
Eur. Phys. J. Special Topics 225, 197–209 (2016)
© EDP Sciences, Springer-Verlag 2016
DOI: 10.1140/epjst/e2016-02621-0

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Coupling and control in coherently driven
and asymmetrically synchronized hybrid
electron-nuclear spin system

V. Berec1,2,a

1 Institute of Nuclear Sciences Vinca, PO Box 522, 11001 Belgrade, Serbia
2 University of Belgrade, St. Trg 1, 11000 Belgrade, Serbia

Received 17 June 2015 / Received in final form 11 January 2016
Published online 29 February 2016

Abstract. We study the coupling and control adaptation of a hybrid
electron-nuclear spin system using the laser mediated proton beam in
MeV energy regime. The asymmetric control mechanism is based on
exact optimization of both: the measure of exchange interaction and
anisotropy of the hyperfine interaction induced in the resonance with
optimal channeled protons (CP) superfocused field, allowing manip-
ulation over arbitrary localized spatial centers while addressing only
the electron spin. Using highly precise and coherent proton channeling
regime we have obtained efficient pulse shaping separator technique
aimed for spatio-temporal engineering of quantum states, introducing
a method for control of nuclear spins, which are coupled via anisotropic
hyperfine interactions in isolated electron spin manifold, without ra-
dio wave (RW) pulses. The presented method can be efficiently imple-
mented in synchronized spin networks with the purpose to facilitate
preservation and efficient transfer of experimentally observed quantum
particle states, contributing to the overall background noise reduction.

1 Introduction

The ability to generate, control and transfer the atom-photon quantum correlation be-
tween light-matter interfaces [1–6] represents the central topic of recent developments
toward the fields of complex systems, information theory and quantum information
processing. However, in the presence of noise it is hard to produce, precisely assess
and to classify the dynamics of quantum states according to their entanglement prop-
erties [7]. Motivated by the fact that the mixed state quantum property, as a robust
entanglement resource, allows the possibility of employing a noisy environment, us-
ing a recently introduced framework [8–10] we investigate the hybrid proton mediated
electron-nuclear spin dynamics in a nanocrystal channel of diamond symmetry, per-
forming combined theoretical and experimental study.
In contrast to recently proposed doped silicon architectures [11–13], where the

main problem of decoherence in view of the temperature dependent spin-boson and
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temperature independent spin-spin mechanisms predominates, a long quantum co-
herence time of 25 seconds for 29Si nuclear spins at room temperature as one of the
main criteria for nuclear spin to be utilized as a memory qubit [14] is explored in
this study using isotopically highly abundant pure silicon nanocrystal, demonstrating
at the same time advantage of 29Si nuclear spins in coherent quantum interactions
and quantum feedback control [15], and highlighting their excellent characteristics
for solid state qubits. In fact, one of the most prominent tasks of secure quantum
information processing (QIP) is the frame synchronization applied to qubit rotations
on time scales below the spin coherence time. In the quantum domain the actual
logical qubit of information can be processed in week measurement setting as a phys-
ical qubit which binds light-matter interface, using quantum feedback protocols for
universal control.
After introducing the analytical model, in Sect. 3 we demonstrate that adaptive

control of nuclear spin states can be obtained by combinations of switching and time
delay mechanisms, manipulating the state of the electron spin defined by its two
eigenstates by sequences of π pulses in specific time frame. Successive flipping of the
state of electron spin consequently affects the nuclear spin dynamics, which is encoded
in quantization axis and the precession frequency relative to this axis, by producing
nutation of the nuclear spin around the new quantization axis during each flip. By
generating the series of time scaled switchings of electron spin flips followed by specific
delays we demonstrate universal control of nuclear spin rotation. Presented switching
regime of control of nuclear spin evolution (obtained in electron spin manifold) rep-
resents direct implementation of control theory [16] in QIP. Instead of rf field we use
CP-modulated beam to produce the nuclear spin hyperpolarization, which extends
the electron spin coherence time in nanocrystal, allowing spin qubit manipulation
on much faster time scales than the spin coherence time [17], which in turn reduces
relaxation losses.
The experimental protocol for atom-photon entangled states established via 〈100〉

nanosilicon interface, is further described in Sect. 3.1. Initially, the system containing
two nuclear spins (1H and 29Si nuclear spin) is coupled via anisotropic hyperfine in-
teraction with electron spin in a ground state. This state is further laser-excited to a
metastable triplet. After the initial preparation, the system provides all requirements
for exploration of the hybrid nuclear-electron [18,19] spin manipulations which can
be mediated by a proton spin in conjunction with hyperfine-transient electron spin
(via dynamic nuclear polarization [20]), using a combination of 2MeV energy polar-
ized channeled proton beam pulses driven in picosecond scale, and a laser excitation
at the wavelength of 221.7 nm [21]. The 2MeV energy establishes acceleration of the
spin interactions due to nuclear spins long coherence lifetimes [22] and compensates
weak polarization of the nuclear spins, thus overcomes the spin decoherence limit
imposed by the noisy environment. The preparation of the initial state considers the
hyperfine coupling induced by the proton beam pulses in a 92 nm thick nanosilicon
crystal target following the experimental conditions introduced in [9].

2 Model

In order to determine the appropriate coupling parameters and quantity measure of
maximal correlation between the nuclear spins states, i.e., the concurrence [23] and
entanglement of formation [24], we constructed the entangled state of subsystems
A,B over the subspace V ⊂ HA ⊗HB . The bipartite state is initialized by two lin-
early independent non-orthogonal states |M〉A =

∑
i1···im ψMi1···im |i1〉 · · · |im〉 and

|L〉B =
∑
j1···jm ψLj1···jm |j1〉 · · · |jm〉 that span a two dimensional subspaces A and

B of Hilbert spaces: HA,HB . These two non-orthogonal quantum states [25–27] have
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nonzero inner product 〈ψM | i〉A �= 0, 〈ψL | j〉B �= 0, where |ψM 〉A and |i〉A are nor-
malized states of subsystem A, while |ψL〉B and |j〉B denote normalized states for
subsystem B, respectively. The initial bipartite quantum state then corresponds to:

|Ψ〉 = 1
N
[μ |ψM 〉A ⊗ |ψL〉B + ξ |i〉A ⊗ |j〉B ] , (1)

where μ is the maximal overlap measure, defined for subsystems A,B [26], and the
normalization constant is given by

N2 = |μ|2 + |ξ|2 + 2Re(μ∗ξ∗p1p2), p1= 〈ψM | i〉 , p2= 〈j | ψL〉 . (2)

The presence of entanglement is first determined by the concurrence C = |〈Ψ | Ψ̃〉|
[28] of the initial state, Eq. (1). In the Pauli basis representation, where σy denotes
the Pauli spin matrix, the concurrence is:

C = |〈Ψ |σy ⊗ σy |Ψ〉| , (3)

defining the overlap between the initial state |Ψ〉 (Eq. (1)) and the spin-flipped state
|Ψ̃〉 = −σy ⊗ σy |Ψ〉 [28], where the obtained joint (flipped) state defines a rota-
tion about the y-axis corresponding to the effect of the rotating field B1 in nuclear
spin manifold. In particular, following the ideas of Caves et al. [28], the problem of
evaluating the entanglement via optimum concurrence from Eq. (3) was shown to be
equivalent to that of adjusting the resonance of the external magnetic field where
the obtained joint (flipped) state defines a rotation about the y-axis corresponding
to sinusoidal oscillating component of dynamic field B1 which induces precessions of
magnetization transversal Mx and longitudinal Mz component [20], directly affect-
ing the spin relaxation times T2 and T1, respectively. In order to further asses the
entanglement for generated ion-atom mixed state (obtained in S−T+ basis), it is nec-
essary to represent the (average) concurrence as a minimum taken over all pure-state
decompositions [28] of Eq. (1):

Cmin = inf

(
∑

j

pjC (|ψj〉)
)

= |tr (ρσy ⊗ σy)| , (4)

where |ψj〉 are defined in real-vector-space, exclusively. In particular case for gener-
ated mixed state ρ = 1

2 (|Φ+〉 〈Φ+|+ |Ψ−〉 〈Ψ−|), Cmin measures the total detection
reliability of readable singlet-triplet entangled mixed state realizations:

ρ = 1
4 (I ⊗ I + σy ⊗ σy) , (5)

which are maximally entangled according to real vector space and represent an
equal mixture of the two pure entangled states: 1√

2
(|01〉 − |10〉) and 1√

2
(|00〉+ |11〉).

In particular case, in contrast to the product decomposition of mixed state ρ =
1
2 (|Φ+〉 〈Φ+|+ |Ψ−〉 〈Ψ−|), which can be rewritten as ρ = 1

2 (|χ+〉 〈χ+|+ |χ−〉 〈χ−|),
where |χ+〉 = 1√

2
(|Φ+〉+ i |Ψ−〉) = 1

2 ((|0〉 − i |1〉)⊗ (|0〉+ i |1〉)), and |χ−〉 =
1√
2
(|Φ+〉 − i |Ψ−〉) = 1

2 ((|0〉+ i |1〉)⊗ (|0〉 − i |1〉)), ρ in form of Eq. (5) is indeed
maximally entangled state in the real-vector-space where its concurrence (Eq. (4))
obtains a maximal value [29]: Cmin = |Tr (ρσy ⊗ σy)| = 1

4Tr ((σy ⊗ σy) (σy ⊗ σy)) = 1
Accordingly, the entanglement of formation, EF [24,29], is dependable on obtained

mixed state that corresponds to a density matrix: ρ ∈ K (HA ⊗HB), and spans a two
dimensional Hilbert space over subsets A and B as:

EF(ρ) = inf
d∈Dρ

∑

k

pkHmin (ρAB), (6)
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where, the minimization is determined via von Neumann minimal conditional entropic
measure, Hmin, and given over domain Dρ which represents the set of all realizable
mixed states. The latter relation can be applied to the process of elementary mixtures
for Werner quantum system (spanned over subspace: V ⊂ HA ⊗HB which employs
two qubits: A and B. Namely, in the past years it was believed that Werner states
[30] possess the most entanglement for a certain level of mixedness [30]. Depending
on the singlet weight p, Werner states may be entangled p > 1/3, or separable for
p ≤ 1/3 [30]. Here employed, Werner state represent a figure of merit in a modeling
of a (de)coherence process which affects the singlet state dynamics along a noisy
channel [1]. Correspondingly, it is used to model a subsequent induced ion-photon
excitation (see Sect. 3).

3 Discussion and results

The swift 2 MeV energy protons are confined under the axial channeling regime (when
the channeled proton trajectory corresponds to oscillatory motion) and strongly local-
ized between adjacent atomic rows. We have used the axial channeling configuration
in order to increase the confinement effect over ion trajectories, allowing them to be
efficiently captured within one single channel [31]. In particular, we have used the
92 nm thick silicon nanocrystal to capture proton oscillatory motion between four
neighboring atomic rows according to diamond lattice fcc symmetry of Si 〈100〉 chan-
nel, as shown in Fig. 1 (top).
The incident proton beam is tilted relative to z-axis, i.e., low index axis of Si

nanocrystal, for the specific values of angles below critical angle for channeling [31].
The gap between the two Si lattice sites represents the nanocrystal cavity [32,33].
Four nanocrystal atomic planes, which perpendicularly intersect the corresponding
atomic rows of 〈100〉 channel, interact with CP field [9] producing a gap smaller
than the half of the planar oscillation wavelength of the proton beam (its coherence
length). Nanocrystal planes act as a mirror that deflects and reverses the transverse
motion of the ion trajectories, forming the resonant cavity conditions similar to an
X rays resonator [33]. Based on theoretical study [34] that a high efficient mirror for
charged particles can be generated by an ultrathin crystal, which is tilted relative to
the direction of the incident beam for typical angles smaller than ψc = 6.09 mrad,
recent study [9] exposed a method for nonlinear control of channeled ions, guided via
coherent interactions in silicon crystal of thickness parameter smaller than 100 nm.
More recently, axial confinement produced by the ultrathin silicon ion channeling
was experimentally confirmed for nonrelativistic protons, focused through a 55 nm
thick [001] Si membrane [35]. It was shown that the transverse phase space can be
populated by channeled ion trajectories, allowing an effective resource of transversely
polarized particles [36,37].
Here we consider a structure comprising two main Hamiltonian components: the

ion-atom confinement potential, acting inside the silicon nanocrystal cavity, and the
internal-spin-Hamiltonian. In order to describe the system properties and dynamics
of the continuum ion-atom interaction potential in the nanocrystal, we include the
Hamiltonian governing the oscillatory motion of ions

H = (1/2)m
(
p⊥2 + U(r)

)
= E

(
ψx
2 + ψy

2
)
+ U(r), E⊥ = Eψ2 + U(r), (7)

where E is ion incident energy, E⊥ and p⊥ denote ion transverse energy and mo-
mentum, ψx and ψy are x and y components of scattering small angle with respect
to the low index channel axis. The proton trajectories are obtained in the Moliere’s
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Fig. 1. Top: (left) 〈100〉 representation of the axial channel formed by the four 29Si atoms,
where transversal thickness of the target corresponds to one atomic layer, a schematic view.
Right: the hyperfine interaction mechanism, a schematic representation. The anisotropic
hyperfine coupling yields the synchronization between selective rotations of the adjacent
nuclear 29Si spins affected by the circularly polarized electron spin. Bottom: asymmetry
measure of the exchange interaction between coupled electron qubit states, a schematic
representation. Left: symmetric exchange interaction (indicated by grey full line): Hij =
J(sx,isx,j + sy,isy,j)+K(sx,isy,j − sy,isx,j) couples entangled 29Si electron qubit states |01〉
and |10〉. Right: the antisymmetric exchange interaction (indicated by grey dashed line):
hij = j(sx,isx,j − sy,isy,j) + k(sx,isy,j + sy,isx,j) couples the states |00〉 and |11〉.

approximation of the Thomas Fermi interaction potential [29,30]

Ui (r) =
2Z1Z2e

2

d

3∑

i=1

αiK0

(
βi
r

a

)
, (8)

where Z1 and Z2 are the atomic numbers of the proton and the atom, respec-
tively, is the electron charge, is the quantum displacement from the harmonic os-
cillator ground state, is the distance between the proton and atomic strings, a0 is

the Bohr radius, a =
[
9π2
/
128Z2

] 1
3 · a0 is the atom screening radius, and K0 is the

zero order modified Bessel function of the second kind with the fitting parameters:
(αi) = (0.35, 0.55, 0.10), (βi) = (0.30, 1.20, 6.00) [31]. The internal-spin-Hamiltonian
comprises: nuclear and electron spin qubit, localized in nanosilicon target, as depicted
in Fig. 1, and a mediator spin system of channeled protons [36]. The Hamiltonian for
the case system, placed in an external magnetic field Bz, is

H = ωeSz + ω1HI
1H
z + ωSiI

Si
z + Sz ⊗

[
∑

n∈Si,1H
[AnI

n
z +BnI

n
x ]

]

. (9)

The Hamiltonian includes the electron spin component Sz along the direction
�
z of

the static external field B0. The operator of the nuclear spins I
n refers to: hyperchan-

neled protons (1H), and the 29Si nuclei (highly isotopically abundant nanocrystal
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target contains 29Si with > 99% purity level). ωe, ω1H and ωSi are Zeeman frequen-
cies for electron,1H, and 29Si nuclei, respectively. An and Bn are coefficients of the
hyperfine coupling. Such system possesses the primary orientation dependence from
the coefficients of the hyperfine interaction. The nuclear spins, i.e., 1H and 29Si are
affected by the hyperfine anisotropic term BSzIx which couples longitudinal compo-
nent of the electron spin Sz with the transverse component of the nuclear spin Ix. The
Bz field corresponds to propagation of the excitation laser impulses. For the atom-
cavity experiment we use the field stored in the cavity mode to manipulate charged
particles at ideal conditions for separate qubit control. The optically generated states
in that sense, are able to be transferred as wave-packets along the transmission line
for the multiple-qubit sessions realized in spin network.
Application of a magnetic field along the z-axis induces the spin quantization

into eigenstates |↑〉 and |↓〉 conditioned via external magnetic field Bz, with eigen-
values Sz = ±�/2 The laser pulse initializes the spin at time t = 0 into the su-
perposition |ψ (t = 0)〉 = (|↑〉 ± i |↓〉)/√2 for σ± polarized excitation. The electron
spin state then coherently precesses according to |ψ (t)〉 = (e−iωt |↑〉 ± ieiωt |↓〉)/√2,
where ω = gμBBz/� is the Larmor precession frequency, g is the effective electron g
factor, μB is the Bohr magneton, and � is the reduced Planck constant. The electron
spin dynamics as a function of time Δt in terms of applied laser pulse trains tls is
given by

0 < Δt < tls, S(Δt) =

⎧
⎪⎨

⎪⎩

Sx cosωt,

Sy sinωt,

Sz.

Δt ≥ tls, S(Δt) =

⎧
⎪⎪⎨

⎪⎪⎩

Sy(cosφls sinωtls cosωt1 + cosωtls sinωt1)− Sz sinφls cosωt1,
Sy(− cosφls sinωtls sinωt1 + cosωtls cosωt1)− Sz sinφls sinωt1,

Sy sinφls sinωtls + Sz cosφls,

(10)
where (Sx, Sy, Sz) is the initial spin state, time period is t1 = t− tls, ω is the pre-
cession frequency about the z axis, and φls is the spin precession angle induced by
laser pulse. Focusing the proton beam over the electron spin manifold under angle
ϕ ψc where ψc is critical angle for channeling, induces the switching mechanism in
the Hamiltonian of Eq. (9) into two substates:

H1 = ωIIz + Sz (AnIz +BnIx) , H2 = ωIIz − Sz (AnIz +BnIx) , (11)

where a sequence of time delays τi and π flips: τ1 − π − τ2 − · · · − τn − π, i = 1, ..., n,
forms the specific rotations of the nuclear spin in electron spin manifolds, en-
coded in evolution of the Hamiltonians 1 and 2 (see Eq. (11)) as: e−(iH2τ2i) =
e−(iπSy)e−(iH1τ2i+1)e−(iπSy) and e−(iH1τ2i+1) = e−(iπSx)e−(iH1τ2i)e−(iπSx), respec-
tively. The multiscale time dynamics is implemented into latter sequence which serves
as a building block, executing nπ pulses for every 2τi time delays, after applying initial
phase shift of the first π pulse by 90 degrees, resulting in the Meiboom-Gill pulse se-
quence (see Fig. 2). Consequently, the system’s evolution |ψ (t)〉 = Û (t) |ψ (t = 0)〉 is
described by the decomposition of the response function u′(t) [38] figuring in evo-
lution operator, Û(t) = u′(t)e−iωτSz , where u′(t) =

∑∞
i=0 u

2τi +
∑∞
i=0 u

2τi+1 =
∑∞
i=0

(
u2τi11 0
0 u2τi22

)

+
∑∞
i=0

(
0 u2τi+112

u2τi+121 0

)

includes diagonal, Sz, and antidiagonal,

Sx and Sy, components, respectively.
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Fig. 2. Selective control of the pulse sequence on the anysotropic hyperfine transition: within
a time delay τ = π/ω for the input pulse of 10% ψc at Bz = 2T which demonstrates coherent
exchange interaction between electron and nuclear spins. The electron spin coherence is gen-
erated with initial π/2 pulse, and refocused after the CP pulse ∼ π as the nuclear spin state
is reversibly transferred onto the electron spin: |0〉 ⊗ (α |↓〉+ β |↑〉) → |↑〉 ⊗ (α |1〉+ β |0〉) .
When the electron is in the triplet, ms = 1 state, the existing hyperfine interaction induces a
splitting between the nuclear spin states {|1, ↓〉 , |1, ↑〉} . As a result, we can selectively con-
trol the nuclear spin state in conjunction with the flip of the electron spin. For a magnetic
field Bz <0.1T, applied perpendicular to the nuclear spin quantization axis, the nuclear spin
precesses at the Larmor frequency ω. The hyperfine interaction does not contribute when
the electron is in the singlet, mS = 0 state.

The quantum transition between the two adjacent nodes (which represent the
coupled system of two 29Si atoms in nanocrystal lattice) and the silicon nanocrystal
cavity mode: |Ec〉 = 1√

2
(|e, 0〉 + |g, 1〉) in form of resulting quantum state 1-2-C is

given by the following relation:

|T〉 = 1
2 {|e1〉 (|i2〉 + |g2〉) |0〉+ |g1〉 (|i2〉 − |g2〉) |1〉} . (12)

Here |T〉 refers to three particle entangled state of 12 spins. The cavity field C coupled
with 29Si atoms generates oscillations between the ground |g, 1〉, excited state |e, 0〉,
and triplet state |s, 1〉. As a result, the atom-cavity quantum state decay/produce
horizontally polarized photons denoted by |H〉 and vertically polarized photons or
|V 〉. It is possible to entangle a stream of such qubits by transmitting them through
a thin silicon nanocrystal, exposed to a highly collimated channeled proton beam
in order to change the polarization, after the state of the qubits can be read off on
exit plane of the crystal. During a read out measurement, a qubit collapse into a 0
or 1 state. Because of the primary orientation-dependable configuration of the triplet
states, in addition to polarized beam exposition, tilting of a target additionally allows
for the precise control of electron spin manifold with selection of the specific electron
triplet state polarization frequency [39]. The laser pulse is used synchronously with
a proton beam in this protocol: first in order to drive a well defined superposition of
the Zeeman states (given by Eq. (9)) for Bz = 2T between electron and nuclear spins
(|↑〉 , |↓〉) in S−T+ qubit basis and, afterward the initialization is performed, in order
to control the excitation (driven in S − T0 qubit basis [40]) which corresponds to a
mixture of the two electron/nuclear spin states where: |T0〉 ≡ (|↑e↓I〉+ |↓e↑I〉)

/√
2

and |S〉 ≡ (|↑e↓I〉 − |↓e↑I〉)
/√
2. Atom-photon entanglement is produced by forming a

state with multiple decay channels. Laser (P = 50 nW) induces the system excitation
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in one of the 3P states, imprinting the effective spin coupling states onto a photon,
thus allowing the decay through the P−D0 channel via photon |V 〉 which is polarized
parallel to the electron-nuclear quantization axis, and photon |H〉 which is polarized
perpendicularly to electron-nuclear quantization axis. A short proton pulses thus pro-
vide a direct selective spin control by flipping the state of the excitation selectively in
a picosecond time scale ∼12 ps length. A transition from the systems singlet to triplet
state is provided by controlled π pulse rotation relative to selected spin precession
angle φls = J (ε)/� ≤ ψc, which is associated to quantization z-axis. J (ε) is the ex-
change coupling between different energy ε sublevels. A proton-probe laser controls
the precession over ϑ-angle (relative to 〈100〉 low index axis of a silicon nanocrystal)
by the ellipticity which is equivalent to the electron spin polarization. The one dimen-
sional thermal vibration amplitude of the nanocrystal atoms is 0.0074 nm [9,31] and
the average frequency of transverse motion of protons moving close to the channel
axis is equal to 5.94×1013 Hz. The majorization protocol is performed over two-level
system defined by Eq. (9) over subsystems A,B spanning V ⊂ HA⊗HB in a form of
entangled singlet-triplet subsystems (s, t) as:

|00〉t ≡ |0〉A|0〉B , |11〉t ≡ |1〉A|1〉B , |10〉s,t ≡ |1〉A|0〉B , |01〉s,t ≡ |0〉A|1〉B ,

|Ψ±〉 = 1√
2
(|0〉A|1〉B ± |1〉A|0〉B) , |Φ±〉 = 1√

2
(|0〉A|0〉B ± |1〉A|1〉B) .

(13)

Such subsystems are represented by the coherent mixtures of basis states that
form an equal incoherent mixture of the four Bells entangled states |Ψ±〉 and
|Φ±〉 of Eq. (13) (governed by the exchange Hamiltonian H(exch) = −2JS1S2,
where S1 and S2 are electron spins associated with

29Si nuclei over subsystems
A and B). The resonance field and magnitude of the hyperfine transition depend
on latter exchange-interaction part of the effective Hamiltonian, as represented
in Fig. 3, and on the coupling coefficient Bn (Eq. (9)), respectively. The qubit
representation: |mSmI〉 = |00〉, |01〉, |10〉, |11〉 corresponds to Zeeman product states:
|mSmI〉 = |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉, where the electron/nuclear spin states are denoted
as: ↑ =1/2, ↓ =− 1/2.
In order to address the atom-photon entanglement we have used the protocol which

simultaneously increases both purity and entanglement, at the cost of decreasing the
ensemble size of initial photon pairs. In addition, we have theoretically explored the
region of maximally entangled Werner state corresponding to generated atom-photon
entangled systems. The entangled state is given by: ρ̂w = (1− p) 14 1̂4 + p |Φ±〉 〈Φ±|
where 1̂4 denotes the identity matrix, and |Φ±〉 = 1√

2

(|HH〉 ± eiϕ |V V 〉) . Here
|HH〉 represents two horizontally polarized, and |V V 〉 denotes two vertically po-
larized photons. ϕ corresponds to proton beam incident angle [9,35]. We have
performed superoperator tomography of the density matrix states (16 × 16) to
show the probabilities for the concurrence which refers to Werner entangled states,
see Fig. 4.

3.1 Experimental protocol

The entanglement properties of nuclear 29Si qubits, which belong to each pair
of adjacent nanosilicon sites, are established by exposing the system to synchronized
Ti: sapphire ultrafast laser at 82 MHz repetition frequency, in conjunction to 2 MeV
energy channeled proton beam pulses, tilted relative to quantization axis by angles:
ϕ = 0.05ψc, ϕ = 0.15ψc, ϕ = 0.20ψc, ϕ = 0.25ψc. The excitation pulses are chosen to
match the limits of the Bohr radius, denoted with peak at 20% of the critical angle
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Fig. 3. Left: numerically obtained dependence of the quantity measure of established mixed
state entanglement for nuclear spins – entanglement of formation [23] as a function of the
implemented magnetic field, considering various channeled proton beam angles. Distribu-
tion of amplitudes is obtained from 2MeV proton beam source with a 92 nm 29Si tar-
get for the specified tilt angles: ϕ = 0.05ψc, ϕ = 0.10ψc, and ϕ = 0.25ψc in the trans-
verse phase plane (according to input pulses at 5%ψc, 10%ψc and 25%ψc, respectively).
The proton beam focusing spot covers the area in the vicinity of the nanocrystal low in-
dex 〈100〉 axis and allows the control for two-qubit entanglement with inhibition of the
new spin polarizations for the nuclear 29Si spins in adjacent sites. Right: the Uhlmann-
fidelity [43] corresponding to mean values and standard deviations obtained from data shots
of 10000 quantum Monte-Carlo iterations, each using the quantum state reconstruction
of (Eq. (14)).

for channeling ψc (relative to tensor principal axis). The anisotropic hyperfine cou-
pling between the triplet state of (1H mediated) polarized electron spin and the 29Si
nuclear spin is further coherently manipulated via selective proton beam pulses where
the spins precess under a modified Meiboom-Gill echo sequence [41]. The pulses are
generated periodically; picosecond phase interval is indicated in Fig. 2 (at the end of
the sequence, the sign of the pulses reverses in order to compensate the accumulation
of the phase noise). Entangled photon pairs are generated via spontaneous Stokes
Raman transition at the corresponding nanocrystal site with different polarization
states |H〉 and |V 〉. The atom (site) excitation is provided with femtosecond σ+ po-
larized pulse, resulting in spontaneous emission to a legible exit state: either l or 0,
in addition to emission of a photon in |H〉 or |V 〉 polarization state. By using the
polarization beam splitter it is possible then to reflect the photons with polarization
|V 〉 |−〉 and to transmit the photons of polarization |H〉 |+〉. The probe laser performs
initialization of the atomic qubits into coherent states: |ψ1〉 and |ψ2〉, which result in
the unnormalized two level entangled state between two photon states and two atomic
states as: |Φ〉 = 1

2

[
ψ2+ |ψ1〉 ⊗ |ψ2〉+ − iψ2− |−ψ1〉 ⊗ |ψ2〉−

]
with |ψ2〉± denoting the

even and odd coherent superposition states:

|ψ2〉± =
1

ψ2±
(|ψ2〉 ± |−ψ2〉) , ψ2± =

√
2
(
1± e−2|ψ2|2) . (14)

To coherently drive the quantum transition S ↔ T0 ↔ T± between |ψ1〉 and |ψ2〉
states, a laser with 20 μeV bandwidth in a pulsed regime is used to generate approx-
imately 150 fs pulse width, much less than the corresponding single-triplet splitting.
A full 16×16 Hermitian matrix, obtained from the superoperator tomography [42], is
further included in quantum Monte Carlo simulation. Its diagonal elements represent
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Fig. 4. Top: numerical simulation results for the superoperator real components of Werner
states in probability range corresponding to vicinity of p ≤ 1/√2; imaginary components
are omitted. Plots: p = 0.65, p = 0.70, and p = 0.71 correspond to the ion beam incident

angle at ϕ = 0.1ψc, where ψc =
[
2Z1Z2e

2/(dE)
]1/2

= 6.09 mrad. Silicon nanocrystal is
tilted along the θx axis corresponding to the limit p> 1/3 which defines the maximal quan-
tity of entanglement. Bottom: quantum Monte-Carlo simulation of two photon count-down
emission probability vs noise, as a read out of mS = 0 and mS = ±1 states, representing
a function of the time delay interval τi during a pulse sequence in x − y plane responsible
for the corresponding hyperfine transition. Probabilities are obtained using a superoperator
density matrix tomography for 16 polarization states corresponding to the matrix elements
of Eq. (15).
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a linear combination of different coincidence measurements, where:

⎡

⎢
⎢
⎢
⎣

|H〉1 ⊗ |H〉2 |R〉1 ⊗ |H〉2 |D〉1 ⊗ |R〉2 |V 〉1 ⊗ |D〉2
|H〉1 ⊗ |V 〉2 |R〉1 ⊗ |V 〉2 |D〉1 ⊗ |D〉2 |V 〉1 ⊗ |L〉2
|V 〉1 ⊗ |V 〉2 |D〉1 ⊗ |V 〉2 |R〉1 ⊗ |D〉2 |H〉1 ⊗ |L〉2
|V 〉1 ⊗ |H〉2 |D〉1 ⊗ |H〉2 |H〉1 ⊗ |D〉2 |R〉1 ⊗ |L〉2

⎤

⎥
⎥
⎥
⎦
, (15)

where: |D〉 = |H〉+|V 〉√
2

, |L〉 = |H〉+i|V 〉√
2

, and |R〉 = |H〉−i|V 〉√
2

.

Figure 3 represents the fidelity, F , of an obtained set of state ψ2± tomogra-
phy data (given in Fig. 4), expressed by:

F (ψ2±) =
∑

ρ

ptF (ρ, ψ2±) . (16)

The corresponding discrepancies, ΔF , with respect to a desired state ψ2± (see

Eq. (14)) are obtained as: ΔF (ψ2±) =
∑
ρ p

t
(
((F (ρ, ψ2±))− F (ψ2±))2

)1/2
. Con-

sidering N iterations to detect fi results from probability distribution function given

by: f (p, c,N) =
∏
j
p·Dp(cjmk)+(1−p)·Dp(cjml)

Dp(cjmk)+Dp(cjml)
, where Dp

(
cjm{k,l}

)
=

mcj{k,l}e
−m{k,l}

cj !

represents the normalized probabilities of detecting cj counts for a given Poisson
distribution centered around mean values for m{k,l} and mS = 0 and mS = ±1
states, one can obtain the binomial distribution of a probability distribution function
f (p, c,N). Here the total probability pt, of a quantum state ψ2± in measurement
process is given by the product of all probabilities as: pt =

∏
i f(Tr(Piρ),ni,N)∑

ρ

∏
i f(Tr(Piρ),ni,N)

. In

this way for each iteration one can utilize series of continual deterministic measure-
ments which are non-destructive [44] with respect to the entangled atom-photon
state, establishing a quantum feedback control of a solid state qubit through its inte-
grated dynamical correlation with CP induced EM field.

4 Summary

We have demonstrated asymmetric coupling mechanism and precise control of pro-
ton beam induced atom-photon quantum correlations for QED-based entanglement
in channeling regime and described conversion protocol which efficiently maps the
channeled ion into atom-photon quantum state, allowing the efficient generation of
entangled state between arbitrary localized spatial centers in silicon matrix. Coher-
ent control is utilized through spin precession in the proton exchange field which is
initialized via 2 MeV energy proton beam pulses. The noise reduction through the
correlation process is achieved by establishing the specific circumstances when two
quantum objects – spin qubits form a unique mixed quantum state in the composite
system, type: singlet – triplet. In that context, the process of coupling of electron
with 1/2 nuclear quantum spin states in silicon nanocrystal target, mediated by the
polarized nuclear spin states of channeled protons through the quantum entangle-
ment, allows the transfer of information originally deposited in the electrons to the
spin state of the host 29Si. The resulting transfer of quantum information in long-lived
quantum state (polarization) of a nuclear spin is further addressable to a photon, with
corresponding polarization/frequency applying the quantum feedback control strat-
egy. Obtained results support further investigation toward ion-beam manipulation
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of hybrid spin states, emphasizing the correlated quantum state transfer in higher
dimensional systems states over the spin network.

Author acknowledges the grant ObAd: 1007211, and support from the Ministry of Science
and Education.
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