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Abstract. In this work, we proposed a novel way to estimate phase-lag
synchronization in coupled systems. This approach was applied into
two systems: a directed-coupled Rössler-Lorenz system and a network
of Izhikevich neurons. For the former case, the phase-lag synchroniza-
tion revealed an increase in complexity for the Lorenz subsystem com-
ponents, when the coupling is activated. The opposite behavior was
observed when the Izhikevich network were organized in a hierarchical
way. Our results point out to emergent synchronism related to causal
interactions in coupled complex systems.

1 Introduction

The concept of phase synchronization as proposed in 1996 by Rosenblum et al. [1,2],
has been widely used and proved experimentally when applied to time series [3–5]. For
coupled systems, phase synchronization has been extensively applied in the context
of chemical [6] and biological [7–9] systems.
In brain connectivity analysis, the phase synchronization phenomena can be con-

sidered a fundamental neural mechanism [10–13], responsible for supporting neural
communication and neural plasticity and is probably relevant to many cognitive
processes [14–19]. In networks of neurons, the phase determines the degree of excitabil-
ity of the neurons and influences the discharge times of cells [13]. Consequently, phase
relationships between brain regions affect the relative timing of action potentials in
those regions [20–22]. Moreover, studies using synchronization to analyse functional
and effective connectivity [23–25], applied to neurophysiological data such as fMRI
[26,27] and EEG [28,29] allowed a more accurate identification of specific anatomical
areas activated during cognitive tasks and other brain states.
In this work, we propose a measure of phase-lag synchronization to analyze cou-

pled systems. This measure is defined by the phase locking value (PLV) [10] between
two phase time courses (time delayed by a lag parameter). We apply this approach
to simulations of two coupled systems: the Rössler-Lorenz directed coupling and
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networks of Izhikevich neurons. Our results point out that different coupling mecha-
nisms, although with opposite complexity variation, are followed by the emergence of
a synchronized structure. Our analysis shows that increasing the coupling leads to an
increase of delayed synchronization structure of the system receiving the interaction
(response system). The particular features will be discussed in Sect. 3. This may help
to understand how causality and synchronization are related in these systems.
This paper is organized as follows: in Sect. 2 we present the method to study

lag synchronization as well as the models under study: coupled Rössler-Lorenz and
coupled Izhikevich neuron system. In Sect. 3, we discuss the results. In Sect. 4 we
conclude with a summary of the work.

2 Materials and methods

2.1 Phase-lag synchronization

The concept of phase synchronization was discussed by Rosenblum et al. [1] and
has been widely used ever since. Consider the rigorous definition in which the phase
difference holds for m = n = 1 in |Δφt| = |mφi,t − nφj,t|. In order to compute
the phase synchronization, it is necessary to know the instantaneous phase of both
signals involved. Here, we propose a mean phase weight-averaged energy over all
wavelet scales [29],

φτ =
1

Γτ

∑

�

|Wτ (�)|2φτ (�) , (1)

where φτ (�) = arctan�[Wτ (�)]/�[Wτ (�)], Γτ =
∑
� |Wτ (�)|2 and

Wτ (�) =

∫ ∞

−∞
f(t)ψ∗τ (�, t)dt , (2)

is the wavelet transform of a given function f(t) localized at τ with scale �. The kernel

function used here is defined as ψτ (�, t) = π
−1/4 exp(−6it) exp(−t22 ).

Afterwards, we can calculate the PLV, which characterizes the stability of the
phase difference between two time series [27]. The PLV measure is given by

PLVij =
1

T

∣∣∣∣∣

T∑

τ=1

exp(iΔφτ )

∣∣∣∣∣ , (3)

where T is the time series length. In perfect phase locking, the PLV equals 1, meaning
complete synchronization. In this context, a phase-lag synchronization analysis can
be performed considering a lag delay time d. Thus, we obtain

PLVij(d) =
1

T

∣∣∣∣∣

T∑

τ=1

exp(iΔφτ (d))

∣∣∣∣∣ , (4)

where Δφτ (d) = φi,τ − φj,τ−d and φj,τ−d is the phase-time series estimated from the
delayed time series. When i = j, a zero-lag phase synchronization has the highest
PLV, while a nonzero-lag phase varies from 0 to 1 according with the signal periodic
structure.
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Fig. 1. (A) State-space reconstructions of chaotic system drive Rössler and (B) for the
chaotic system response Lorenz, numerically evolved with coupling parameter β = 0.
(C) Projection on the plane (y1, ỹ1); y1(t) and ỹ1(t) are two series with different initial
conditions y1(0) �= ỹ1(0). (D) The Lorenz attractor after coupling with the drive system
Rössler and (E) the respective(y1, ỹ1)-projection. The diagonal y1(t) = ỹ1(t) indicates that
the drive-response system is functionally related.

2.2 Coupled Rössler-Lorenz system

Consider the drive-response system, as described by Le Quyen et al. [30]. The system
is defined by the directed coupling from a Rössler system

ẋ1 = −6(x2 + x3)
ẋ2 = 6(x1 + 0.2x2) , (5)

ẋ3 = 6(0.2 + x3(x1 − 5.7))
onto a Lorenz system

ẏ1 = 10(y2 − y1)
ẏ2 = 28y1 − y2 − y1y3 + βx22 , (6)

ẏ3 = y1y2 − 8/3y3
where β is the coupling parameter. The perturbation was applied only to the second
equation of the Lorenz system and it does not contain any feedback term. In Fig. 1
we show the attractor reconstruction of the Lorenz system for β = 0 (Fig. 1B) and
coupled (Fig. 1D) and the respectives projection onto the (y1, ỹ1)-plane (Figs. 1C
and E). The y1 solution has different initial conditions from those used to ỹ1 in
numerical simulation. We can observe that the driving system distorts the trajectory
of the Lorenz attractor.
To characterize the causality relation between the drive and response systems we

employed the method proposed in [30]. Considering the state-space reconstructions
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Fig. 2. Error prediction measure η as a function of β. The prediction method was performed
considering the causal dependence x→ y.

x(t) and y(t), the cross-prediction of y given x is

ŷ(t+ 1) =
1

|Uε(x(t))|#
∑

τ/x(τ)∈Uε(x(t))
y(τ + 1) , (7)

where Uε(x(t)) = {x(τ) : ‖x(t) − x(τ)‖ < ε} is the neighborhood of x(t) of radius
ε and |Uε(x(t))|# is the number of elements in that neighborhood. In this way the
cross-predictability can be defined as

η =

√∑T
t=2

(
ŷ(t)− y(t))2
T

· (8)

In Fig. 2 we show the causal dependence as a function of the coupling parameter. It
is possible to observe that for β ≥ 3 the one-directional causality relation between
the Rössler and Lorenz systems is well established.

2.3 Izhikevich neurons

In the second simulation, we created networks using Izhikevich neurons which is a
class of pulse coupled neurons, first described in [31]. Four networks were generated
with 1000 neurons each, initializing the parameters in the same way as presented
in [31] and following the proportion of 4:1 for excitatory-inhibitory neurons. The
simulations were integrated using the Euler method with a step of 0.05 ms. The
pulses of the neurons from each network were averaged, resulting in a signal similar
to a local field potential (LFP). Then, they were analysed using the lag-PLV measure
presented here.

The four networks, z1, z2, z3 and z4, were connected as follows: zi → zj for each
j > i pair, as shown in Fig. 3. For example, z1 influences all other networks but is
not caused by them.
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Fig. 3. Connectivity diagram of the Izhikevich’s neuron networks.

3 Results and discussion

Besides the PLV measure proposed here, we applied the Lempel-Ziv complexity (LZC)
[32,33] to characterize the level of complexity of the signals generated under coupling.
This measure is normalized between 0 to 1; where 0 is for periodic systems, increases
for chaotic systems and reaches 1 for random processes. For more details see Kaspar
and Schuster [34].

3.1 The coupling between the Rössler-Lorenz system leads to a phase-lag
syncronization in the Lorenz subsystem

Considering the solutions x1, x2 (from Eq. (6)), y1, y2 (from Eq. (7)), we calculated
the PLV(d) for two conditions: β = 0 (uncoupling condition) and β = 5 (coupled
case). We evaluated this analysis until the lag d = 3 and we performed a random
permutation on the reference signals (with zero lag) in order to get a significance
level, i.e., PLV values near or below this threshold are not significant.
For β = 0 we found a high baseline and periodic synchronization signature in

the Rössler system – (x1, x1), (x1, x2), (x2, x1), (x2, x2) pairs – whereas the Lorenz
components show a synchronization peak only in zero-lag, declining rapidly to non
sinificant levels – (y1, y1), (y1, y2), (y2, y1), (y2, y2) pairs. This can be seen in Fig. 4.
Moreover, a phase synchronization relation between the Rössler and Lorenz compo-
nents were not observed – the (x, y)-pairs.
For the coupled condition (β = 5), we observed in Fig. 5 the same synchronization

patterns, except for (y1, y1), (y1, y2), (y2, y1), (y2, y2) pairs where the emergence of
synchronization occurs, highlighting an increase of complexity in the Lorenz system
components. The LZC increases from 0.042 → 0.118 for x1 component and 0.063 →
0.122 for x2 component. Also, a periodic synchronization behavior is evident inside a
concave-like curve, indicating another periodic mode.

3.2 Coupled Izhikevich neurons in a hierarchical way show different
synchronization structures for each subnetwork

Using the LFP from the Izhikevich system described in Sect. 2.3, we analyzed the
phase-lag synchronization signature for each subnetwork (z1, z2, z3, z4) when these
networks were under the effect of causal inter-relations. In order to perform this
comparison, we simulated the same networks but without interconnections, i.e. they
are independent.
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Fig. 6. (A) PLV(d) for the pairwise (z1, z1), (B) for z2, (C) for z3, and (D) for z4. The blue
line is the PLV(d) considering the ocurrence of coupling among subnetworks and the black
line is when the subnetwork are disconnected.

Figure 6 shows the diagonal elements of the PLVij(d) diagram. The blue lines are
the PLVii(d) for each LFP when the subnetworks were connected, while the black line
is the PLVii(d) when the subnetworks were independent. We can observe an increase
in the divergence between these significant curves as the number of interconnections
received also increase. For example, in Fig. 6A, it corresponds to PLV11(d), a sub-
network which does not receive connections, resulting in a small distance between
the two significant curves. In Fig. 6D, that corresponds to the PLV44(d) – with z4
receiving causal connections from z1, z2 and z3 –, it exhibits a wider area.
For this case of coupled Izhikevich neurons, the LZC decreases as a function of

the directed coupling. The LZC values for each subnetwork are LZC(z1) = 0.609,
LZC(z2) = 0.597, LZC(z3) = 0.523 and LZC(z4) = 0.398. These results, in contrast
to results found for the Rössler-Lorenz system, show a decrease of complexity related
with a higher level of synchronization.

4 Conclusions

In this paper we analyzed two complex systems that exhibit a similar behavior when
coupled: they increase the synchronization structure at the cost of changing its com-
plexity. While in the Rössler-Lorenz system the lag synchronization increases when
complexity increases, in the Izhikevich networks the complexity drops. It is important
to notice that the emergence of synchronization depends on the level of complexity.
The difference between the two systems was the way in which the coupling was imple-
mented, which in turn can enlighten the notion of causality interactions and synchro-
nism. It is also important to note that, in both cases, an emergence of synchronization
was observed, even if the subsystems were not synchronized with each other.
These results may bring light to understand some biological phenomena related

with synchronization as for example, the epilepsy. It is known that during an epilep-
tic seizure, the focus of the crisis recruit other regions, but little is known about this
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propagation mechanism and its origins. Does hyper synchronization happens due to
increased internal synchronization in these regions when coupled to the focus of the
illness? In the second example of this paper, the neurons of a subnetwork are more
synchronized to each other, even without synchronization between the neurons in the
subnetwork that drive the causal relation. Moreover, these results could be useful to
study synchronization in complex networks where the nodes, rather than being just
a simple oscillator, are composed by another complex system.
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