillator [30], road traffic [31], or food web systems [32], etc.
can be described more accurately by using time–delay systems. Especially, the systems
described by first order delay differential equations (DDE) can exhibit chaos [33–39].
Infinite dimensional dynamics and simple structure of such time–delay chaotic sys-
tems have studied and applied [40–47]. It is noting that the reported time–delay
chaotic systems have a limit number of equilibrium points. It is very interesting to
ask naturally whether there exists a time–delay system with uncountable number of
equilibrium points or without equilibrium points.
The realization of solid–state thin film two–terminal memristor at Hewlett-

Packard Labs [48] opens new research areas of memristor–based applications like
high–speed low–power processors [49], adaptive filter [50], pattern recognition sys-
tems [51], associative memory [52], neural networks [53,54], programmable analog
integrated circuits [55], and so on [56,57]. In addition, recent researches show that
the intrinsic nonlinear characteristic of memristor has been exploited in constructing
chaotic systems with many interesting features [58–61]. For instance, memristor–
based chaotic systems with uncountable infinite number of equilibria were presented
in [60,62,63]. A simple memristive chaotic system including only three elements (an
inductor, a capacitors and a memristor) was introduced in [64]. Hyperchaos was gen-
erated by combining a memristor with cubic nonlinear characteristics and a modified
canonical Chua’s circuit [65].
Motivated by the above researches, the combination of memristor and time–delay

for designing new chaotic systems with special features should be considered. A novel
memristive time–delay chaotic system without equilibrium points is proposed in this
work. The rest of the paper is organized as follows. In Sect. 2, the model of the
memristive device is introduced briefly. The new memristive time–delay system and
its fundamental dynamics are investigated in Sect. 3. Circuital implementation of the
proposed time–delay system is presented in Sect. 4. Finally, the conclusions are drawn
in Sect. 5.

2 Model of the memristive device

After the invention of L.O. Chua [66], memristor is known as the fourth basic circuit
element beside the three conventional ones (the resistor, the capacitor, and the induc-
tor). Memristor represents the relationship between two fundamental circuit variables,
the charge and the flux [57,66]. There are two kinds of memristor: charge-controlled
memristor and flux–controlled memristor [57,60]. Moreover, memristive systems have
been introduced by generalizing the original definition of a memristor [67]. A mem-
ristive system is given as {

ẋ = F (x, u, t)

y = G(x, u, t)u,
(1)

where u, y, and x denote the input, output and state of the memritive system, re-
spectively. The function F is a continuous n–dimension vector function and G is a
continuous scalar function [67].
In this work, we use a memristive device which is described by

{
ẋ2 = dx1

h(x1, x2) = (0.1x2 − 1)x1, (2)

where x1 and x2 are the input and internal state of the memristor device. Here
h(x1, x2) presents the output of the memristor device while d is a positive parameter.
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Fig. 1. Hysteresis loops of the proposed memristive device (2) driven by a sinusoidal stimulus
(3) when X1 = 1, x2(0) = 0 and varying frequency f .

In this section, the value of parameter d is 0.1. The memristive device (2) is quite
similar to the known one [68].
In order to explore the fingerprints of memristive device (2), we apply an external

bipolar period signal across its terminals [69]. The applied sinusoidal stimulus has the
following form

x1(t) = X1 sin(2πft), (3)

in which X1 is the amplitude, and the f is the frequency. From the first equation of
(2), the internal state variable of the memristive device is given by

x2(t) =

∫ t
−∞
dx1(τ)dτ = dx1(0) + d

∫ t
0

X1 sin (2πfτ) dτ

= dx1(0) +
dX1

2πf
(1− cos(2πft)),

(4)

where x2(0) =
∫ 0
−∞ x1(τ)dτ is the initial condition of the state variable x2. Substi-

tuting (3) and (4) into (2), the output of the memristive device is

h(t) =

(
0.1dx1(0) +

0.1dX1
2πf

− 1
)
X1 sin(2πft)− 0.1dX

2
1

4πf
sin(4πft). (5)

Obviously, the output of the memristive device depends on the frequency and ampli-
tude of the input stimulus. Moreover, the output h also depends on the initial state
of the memristive device. Figures 1–3 show three main fingerprints of the memristive
device (2).

3 New memristive time–delay system

Based on memristive device (2), a novel time–delay system is proposed as follows{
ẋ1 = −ax1τ + sgn(x1τ )− bh(x1, x2)− c
ẋ2 = dx1,

(6)
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Fig. 2. Hysteresis loops of the proposed memristive device (2) driven by a sinusoidal stimulus
(3) when f = 1, x2(0) = 0 and changing input amplitude X1.
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Fig. 3. Hysteresis loops of the proposed memristive device (2) driven by a sinusoidal stimulus
(3) when X1 = 1, f = 0 and using different initial states x2(0).

where a, b, c, d are positive real parameters (d �= 0), τ is the time–delay, xτ denotes
x (t− τ), and h(x1, x2) is the output of the memristive device as presented in (2).
It is easy to derive the equilibrium points of the memristive time–delay system

(6) by solving ẋ1 = 0 and ẋ2 = 0, that is

−ax1 + sgn (x1)− b (0.1x2 − 1)x1 − c = 0 (7)

dx1 = 0. (8)

When c = 0, the memristive time–delay system (6) has infinite equilibrium points
E (0, x2). It is interesting that, the time–delay system (6) is chaotic for different values
of the parameters (a, b, d, and τ). For example, when choosing a = 1.8, b = 0.02,
d = 0.1, τ = 1 and the initial conditions (x1(0), x2(0)) = (0.1, 0.1), chaotic behavior
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Fig. 4. Chaotic attractor with no equilibria of the novel memristive time–delay system (6)
when a = 1.8, b = 0.02, c = 0.001, d = 0.1, τ = 1 and the initial conditions (x1(0), x2(0)) =
(0.1, 0.1).

can be observed. In this case, the maximum Lyapunov exponent λmax calculated
using the algorithm in [70,71] is positive (λmax = 0.3132). There is rarely a reported
time–delay system with an infinite number of equilibrium points [71].
Interestingly, when c �= 0, as can be seen from Eq. (8), this leads to x1 = 0 which

is inconsistent with Eq. (7). As a result, the proposed memristive time–delay system
has no equilibrium points. Moreover, when a = 1.8, b = 0.02, c = 0.001, d = 0.1,
τ = 1 and the initial conditions (x1(0), x2(0)) = (0.1, 0.1), the memristive time–delay
system (6) depicts a strange chaotic attractor without equilibrium as shown in Fig. 4.
In this case, the corresponding maximum Lyapunov exponent is λmax = 0.2837.
Although there are existing literature on memristive time delay systems as well as
delayed networks with memristive neurons [72–78], the absence of equilibria makes
such new time–delay system significantly different from reported systems. We will
concentrated on this case. The bifurcation diagram with respect to the parameter a
is presented in Fig. 5 by plotting the local maxima of the state variable x1(t) when
varying the value of the parameter a. In addition, the maximum Lyapunov exponent
for the memristive time–delay system is shown in Fig. 6. The results show that the
system can exbibit chaotic behavior for a > 1.61.

4 Circuital implementation of the memristive time–delay system

An important feature relating to chaotic systems and their applications is their feasi-
bilities [1,79,80]. For example, circuital realization of theoretical chaotic model plays
a vital role in practical chaos–based applications such as secure communications, ran-
dom numbers generator, image encryption process, or path planning for autonomous
robots [81–84]. Therefore, in this section, a circuital realization of the memristive
time–delay system without equilibrium (6) is presented briefly to illustrate the feasi-
bility and correctness of the theoretical model.
The designed circuit is shown in Fig. 7 in which the variable x1 of time–delay

system (6) is the voltages across the capacitor C1. It easy to see the presence of
memristive device and time–delay unit. By applying Kirchhoff’s circuit laws, the
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Fig. 5. Numerical bifurcation diagram for the novel memristive time–delay system (6) when
b = 0.02, c = 0.001, d = 0.1, τ = 1, the initial conditions (x1(0), x2(0)) = (0.1, 0.1), and a
as a varying parameter.
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Fig. 6. Maximum Lyapunov exponents for the novel memristive time–delay system (6)
versus the parameter a when b = 0.02, c = 0.001, d = 0.1, τ = 1, and the initial conditions
(x1(0), x2(0)) = (0.1, 0.1).

equation of the circuit in Fig. 7 is derived as:

dx1

dt
= − 1

R1C1
x1τ +

Vsat

R2C1
sgn (x1τ )− 1

R3C1
h(x1, x2)− 1

R4C1
Vc, (9)

where Vsat is the saturation voltage of the operational amplifier U2.
In this work, the power supplies are ±15 volts and the values of components are

chosen as follows: R1 = 0.555kΩ, R2 = 14.25kΩ, R3 = 50kΩ, R4 = 1MΩ, C1 = 1μF ,
and Vc = 1VDC .
Another main component of the circuit in Fig. 7 is the memristive device, of which

output is h(x1, x2). The memristive device is also emulated by electronic components
such as resistors, a capacitor and an analog multiplier (see Fig. 8). The input, output
and the internal state of the memristive device are x1, h(x1, x2), and x2, respec-
tively. Here the internal state of the memristive device x2 is the voltage across the
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Fig. 7. Circuital schematic of the new time–delay chaotic system without equilibrium (6)
based on the memristive device (2).

Fig. 8. Circuital implementation which emulates the memristor device. The values of com-
ponents are selected as: R5 = R6 = R7 = R8 = R9 = R10 = 10kΩ, and C2 = 1μF .

capacitor C2. Therefore, the memristive device is described by the following circuital
equations ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dx2

dt
=

1

R5C2
x1

h(x1, x2) =

(
R6

10R7
x2 − R6

R8

)
x1.

(10)
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Fig. 9. Experimental chaotic attractor of the designed electronic circuit obtained by using
an oscilloscope in the x1(t)− x1(t− τ) plane.

The delay unit is implemented by a series of Bessel filters in cascade [85]. The
value of the delay in the delay unit is Tdelay = 1ms. The dimensionless delay τ is
calculated by

τ =
Tdelay

R∗C∗
, (11)

with R∗ = 1kΩ and C∗ = 1μF , so that τ = 1.
The designed circuit has been implemented on breadboards with discrete off–the–

shelf components. Experimental observation of phase space by an oscilloscope in the
laboratory is presented in Fig. 9. A good agreement between the theoretical attractor
(Fig. 4) and the experimental one (Fig. 9) shows the feasibility of the novel memristive
time–delay system without equilibrium points.

5 Conclusion

A novel time–delay chaotic system with the presence of a memristive device has been
proposed in this work. It is worth noting that such memristive time–delay system
possesses no equilibrium points. We have investigated the possibility of designing
new systems exhibiting chaotic behavior by combining memristive device and time
delay. Moreover, the discovery of this new memristive time–delay system contributes
towards knowledge about the relation between the local features of equilibrium points
and the global complex behaviors of a dynamical system.
Time–delay systems have several applications in secure communications due to

their complex dynamics which are governed by the presence of delays [43,45,86–88].
Therefore, such memristive time–delay system has potential applications in chaos–
based communications because of its chaos and feasibility. Further studies in this
research direction will be presented in future works.
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