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Abstract. The motif of three inhibitory coupled Rulkov elements is
studied. Possible dynamical regimes, including different types of se-
quential activity, winner-take-all activity and chaotic activity, are in
the focus of this paper. In particular, a new transition scenario from
sequential activity to winner-take-all activity through chaos is uncov-
ered. This study can be used in high performance computation of large
neuron-like ensembles for the modeling of neuron-like activity.

1 Introduction

During the last decade there has become available a huge amount of experimental
data that testify hypothesis that sequential switchings of activity governs processes
in different neuronal systems such as animal sensory [1] and motor [2,3] systems,
or high vocal center [4] in the brain of songbirds. This activity also underlies cog-
nitive processes [5,6], e.g., sequential switchings of bursting activity between groups
of neurons in the Nudipleura sensory system control its swimming behavior [7,8]. In
order to build a mathematical model that enables us to reproduce such important
and prevalent type of activity, one may use a stable limit cycle or a stable heteroclinic
contour as mathematical image of sequential activity. The main reason underlying the
interest in minimal ensembles is their relation to central pattern generators (CPG)
phenomena [9]. CPGs are small ensembles consisting of only few neurons coupled
with excitatory or inhibitory couplings. They also can produce sequential switchings
of different types of activity without any external stimulus and play a crucial role in
the movement and rhythm generation.

Studying of the dynamical regimes and bifurcation analysis in the models which
reproduce the described phenomena can be helpful for understanding of principles of
functioning and information coding in specified neural ensembles.

Using three coupled Rulkov maps, we construct here a minimal motif of three
neurons mutually coupled by inhibitory synapses. The Rulkov discrete neuron model
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was introduced in [10] and later studied and developed in [11-15]. Our modeling takes
into consideration basic principles of chemical coupling: (i) presence and absence
of postsynaptic element activity depend on the presynaptic element activity level,
and (ii) all interactions between cells are inertial because of chemical processes in
neurotransmitters. This model is discrete and, therefore, it is rather easy to numerical
analysis.

We study different types of activity that can be generated in this motif by gov-
erning coupling parameters. In particular, we focus on a sequential activity regime
and bifurcations that lead to its occurrence. Other important regimes existing in the
system, in particular winner-take-all regime [16,17] and chaotic regime, are also stud-
ied. The analysis was performed using the technique of numerical analysis of charts
of largest Lyapunov exponent (LLE) [18].

2 The model

In order to built the described motif we take the neuron-like Rulkov map as an isolated
element:
Tn41 = f(:rnaznayn)
Ynt1 = Yn + p(—Ty — 1 + 0) (1)
Zn+1 = Tp

where x is a fast variable that qualitatively describes fast ionic currents (Nat and
K™) in the cell, and, more generally, corresponds to membrane potential. In the
one-dimensional map z,+1 = f(Zn, Yn, 2n) f is a discontinuous function

a/l-z)+y, z<0,
flz,y,2) = ¢ a+y, O<z<a+yand z<0, (2)
-1, r>a+yorz>0.

It is constructed in a way to reproduce different regimes of neuron-like activity, such
as spiking, bursting and silent regimes.

The variable y corresponds to slow ionic currents such as Ca?*. Its equation sets
a nonlinear feedback coupling and makes some nonlinear transient processes possible
to be modeled.

The variable z corresponds to the dependency between z, 41 and x,_1.

According to the neuron-like dynamics of the map it is possible to construct a
low-dimensional model of a neuron that is iterated with a time step congruent to the
spike duration. The single element model is able to demonstrate different types of
neuron-like activity depending on the parameters o which is a control parameter of
the map, and o which sets the non-perturbed state of the three-dimensional map.

In our modeling we take values of & = 3.9 and o = 1 from the parameter region
so that the element demonstrates a regular tonic spiking regime. p = 0.001 is a
small constant that provides slow changes of the variable y. In the phase space for an
individual element there is a periodic point of period 4 for these parameters.

In order to build a plausible model for the inhibitory coupling principle, we use
as coupling term an additional term in the right parts of Eq. (1)

I = 'infii,1 + gji(zrp — 7)€ (a3,); )

multiplied by different constants for x,,+1 and y,,+1. Here j is the presynaptic element,
and 7 is the postsynaptic one. The parameter v;; is a relaxation time of the synapse,
0 < 7j; < 1. It defines the part of synaptic current which preserve as in the next
iteration. g;; corresponds to the strength of synaptic coupling and are the governing
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parameters of the system, g;; > 0. x,, is a reversal potential that determines the type
of the synapse (z,, = —1.5 corresponds to the inhibitory synapse, and z,, = +1 — to
the excitatory one). () is a step function

1, Z.f T > Tth,

w = {o @

with the threshold value z;, that implements the principle of inhibitory coupling. If
the value of the membrane potential x exceeds the threshold value x;, then the presy-
naptic elements suppress all activity except subliminal oscillations in the postsynaptic
element in case of nonzero coupling.

Finally, the discrete equations that describe a motif consisting of 3 Rulkov ele-
ments with synaptic reciprocal couplings are

. i i Beyn y
Toer = f (@ 2ot + = D0 ()

. . . 1 ..

(3 1 (et = JTY).
yn+1 =Yn + Hz( Ty 1 =+ 012 ijéi(ln ))7 (5)
ij+1 = 3’?;;
i=1,2,3.

In our study we assume that all parameter values for clockwise couplings g12 = gos =
g31 = g1, Y12 = Y23 = Y31 = 71, and for anti-clockwise couplings g21 = g32 = g13 = 9o,
Y21 = Y32 = 713 = Y2 are equal. Also we assume z,, = —1.5, 35y, = 0.0001.

To summarize, we study dynamics of the motif depending only on the strength
of synaptic couplings g; and the relaxation time of the synapse v;, ¢ = 1,2 in both
cases.

3 The analysis

In order to study and classify the dynamical regimes in the ensemble, we have cal-
culated charts of the largest Lyapunov exponent (LLE) on the parameter plane
P = (g1,92) : ¢9; € [0,10], divided into 200 x 200 nodes. The detailed description
of calculating of the LLE charts can be found, e.g. in [18-20].

Let us describe this algorithm in a few words. At each point in P we started a tra-
jectory of the system (5). To accelerate the convergence to the steady-state dynamical
regime and due to the multistability of the system in sense of coexisting of several
attractors in its phase space for the pair of (g1,¢g2) coupling values, the initial con-
ditions in the internal points of the grid were chosen by using an inheritance scheme
which implies that the state obtained by applying the algorithm in the previous point
was used as the initial point in each subsequent point of the grid. Note that in all
experiments we use the inheritance scheme from the right boundary of the grid to
the left. To preclude a transient process we performed 10 preliminary iterates of the
system (5) and then the largest Lyapunov exponent was estimated on the 10° interval
by the Benettin method [21]. As a result of the calculations, the pixels on the charts
have the following colors: if the LLE < 0 (a limit regime corresponds to the cycle
of some period) a color tone is blue and if LLE > 0 (a limit regime corresponds to
chaotic attractor) a color tone is yellow.

Figure 1 shows charts of LLE for different values of parameter v; = ~- that
corresponds to the synapse relaxation time. The charts are symmetrical regarding
the line g1 = g2 as a result of the invariance of the system with regard to substitution
of the coupling values g; and go.

Note that on the constructed LLE charts we mark different regimes (depending on
the LLE, level of activity of each element, interspike intervals and presence of burst)
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Fig. 1. LLE charts of the system (5). Different regimes of neuron-like activity are marked
by the following abbreviations: SB — the region of sequential bursting dynamics, S — the
region of spiking activity, WTA — the region of winner-takes-all regimes, C — chaotic region.
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using the following abbreviations:

(i) SB — sequential bursting activity;
(ii) S — regular spiking activity;
(iii) C — chaotic spiking activity;
(iv) WT A — winner-take-all activity.

As one can see from Fig. 1, the S B regime is observed in the case of strong asymmetry
of couplings, the WT A regime — in the case of exceeding of some threshold by values
of both couplings. These results well agree with previous investigations of motifs
consisting of inhibitory coupled elements, see [22-25] and references therein. The
S regime is observed for quite small values of both couplings. It was observed in
numerical experiments that all of these regimes are multistable, i.e. several stable
periodic points of different periods coexist in the phase space of the system, and
depending on the initial conditions the phase point is attracted to one of them. There
is also a wide region of chaotic activity (C' regime) with regular domains inside it.

It was shown, that increasing of the parameter v; (or 72) leads to a shift of the
borderlines, which divide the region of different regimes, in the direction that corre-
sponds to the zero value of the coupling g; (g2). It was demonstrated that increasing
of the relaxation time almost does not change the types of activity by itself. It only
decreases the level of subliminal activity in the suppressed elements in the case of the
WTA regime.

The evolution of LLE along the lines go = 1 and ¢g; = g5 is shown in Fig. 2.
Both pictures were obtained using the previously described inheritance scheme. These
diagrams show the dependency between LLE and the coupling parameters g; and gs
and provide more information about attracting sets in the phase space of the system
(5) as well. Continuous changes of LLE mean that the phase point goes to the same
attracting set during the changing of a coupling parameter, and gaps between LLE
values for neighboring values of a coupling parameter means that the phase point
was attracted to different attracting sets because of the destruction of the previous
attracting set or an extremely shrinking of its attraction basin. In the Fig. 2a one can
see two regions of with regular attractors (periodic points of different period), which
appears and destroys with varying of the coupling parameter g;: the first region is
0 < g1 < 1.87 and the second region is g; > 7. In Fig. 2a there are also two regularity
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Fig. 2. LLE for the chart from Fig. 1a depending on the coupling values g1 and g2: (a) g1,
g2 =1 (b) g1 = g2 of the system (5).

windows including periodic points of different periods near the value g; = 2.5 inside
the chaotic dynamics region that correspond to the segment of positive LLE. As one
can see, the transition from chaos to regular regimes in this case is quite smooth. In
Fig. 2b one can see the evolution of the LLE along the line g1 = g2 in the map of
LLEs (Fig. 1a). It is quite similar to Fig. 2a, except of a hard transition from chaos to
multistable WTA regimes near g; = 5.45. After this transition we observe two regions
of smooth changing of LLE divided by a non-smooth transition at ¢y = ¢go = 7.
Jumping to another periodic point occurs due to shrinking of the attraction basin of
the current periodic point.

The next subsections present a more detailed study of the specified dynamical
regimes. In the following study we take v, = 2 = 0.

3.1 Sequential bursting activity (SB regime)

In this study we are most interested in the SB regime that is observed in the system
for a strong asymmetry of couplings. Then one of the governing couplings value, e.g.,
g1, is sufficiently large, but the others, e.g., g2, is extremely small or equal to zero.
This condition provides a reproduction of the SB regime that is characterized by the
following features: (i) all elements in the ensemble are sequentially activated, (ii) an
element generates tonic spikes when it is active, and (iii) periods of activity have the
same length for all 3 elements.

We find that depending on the period of the stable periodic point main features
of the sequential activity regimes differ in the following way:

— Sequential activity with equal interspike intervals inside bursts are associated with
stable periodic points of periods about 50-150 (Fig. 3(a)). It can be observed
mostly in case of proximity to zero of one of the couplings® values.

— Sequential activity with unequal interspike intervals inside bursts are associated
with stable periodic points of very high periods (Fig. 3(b)). Also periods of ac-
tivity of adjacent elements have intersections. This fact can be attributed to the
following: in the projection of the 9-dimensional phase space to the 3-dimensional
subspace (x1, 2, x3) for high periodic points of period k there exist some k; < k,
such that the kq-th image of the point is closer to the z;11 axes, while most previ-
ous images of the point lie near the x; axes that corresponds to the x; activation.
As the period of the periodic point sufficiently increases, the LLE in this case
becomes close to zero but still remains negative (the largest Lyapunov exponent
Amaz &= —0.004).
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Fig. 3. (a) Time series of z1, x2, 3 and he projection of phase space of system (5) to the

3-dimensional subspace (z1,z2,z3) in the case of sequential activity with equal interspike

intervals, g1 = 0, g2 = 7; (b) Same as in (a) but for g1 = 1 and with unequal interspike

intervals.

3.2 Spiking activity (S and C regimes)

Figure 1 shows that there exists a region of spiking activity of different type, in-
cluding spiking activity with constant intervals between spikes of different elements
(see Fig. 4(a)) and spiking activity with different intervals between spikes of different
elements (see Fig. 4(b)).

As in the case of SB regime, the corresponding value of the period of the stable
periodic point defines the type of the spiking regime. If the period is quite small, the
spiking process looks like a sequential activation of elements with constant intervals
between spikes that depends on initial conditions. With increasing of the period of
the stable periodic point the time between spikes in each element becomes slightly
different and the time series look as for non-regular case despite the fact that analysis
shows a regular nature of this regime.

In the case of small couplings the regime may look similar to the regime in the case
of uncoupled oscillators, so let us briefly describe the main features of the influence of
small coupling on the dynamics of the system (5). Even for small values of parameters
g1 and go (for example g; = 0.05, go = 0) the phase space of the system changes:
instead of a periodic point of period of 4 (as it was found in [10]), which corresponds
to the case of tonic spiking in uncoupled oscillators, a periodic point of higher period
appears. Therefore the amplitude of spiking becomes smaller (upper bound of the
value of membrane potential takes the value of 1 instead of 1.5 as in case of uncoupled
elements), and the spiking frequency also becomes lower.

In a wide region of coupling parameter values chaotic spiking activity is observed
(see Fig. 5). In contrast to the previous case of spiking activity that only looks like
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Fig. 4. Time series of x1, x2, z3 and the projection of phase space of system (5) to the
3-dimensional subspace (z1, z2,z3) in case of spiking activity (a) g1 =1, g2 =0 (b) g1 = 1,
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Fig. 5. Time series of z1, x2, 3 and the projection of phase space of system (5) to the
3-dimensional subspace (z1,z2,z3) in case of chaotic spiking activity for coupling values
g1 = 3.1, g2 = 3, the largest Lyapunov exponent Aqz ~ +0.05.

non-regular (interspike intervals are non-equal, LLE is close to zero but remains neg-
ative), in this case the LLE is positive.

As it can be seen from Fig. 1, in the regions of chaotic regimes there are some
domains of regularity, which, generally speaking, are typical for nonhyperbolic chaos
[26].

3.3 Winner-take-all activity (WTA regime)

In a wide region of coupling parameters g; and go different WTA regimes coexist.
Depending on the initial conditions one of the elements in the motif demonstrates
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of multistable WTA regimes. Each periodic point corresponds to the WTA regime when the
corresponding element demonstrates tonic spiking activity and others are suppressed; (b)
Time series of x1, x2, x3 in the case when the phase point was attracted to the one of the
periodic points of period 5.
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Fig. 7. (a) Subcritical Neimark-Sacker bifurcation of a triplet of periodic points: two
complex-conjugated multipliers ps and pe (blue dots) of the periodic point of period 4
cross the unit circle (green curve), g» = 7, g1 variates from g1 = 7 to g1 = 4.99 (b) Double
subcritical Neimark-Sacker bifurcation of the triplet of periodic points of period 4: two pairs
of complex conjugated multipliers (us, ue) and (7, ps) (blue dots) of the corresponding pe-
riodic point cross the unit circle (green curve), the coupling values variate from g1 = g2 = 7
to g1 = g2 = 4.99. In both cases other multipliers remain inside unit circle.

tonic spiking while others are suppressed to the level of subliminal activity. In the
phase space of the system (5) three triplets of periodic points of periods 4, 5 and 6
coexist (see Fig. 6 for the triplet of periodic points of period 5). A larger period of
the periodic point corresponds to lower spiking.

3.4 Bifurcation analysis

In this section we study bifurcations which lead to the transition from multistable
regimes of winner-take-all activity to chaotic activity and sequential switching activ-
ity. To perform bifurcation analysis we calculate multipliers of periodic points (see
Fig. 7). We perform the following experiment: fix the coupling value go = 7, and
start to decrease g7 from the initial value g; = 7. We find that in this case triplets of
periodic points of periods 4, 5 and 6 sequentially bifurcates via a subcritical Neimark-
Sacker bifurcation, when the coupling parameter reaches the threshold values for each
triplet of periodic points.

The triplet of periodic points of period 4 collapses first when g; reaches the thresh-
old value g; = 4.99 (see Fig. 7(a)), and the triplet of unstable cycles, which can not be
observed in numerical experiments because of the non-reversibility of the dynamical



Synchronization and Control: Networks and Chaotic Systems 155

artte o
x> 0 : -1.1
R -125 -1.2
™ 50 100 150 0 1 5 —1.3y
Time X 2

Fig. 8. Time series for the variables x1, 2, x3 and the projection of the 9-dimensional phase
space of system (5) to the 3-dimensional subspace (z1,%2,23) in case of WTA dynamics
for different values of oy, i = 1, 2,3, coupling values were taken equal to g1 = g2 = 7: red
color corresponds to o1 = 02 = 03 = 1, green color to 01 = 02 = o3 = 0.5, and blue color
to 01 = 02 = o3 = 0.3. Decreasing of o; leads to a slowing down of the spiking process
and increasing of the period of the correspondent periodic point in the phase space. Further
decreasing of 0;, i = 1,2, 3 leads to the appearance of chaos in all individual elements of the
system (5).

system, appears. Further near g; = 4.85 on the same scenario triplet of stable periodic
points of period 5 collapses. When g; reaches the third threshold value g; = 4.49,
the last triplet of periodic points of period of 6 collapses via a subcritical Neimark-
Sacker bifurcation. After this last bifurcation one does not observe the winner-takes-all
regimes in the system but only finds chaotic dynamics.

This result is symmetrical with regard to the substitution (g1 — g2) and (g2 — ¢1)
owing to the symmetry of the system with regard to specified substitution (one can
graphically see this fact on the map of the dynamical regimes that is symmetrical
with regard to the line g1 = g2).

A double subcritical Neimark-Sacker bifurcation occurs (Fig. 7(b)) in the case of
a similar transition from the region of regimes of winner-takes-all type into the region
of chaos along the line g; = g for the same threshold values and the same sequence
of triplets of periodic points of periods 4, 5, 6.

We are interested in transitions near borderlines of regularity domains inside the
chaotic region. In this case the attracting basins of stable periodic points near thresh-
old values of its birth and death are very small, and this fact makes numerical studies
difficult. It was shown that 2 complex conjugated multipliers of a periodic point near
the threshold values on the left border have a tendency to go to the unit circle.

4 One more realistic modeling: Slowing down of spiking in the
winner-takes-all regime

As it was shown in [10], decreasing of the parameter o leads to decreasing of the
spiking frequency setting of chaotic dynamics in the individual element. To obtain a
more realistic spiking process, especially in the case of WTA dynamics (see Fig. 8),
we will study the dependence of the system’s dynamics on the parameter o.

Figure 9 shows that decreasing of parameters o;, i = 1,2,3 for each element in
the motif leads to an appearing of the chaotic behavior in the SB region. The region
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of SB becomes a region of chaotic activity already in the case of o; = 0.4, i.e. much
earlier than the appearing of chaos in the individual element. Also the region of
WTA dynamics becomes wider with decreasing of ¢;. This finding leads us to some
consensus between decreasing spiking frequency and preserving all types of activity
in the ensemble that was described earlier.

5 Conclusion

These investigations continue the study of the impact of inhibitory couplings on dy-
namics of motifs of neuron-like elements and different transitions from sequential
activity to winner-takes-all regimes described in [23-25]. In this paper we study dy-
namical regimes which may be observed in an ensemble of inhibitory coupled Rulkov
elements depending on coupling values. This way, we uncover the new transition
scenario from sequential activity to winner-takes-all regimes through chaos. The ob-
tained results give us a possibility to study numerically effects of inhibitory coupled
neurons in large ensembles in cases when it is necessary to reproduce phenomena and
main features of certain type of activity such as interburst and interspike intervals,
regularity of the process etc. Our theoretical findings can be proved by experimental
studies, where all specified types of neural activity [27-30] and effects of inhibitory
network related to these regimes (see the review [31] and references therein) were
observed in experiments. All these cases let us state that using this numerical analysis,
we can predict main neural phenomena in ensembles of inhibitory coupled neurons.
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