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Abstract. This paper investigates the problem of projective lag syn-
chronization behavior in drive-response dynamical networks (DRDNs)
with identical and non-identical nodes. An adaptive control method
is designed to achieve projective lag synchronization with fully
unknown parameters and unknown bounded disturbances. These
parameters were estimated by adaptive laws obtained by Lyapunov
stability theory. Furthermore, sufficient conditions for synchronization
are derived analytically using the Lyapunov stability theory and adap-
tive control. In addition, the unknown bounded disturbances are also
overcome by the proposed control. Finally, analytical results show that
the states of the dynamical network with non-delayed coupling can be
asymptotically synchronized onto a desired scaling factor under the
designed controller. Simulation results show the effectiveness of the
proposed method.

1 Introduction

A complex dynamical network consists of coupling nodes. Each node is a nonlinear
dynamical system connecting with the others via a topology defined on the network
edges. Many real-life systems can be modelled as complex networks including world
wide web, food webs, electrical power grids, social networks and ecosystems. There-
fore, investigation of dynamical complex networks becomes important with the de-
velopment of industry and various sciences [1–3]. In particular, one of the interesting
and significant phenomena in complex dynamical network is the synchronization of
all dynamical nodes. The synchronization of complex dynamical networks means that
all the nodes in a complex networks eventually approaches to trajectory of a target
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node. Currently, there are many types of concepts of synchronization, such as com-
plete synchronization [4,5], lag synchronization [6], zero-lag synchronization [7], gen-
eralized synchronization [8], anti-synchronization [9], projective synchronization [10],
quasi-synchronization [11] and breathing synchronization [12]. In practical cases, time
delay appears in the electronic applications of dynamical systems. Therefore, it is very
important to develop synchronization methods with time delay.
Recently, some effective methods have been proposed to synchronize chaotic sys-

tems. For example, using a pinning control scheme, a general method of lag synchro-
nization without assuming the symmetry and irreducibility of the coupling matrix
was achieved by Wanli [13].
Using an impulsive control method, Zhang and Zhao[14] investigated the projec-

tive and lag synchronization between general complex networks where the coupling
matrix in this model is not assumed to be symmetric, diffusive or irreducible. Based
on an active nonlinear control technique, Banerjee et al. [15] and Ghosh et al. [16]
discussed the problem of projective synchronization and generalized synchronization
between two different time delayed systems respectively.
Adaptive control is an active field in the design of control systems which deals

with uncertainties. In recent years, adaptive control has been receiving significant
attention in different industrial fields. In aerospace applications, adaptive control has
been demonstrated in a number of flight vehicles. In the last decade, NASA con-
ducted a flight test program of a neural net intelligent flight control system on board
a modified F-15 test aircraft [17]. In practice, mismatch terms, unknown parame-
ters and external disturbance are unavoidable and these can destroy the system’s
stability. Therefore, some researchers have developed methods to deal with the un-
certainty, mismatch, and disturbance. Based on the sliding mode control method,
robust synchronization for a coupled FitzHugh-Nagumo (FHN) neurobiological net-
work with parameter disturbances was investigated [18]. Chen et al. studied robust
modified function projective synchronization in networks with unknown parameters
and mismatch parameters [19]. Using an adaptive control method, lag synchroniza-
tion (LS) [20] and function projective synchronization (FPS) [21] were proposed for
uncertain CDNs having delay coupling, unknown parameter and bounded external
disturbances. In the delayed neural network model, Zhou et al. [22] investigated lag
synchronization of coupled chaotic delayed neural networks without noise perturba-
tion by using adaptive feedback control techniques.
Recently, based on hybrid feedback control, a general method of projective lag syn-

chronization (PLS) with non-delay coupling and with delay coupling was investigated.
In addition, parameters mismatch, constant and varying time coupling delay were
considered in [23,24] respectively. Feng et al. in [25] proposed projective-anticipating,
projective and projective lag synchronization of time-delayed chaotic systems on ran-
dom networks. However, few results have been reported with respect to the projective
lag synchronization in DRDNs.
Motivated by the above discussion, in this paper, we propose a general PLS scheme

in DRDNs with identical and non-identical nodes. Both the drive and the network
nodes have unknown parameters and bounded disturbances. A simple adaptive con-
trol method is proposed and all of the unknown parameters are estimated by adaptive
laws based on Lyapunov stability theory. Based on updating laws, the controller was
designed to overcome the unknown bounded disturbances. For the coupling matrix, we
do not assume it to be symmetric or irreducible. As a result, the network is asymp-
totically synchronized with the proposed method. Moreover, numerical simulations
are performed to verify the effectiveness of the theoretical results.
The rest of this paper is organized as follows: the DRDNs model with unknown

parameters is introduced in Sect. 2. A general method of PLS in DRDNs with un-
known parameters using an adaptive method is discussed in Sect. 3. Section 4 deals
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with a general method of PLS with unknown parameters and bounded disturbances
by adaptive method. Section 5 deals with examples and their simulations. Finally,
conclusions are drawn in Sect. 6.

2 Model description

We consider a controlled non-delay complex dynamical network consisting of N lin-
early and diffusively different nodes with uncertain parameters described as follows:

ẋri (t) = gi(x
r
i (t))+Gi(x

r
i (t))θi+ c

N∑

j=1

aijΓx
r
j(t)+Δi(t)+ui(t), i = 1, 2, . . . , N (1)

where the superscripts r stand for the response networks, xri = (x
r
i1, x

r
i2, . . . , x

r
in)
T ∈

Rn denotes the state vector of the ith node, gi : R
n −→ Rn and Gi : Rn −→ Rn×mi

are the known continuous nonlinear function matrices determining the dynamic be-
havior of the node, θi is the unknown constant parameter vector, Δi contains ex-
ternal disturbance terms. ui ∈ Rn is the control input,c is the coupling strength.
Here Γ = diag(γ1, γ2, . . . , γn) is the inner coupling matrix with γi = 1 for the
ith state variable, i.e. matrix Γ determines which nodes in the system are coupled.
A = (aij ∈ RN×N ) is the coupling configuration matrix representing the topological
structure of the networks, where aij is defined as follows: if there exists a connection
between node i and j (j �= i), then aij > 0, otherwise aij = 0, and the diagonal
elements of matrix A are defined by

aii = −
N∑

j=1,j �=i
aij , i = 1, 2, . . . , N. (2)

The reference node is describe as follows:

ẋd(t) = f(xd(t)) + F (xd(t))Φ, (3)

where superscripts d stand for the drive system xd = (xd1, x
d
2, . . . , x

d
n)
T ∈ Rn denotes

the state vector of the drive system, f : Rn −→ Rn and F : Rn −→ Rn×mi are the
known continuous nonlinear function matrices determining the dynamic behavior of
the node, Φ is the unknown constant parameter vector.
The projective lag synchronization error is define as

ei(t) = x
r
i (t)− αxd(t− τ), i = 1, . . . , N (4)

where α is a nonzero scaling factor, τ > 0 is a constant representing time delay or lag.
Then the objective of this paper is to design a controller ui(t) such that the reference
nodes (1) and dynamical networks (3) are asymptotically synchronized such that

lim
t−→∞ ‖x

r
i (t)− αxd(t− τ)‖ = 0, i = 1, . . . , N (5)

which means that the network (1) is projective lag synchronized with reference
node (3).

Assumption 21. [20] For any positive constant εi the time varying disturbance Δi(t)
is bounded i.e ‖ Δi(t) ‖≤ εi.
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3 The controller design for projective lag synchronization

In this section, we designed an adaptive control method to realize projective lag syn-
chronization with non-delayed coupling in drive-response dynamical networks consist-
ing of different nodes with unknown parameters. In addition, we assume that there
are no terms of external disturbances added on the networks dynamics.
The error dynamics for projective lag synchronization are obtained as

ėi(t) = gi(x
r
i (t)) +Gi(x

r
i (t))θi + c

N∑

j=1

aijΓej(t) + ui(t)− α
(
f(xd(t− τ))

+F (xd(t− τ))Φ
)
, i = 1, . . . , N. (6)

The initial condition corresponding to the error dynamical system (6) is given as
e(κ) = ϕ(κ), κ ∈ [τ, 0], ϕ ∈ C([τ, 0],Rn) denotes the continuous vector valued func-
tions mapping the delay interval [τ, 0] into Rn.

Theorem 31. The projective lag synchronization error (6) is asymptotically stable
with a given time delay τ and scaling factor α, if the control input and adaptive laws
are chosen as

ui(t) = −qiei(t)−gi(xri (t))−Gi(xri (t))θ̂i(t)+α
(
f(xd(t−τ))+F (xd(t−τ))Φ̂(t)

)
, (7)

˙̂
θi(t) = k1G

T
i (x

r
i (t))ei(t), (8)

˙̂
Φ(t) = −k2FTi (xdi (t− τ))ei(t), (9)

q̇i(t) = k3e
T
i (t)ei(t), (10)

where k1, k2 and k3 are any positive constants and Φ̂(t) and θ̂i(t) are the estimated
parameters for the drive (3) and network dynamics (1), respectively.

Proof. Choose the following Lyapunov function candidate

V (t) =
1

2

N∑

i=1

ei(t)
T ei(t)+

1

2k1

N∑

i=1

θ̃Ti (t)θ̃i(t)+
1

2k2

N∑

i=1

Φ̃Ti (t)Φ̃i(t)+
1

2k3

N∑

i=1

q̃2i (t) (11)

where
Φ̃i(t) = Φ̂i(t)− Φ, θ̃i(t) = θ̂i(t)− θi, q̃i(t) = qi(t)− q∗i , where q∗i is positive constant.

The time derivative of V (t) along the error dynamics (6) is

V̇ =

N∑

i=1

[
eTi (t)ėi(t) +

1

k1

˙̂
θTi (t)θ̃i(t) +

1

k2

˙̂
ΦTi (t)Φ̃i(t) +

1

k3
q̇iq̃i(t)

]
· (12)

By application of the control input (7) to error dynamics ėi(t) we have

V̇ =

N∑

i=1

[
eTi (t)

(
− qiei(t)−Gi(xri (t))θ̃i(t) + αF (xd(t− τ))Φ̃(t) + c

N∑

j=1

aijΓej(t)
)]

+

N∑

i=1

[ 1
k1

˙̂
θTi (t)θ̃i(t) +

1

k2

˙̂
ΦTi (t)Φ̃i(t) +

1

k3
q̇iq̃i(t)

]
· (13)
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From the adaptation laws (8)–(10), V̇ is led as follows:

V̇ = −
N∑

i=1

q∗eTi (t)ei(t) + c
N∑

i=1

eTi (t)
N∑

j=1

aijΓej(t). (14)

Let e(t) = (eT1 (t), e
T
2 (t), . . . , e

T
N (t))

T ∈ RnN ), P = (A ⊗ Γ) where ⊗ represents the
Kronecker product. Then we have,

V̇ = ceT (t)Pe(t)− q∗e(t)T e(t)

=
1

2
ceT (t)

(
P + PT

)
e(t)− q∗e(t)T e(t)

≤
[
λmax

(
P + PT

2

)
− q∗

]
e(t)T e(t)

where λmax

(
P+PT

2

)
is the maximum eigenvalue of the matrix P+P

T

2 .

Taking the condition

q∗ = λmax
(
P + PT

2

)
+ 1. (15)

According to the Lyapunov stability theory and the sufficient condition (15), we can
obtain

V̇ ≤ −eT (t)e(t).

Thus, the error dynamics ei(t) is asymptotically stable by the control (7) and the
update laws (8)–(10). This completes the proof.

4 The controller design for projective lag synchronization
with disturbance

As it is well-known, the disturbance causes an unsteadiness phenomenon which
degrades the stability of the controlled system. Therefore projective lag synchro-
nization with non-delayed coupling in DRDNs with fully unknown parameters and
disturbances is further investigated in this section.

From (3) and (1), the error dynamics for projective lag synchronization is ob-
tained as

ėi(t) = gi(x
r
i (t)) +Gi(x

r
i (t))θi + c

N∑

j=1

aijΓej(t) + Δi(t)

+ui(t)− α
(
f(xd(t− τ)) + F (xd(t− τ))Φ

)
, i = 1, . . . , N. (16)

Theorem 41. Consider the projective lag synchronization error (16) is asymptoti-
cally stable with a given time delay τ and scaling factor α, if the control input and
adaptive laws are chosen as

ui(t) = −qiei(t)− βi(t)sgn(ei(t))− gi(xri (t))−Gi(xri (t))θ̂i(t)
+α
(
f(xd(t− τ)) + F (xd(t− τ))Φ̂(t)

)
, i = 1, . . . , N. (17)
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˙̂
θi(t) = k1G

T
i (x

r
i (t))ei(t), (18)

˙̂
Φ(t) = −k2FTi (xdi (t− τ))ei(t), (19)

q̇i(t) = k3e
T
i (t)ei(t), (20)

β̇i(t) = k4e
T
i (t)sgn(ei(t)), (21)

where k1, k2, k3 and k4 are positive constants and Φ̂(t) and θ̂i(t) are the estimated
parameters for the reference node (3) and network (1) respectively.

Proof. Choose the following Lyapunov function candidate

V (t) =
1

2

N∑

i=1

eTi (t)ei(t) +
1

2k1

N∑

i=1

θ̃Ti (t)θ̃i(t) +
1

2k2

N∑

i=1

Φ̃Ti (t)Φ̃i(t)

+
1

2k3

N∑

i=1

q̃2i (t) +
1

2k4

N∑

i=1

β̃2i (t) (22)

where
Φ̃i(t) = Φ̂i(t)−Φ, θ̃i(t) = θ̂i(t)− θi, q̃i(t) = qi(t)− q∗i , β̃i(t) = βi(t)− β∗i where q∗i and
β∗i are positive constants.
The time derivative of V (t) along the error dynamics (16) is

V̇ =
N∑

i=1

[
eTi (t)ėi(t) +

1

k1

˙̂
θTi (t)θ̃i(t) +

1

k2

˙̂
ΦTi (t)Φ̃i(t) +

1

k3
q̇iq̃i(t) +

1

k4
β̇iβ̃i(t)

]
· (23)

By application of the control input (17) to error dynamics ėi(t) we have

V̇ =
N∑

i=1

[
eTi (t)

(
− qiei(t)− βi(t)sgn(ei(t))−Gi(xri (t))θ̃i(t) + αF (xd(t− τ))Φ̃(t)

)]

+
N∑

i=1

⎡

⎣eTi (t)
(
c

N∑

j=1

aijΓej(t) + Δi(t)
)
⎤

⎦+
N∑

i=1

[
1

k1

˙̂
θTi (t)θ̃i(t) +

1

k2

˙̂
ΦTi (t)Φ̃i(t)

+
1

k3
q̇iq̃i(t) +

1

k4
β̇iβ̃i(t)

]
. (24)

From the adaptation laws (18)–(21), V̇ is led as follows:

V̇ = −
N∑

i=1

q∗eTi (t)ei(t) −
N∑

i=1

β∗eTi (t)sgn(ei(t)) +
N∑

i=1

eTi (t)Δi(t)

+ c

N∑

i=1

eTi (t)

N∑

j=1

aijΓej(t). (25)
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Let e(t) = (eT1 (t), e
T
2 (t), . . . , e

T
N (t))

T ∈ RnN ), P = (A ⊗ Γ) where ⊗ represents the
Kronecker product and from Assumption (21). Then we have,

V̇ ≤ ceT (t)Pe(t)− q∗e(t)T e(t) +
N∑

i=1

[
εi − β∗

] ‖ ei(t) ‖

≤ 1
2
ceT (t)

(
P + PT

)
e(t)− q∗e(t)T e(t) +

N∑

i=1

[
εi − β∗

] ‖ ei(t) ‖

≤ eT (t)
(
1

2
c
(
P + PT

)− q∗
)
e(t) +

N∑

i=1

[
εi − β∗

] ‖ ei(t) ‖

≤
[
λmax

(
P + PT

2

)
− q∗

]
e(t)T e(t) +

N∑

i=1

[
εi − β∗

] ‖ ei(t) ‖

≤ (λ− q∗) eT (t)e(t) +
N∑

i=1

[
εi − β∗

] ‖ ei(t) ‖

where λ = λmax
(
1
2c
(
P + PT

))
is the maximum eigenvalue of the matrix 1

2c(
P + PT

)
. Taking the conditions

λ− q∗ < 0 (26)

εi − β∗ < 0. (27)

According to the Lyapunov stability theory and the sufficient conditions (26), (27),
we can obtain

V̇ ≤ 0.
Which means the response networks (3) projective lag synchronizes the drive system
(1) asymptotically by the control (17) and the update laws (18)–(21). This completes
the proof.

Remark 42. [20] The inclusion of the sgn(ei(t)) function in (17) provides robustness
against unknown disturbances. In order to alleviate the unsteadiness, the boundary
layer approach is used by replacing the sgn(ei(t)) function with the following satura-
tion function

sat

(
ei(t)

δ

)
=

{
sgn(ei(t)), if ‖ ei(t) ‖> δ,
ei(t)
δ
, if ‖ ei(t) ‖≤ δ,

(28)

where δ is a small positive constant and the function (28) can approach the the sgn(.)
function, as enough small δ is chosen.

5 Illustrative example

In this section, a DRDN with three identical and different nodes systems is used. Each
node with and without disturbance has unknown parameters to show the effectiveness
of the proposed schemes obtained in the previous sections. We use the Lorenz system
as drive system, which is described as follows:

⎛

⎜⎜⎝

ẋd1

ẋd2

ẋd3

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0

−xd1xd3 − xd2
xd1x

d
2

⎞

⎟⎟⎠+

⎛

⎜⎜⎝

xd2 − xd1 0 0

0 xd1 0

0 0 −xd3

⎞

⎟⎟⎠

⎛

⎜⎝

Φ1

Φ2

Φ3

⎞

⎟⎠ · (29)
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Where the unknown parameter vector is Φ = [Φ1 Φ2 Φ3] = [10 28 8
3 ].

The inner coupling matrix Γ = I3×3 and the coupling configuration matrix
A = (aij) is chosen to be

A =

⎡

⎣
−2 1 1
1 −1 0
0 1 −1

⎤

⎦ ·

5.1 Synchronization with identical nodes

In this subsection, we focus on studying PLS in complex dynamical networks with
identical nodes, unknown parameters and disturbance.

5.1.1 Synchronization with unknown parameters

Taking a chaotic Chen system as the ith networks nodes with unknown parameters
to realize PLS in DRDNs and verify the effectiveness of the proposed scheme which
can be described as follows:

ẋr1(t) = g(x
r
1(t)) + c(x

r
2(t) + x

r
3(t)− 2xr1(t)) + u1(t) (30)

ẋr2(t) = g(x
r
2(t)) + c(x

r
1(t)− xr2(t)) + u2(t) (31)

ẋr3(t) = g(x
r
3(t)) + c(x

r
2(t)− xr3(t)) + u3(t). (32)

Where ui(t) for (i = 1, 2, 3) can be designed by Eq. (7) in the Theorem 41 and

g(xri (t)) =

⎛

⎝
ẋri1
ẋri2
ẋri3

⎞

⎠ =

⎛

⎝
0

−xri1xri3
xri1x

r
i2

⎞

⎠+

⎛

⎝
xri2 − xri1 0 0
−xri1 xri1 + x

r
i2 0

0 0 −xri3

⎞

⎠

⎛

⎝
θi1
θi2
θi3

⎞

⎠ · (33)

Here the unknown parameters vector is θ1 = [35 28 3]T .
In these numerical simulations, we assume that c = 0.2, α = 2 and τ = 1. The

gain of adaptive laws (8)–(10) are k1 = 5, k2 = 3, k3 = 1.4 and qi = 0. We take the
initial states as xd[−1, 0] = [3 1 − 2]T and xri (0) are chosen in [−4, 4] randomly.
The numerical results are presented in Figs. 1–2. The time evolution of the syn-

chronization errors is depicted in Fig. 1, which displays e −→ 0 with t −→ ∞.
The estimated parameters of the reference node and network nodes are depicted in
Fig. 2(a) and Fig. 2(b) which converge to their real values. It also shows the PLS
are achieved after small time interval.

5.1.2 Synchronization with unknown parameters and disturbance

The previous chaotic Chen system is chosen as three nodes of complex dynamical
networks with unknown parameters and disturbances to verify the effectiveness of
the proposed scheme which can be described as follows:

ẋr1(t) = g(x
r
1(t)) + c(x

r
2(t) + x

r
3(t)− 2xr1(t)) + Δ1(t) + u1(t) (34)

ẋr2(t) = g(x
r
2(t)) + c(x

r
1(t)− xr2(t)) + Δ2(t) + u2(t) (35)

ẋr3(t) = g(x
r
3(t)) + c(x

r
2(t)− xr3(t)) + Δ3(t) + u3(t). (36)
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Fig. 1. The synchronization error ei(t) = x
r
i (t)− αxd(t− τ).

Fig. 2. The estimated parameters (a) φ̂i and (b)θ̂i of identical nodes.

Where Δi = [0.3cos(t)sin(t) 0.1sin(t) 0.5cos(t)]. For these numerical simulations,
we assume that c = 0.2, α = 2 and τ = 1. The gain of adaptive laws (8)–(10)
are k1 = 6, k2 = 5, k3 = 2, k4 = 0.2qi = βi = 0. we take the initial states as
xd[−1, 0] = [3 3 − 2]T and xri (0) which are chosen in [−3, 3] randomly. As noticed
in remark (4), we replace the sgn(ei(t)) function in (17) with (28) with δ = 0.00002
to reduce the unsteadiness phenomenon.
The numerical results are presented in Figs. 3, 4. Figure 3 displays the time

evolution of the synchronization errors, which shows e −→ 0 with t −→ ∞. The
estimated parameters of the reference node and network nodes are depicted in
Fig. 4(a) and Fig. 4(b) respectively, which converge to their real values. These results
verify the proposed control (17) with adaptive laws (18)–(21) makes the network (1)
projective lag synchronized, even if both the reference node and the network have
unknown parameters and disturbances.
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Fig. 3. The synchronization error of identical nodes with fully unknown parameters and
disturbance.

Fig. 4. The estimated parameters (a) φ̂i and (b) θ̂i of identical nodes with disturbance.

5.2 Synchronization with different nodes

In this subsection, we focus on studying PLS in complex dynamical networks with
different nodes, unknown parameters and disturbance.

5.2.1 Synchronization with unknown parameters

Taking the response networks with three different nodes and unknown parameters
consist of the Chen system, the Lu system and the Rössler system, respectively which
are as follows:

ẋr1(t) = g1(x
r
1(t)) + c(x

r
2(t) + x

r
3(t)− 2xr1(t)) + u1(t) (37)

ẋr2(t) = g2(x
r
2(t)) + c(x

r
1(t)− xr2(t)) + u2(t) (38)

ẋr3(t) = g3(x
r
3(t)) + c(x

r
2(t)− xr3(t)) + u3(t). (39)
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Fig. 5. The synchronization error of different nodes with fully unknown parameters.

Where ui(t) for (i = 1, 2, 3) can be design by Eq. (7) in the Theorem 41 and

g1(x
r
1(t)) =

⎛

⎜⎜⎝

ẋr11

ẋr12

ẋr13

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0

−xr11xr13
xr11x

r
12

⎞

⎟⎟⎠+

⎛

⎜⎜⎝

xr12 − xr11 0 0

−xr11 xr11 + x
r
12 0

0 0 −xr13

⎞

⎟⎟⎠

⎛

⎜⎜⎝

θ11

θ12

θ13

⎞

⎟⎟⎠ (40)

g2(x
r
2(t)) =

⎛

⎜⎝

ẋr21

ẋr22

ẋr23

⎞

⎟⎠ =

⎛

⎜⎝

0

−xr21xr23
xr21x

r
22

⎞

⎟⎠+

⎛

⎜⎝

xr22 − xr21 0 0

0 xr22 0

0 0 −xr23

⎞

⎟⎠

⎛

⎜⎝

θ21

θ22

θ23

⎞

⎟⎠ (41)

g3(x
r
3(t)) =

⎛

⎜⎝

ẋr31

ẋr32

ẋr33

⎞

⎟⎠ =

⎛

⎜⎝

−xr32 − xr33
xr31

xr31x
r
33 + 0.2

⎞

⎟⎠+

⎛

⎜⎝

0 0

xr32 0

0 −xr33

⎞

⎟⎠

(
θ31

θ32

)
· (42)

The unknown parameters vectors are θ1 = [35 28 3]T , θ2 = [36 20 3]T , θ3 =
[0.2 5.7]T . In the numerical simulations, we assume that c = 0.2, α = 2, τ = 1. The
gain of adaptive laws (8)–(10) are k1 = 6, k2 = 4, k3 = 0.3. We take the initial states
as xd[−1, 0] = [3 6 − 1]T and xri (0) which are chosen in [−3, 3] randomly. The
numerical results are presented in Figs. 5, 6. The time evolution of the synchronization
errors is depicted in Fig. 5, which displays e −→ 0 with t −→ ∞. The estimated
parameters of the reference node and network nodes are depicted in Fig. 6(a) and
Fig. 6(b) respectively, which converge to their real values. These results verify the
proposed control (7) with adaptive laws (8)–(10) makes the network dynamics (1)
when Δi = 0 projective lag synchronized, even though the drive system and the
network have unknown parameters.
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Fig. 6. The estimated parameters (a) φ̂i and (b) θ̂i of different nodes.

Fig. 7. The synchronization error of different nodes with fully unknown parameters and
disturbance.

5.3 Synchronization with different nodes and disturbance

The response networks with the three previous different nodes (40–42), unknown
parameters and disturbance can be described as follows:

ẋr1(t) = g1(x
r
1(t)) + c(x

r
2(t) + x

r
3(t)− 2xr1(t)) + Δ1(t) + u1(t) (43)

ẋr2(t) = g2(x
r
2(t)) + c(x

r
1(t)− xr2(t)) + Δ2(t) + u2(t) (44)

ẋr3(t) = g3(x
r
3(t)) + c(x

r
2(t)− xr3(t)) + Δ3(t) + u3(t). (45)

We assume that Δi = [0.3cos(t)sin(t) 0.1sin(t) 0.5cos(t)], c = 0.2, α = 2, τ = 1.
The gain of adaptive laws (18)–(21) are k1 = 5, k2 = 6, k3 = 4, k4 = 0.2qi = βi = 0.
We take the initial states as xd−1, 0 = [4 4 − 1]T and xri (0) which are chosen in
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Fig. 8. The estimated parameters (a)φ̂i and (b) θ̂i of different nodes with disturbance.

[−3, 3] randomly. As noticed in remark (42), we replace the sgn(ei(t)) function in
(17)with (28) with δ = 0.00002 to reduce the unsteadiness phenomenon.
The numerical results are presented in Figs. 7, 8. Figure 7 displays the time evolu-

tion of the synchronization errors, which shows e −→ 0 with t −→∞. The estimated
parameters of the reference node and network nodes are depicted in Fig. 8(a) and
Fig. 8(b) respectively, which converge to their real values. These results verify the
proposed control (17) with adaptive laws (18)–(21) makes the network (1) projective
lag synchronized with reference node (3), even though the drive and the network
systems have unknown parameters and disturbance.

6 Conclusion

In this paper, a general projective lag synchronization (PLS) scheme was proposed
in DRDNs with identical and different nodes. Both the reference nodes and network
nodes have fully unknown parameters and disturbances. Adaptive control and update
laws were designed to achieve the PLS. The unknown parameters were estimated
using the adaptive laws obtained based on the Lyapunov stability theory. In addition,
sufficient conditions for synchronization are derived analytically using the Lyapunov
stability theory and adaptive techniques. The simulation results are presented to show
the effectiveness of this approach.

This work is financially supported by UKM Grant: DIP-2014-034 and Ministry of Education,
Malaysia Grant FRGS/1/2014/ST06 /UKM/01/1.
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