
Eur. Phys. J. Special Topics 225, 159–170 (2016)
© EDP Sciences, Springer-Verlag 2016
DOI: 10.1140/epjst/e2016-02616-9

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Complexity and synchronization in stochastic
chaotic systems

Thai Son Dang1, Sanjay Kumar Palit2, Sayan Mukherjee3, Thang Manh Hoang1,
and Santo Banerjee4,a

1 School of Electronics and Telecommunications, Hanoi University of Science and
Technology, 01 Dai Co Viet, Hanoi, Vietnam

2 Basic Sciences and Humanities Department, Calcutta Institute of Engineering and
Management, Kolkata, India

3 Department of Mathematics, Sivanath Sastri College, Kolkata, India
4 Institute for Mathematical Research, Universiti Putra Malaysia, Selangor, Malaysia

Received 25 September 2015 / Received in final form 11 January 2016
Published online 29 February 2016

Abstract. We investigate the complexity of a hyperchaotic dynamical
system perturbed by noise and various nonlinear speech and music sig-
nals. The complexity is measured by the weighted recurrence entropy
of the hyperchaotic and stochastic systems. The synchronization phe-
nomenon between two stochastic systems with complex coupling is also
investigated. These criteria are tested on chaotic and perturbed systems
by mean conditional recurrence and normalized synchronization error.
Numerical results including surface plots, normalized synchronization
errors, complexity variations etc show the effectiveness of the proposed
analysis.

1 Introduction

The complex real world phenomena can be classified into two categories − deter-
ministic and stochastic. The deterministic phenomena often evolve in such a manner
that in long term they becomes almost unpredictable. This type of behavior generally
leads to chaos or hyperchaos. In fact, hyperchaos is more disordered than chaos. On
the other hand, stochastic phenomena are non-deterministic due to the presence of
randomness. Thus for all kinds of real world phenomena, some sort of uncertainty is
always being there. Obviously, for a stochastic phenomenon it is more than a deter-
ministic phenomenon. This actually means that as the system becomes more and more
random, the amount of uncertainty gradually increases. This is measured by entropy,
first introduced by C.E. Shannon [1]. More is the entropy value, more uncertainty is
there in the corresponding phenomenon. The term complexity is used in this context.
In general complexity is positively correlated with entropy. Since the inception of
Shannon entropy, several entropy measures have been developed. Among those mea-
sures, Rennie’s entropy [2] − a generalization of Shannon entropy, Kolmogorov-Sinai
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entropy [3,4], approximate entropy (ApEn)[5], Sample entropy (SampEn)[6] have
been used widely in diverse domains of research. After the introduction of the re-
currence plots (RP) [12–15], few other measures of complexity [16] have been intro-
duced. All of these measures were found to be more effective even than the Lyapunov
exponent for the determination of the divergence behavior of dynamical systems [16–
18]. Such entropy based quantifiers of RP′s include normalized entropy of recurrence
times [16] or the Shannon entropy of the distribution of length of diagonal line seg-
ments [16,17,19]. However, the major limitation of these RP based measures is that
they all depend on the choice of the distance threshold for the construction of RP. This
limitation is overcome in a recently introduced entropy measure based on weighted
recurrence plot (WRP)[20]. In WRP, the choice of proper threshold is not required
at all. So the entropy based on this WRP (WRPE) is expected to be more robust.
The calculation of all of the aforesaid entropy measures is generally done either

from the phase space or from the reconstructed phase space [6] of the respective phe-
nomenon. If the dynamical model exist then the entropy is computed directly from
its phase space. However, as for most of the real world phenomena, proper dynam-
ical model is not available, the entropy is calculated from its reconstructed phase
space. Takens [7] proved that such reconstruction, if done with proper time-delay and
suitable embedding dimension is equivalent to the original phase space. The embed-
ding dimension is generally calculated by false nearest neighbor method. For deter-
mining the proper time-delay, various measures have been developed that includes
auto-correlation, cross auto-correlation [8], new types of nonlinear auto-correlation of
bivariate data [9], average mutual information (AMI) [10] and such others.
Synchronization on the other hand, is defined as a general process wherein two

(or many) dynamical systems are coupled or forced (periodically or noisy), in order
to realize a collective or synchronous behavior. Recently, investigation of synchronous
phenomenon in coupled chaotic systems for the purposes of security is of interest of
many researchers [22]. Among different kinds of synchronization in coupled complex
systems, the mostly used types are Complete Synchronization (CS) [23–25], Gener-
alized Synchronization (GS) [26,27] and Phase Synchronization (PS) [28,29]. CS is
mainly studied only for the coupled identical systems, while for two non-identical
systems, PS and GS are considered. Both of PS and GS can be described by the
recurrences and joint recurrences between the trajectories of different systems. This
is because if two systems are synchronized then obviously their recurrences are de-
pendent to each other. The existence of the unidirectional coupling is measured by
mean conditional recurrence (MCR) [30], which can also detect the driver and re-
sponse systems in such coupling. MCR is basically the mean conditional probabilities
of recurrence between the systems X and Y . It is computed from the recurrence plot
(RP) and joint recurrence plot (JRP) [31].
In this article, our primary objective is to observe the behavior of a hyperchaotic

system, when perturbed by some external sources like random noise, nonlinear and
non-stationary music signals, speech signals or combination of both. In a more detail,
we want to check whether or not the system shows a tendency for being stochastic
with the increase of at least one of the system parameter responsible for the hyper-
chaos. The secondary objective is to check the synchronous behavior, if any, of the
same hyperchaotic system when influenced by the aforesaid external sources and also
to determine the nature of coupling.

2 Measure of complexity

Complexity is a term associated with a complex or complex adaptive system, which
measures the amount of information related to the dynamics. Complex system is one,
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which has many interacting components that make the whole unit highly nonlinear.
It evolves over time with various interacting parameters; small changes in the para-
meters can make the system chaotic. For example, the dynamics of an organization
is in general complex (not necessarily chaotic). The healthy human heart is complex,
since it has many interacting subunits to keep the whole system (heart) active. A
cardiac heart is less complex, since it fails to working properly with each interacting
subunits [21].
Complexity of a system is generally understood by computing entropy of that sys-

tem. Entropy actually measures the amount of uncertainty in a system. It increases
when the system is more likely random and decreases, when it is less random. Thus,
if the entropy is high for some system, the system is considered more complex, while
for low entropy value, the system is less complex. Among different entropy measures,
Shannon entropy, Kolmogorov-Sinai entropy have got tremendous response in the
research communities. Since the inception of the recurrence plots (RP), few other
measures of complexity have been introduced, which stand as more effective than the
Lyapunov exponent in determining the divergence behavior of dynamical systems.
Such entropy based quantifiers of RP′s includes normalized entropy of recurrence
times or the Shannon entropy of the distribution of length of diagonal line segments,
which can detect points of bifurcation. However, these RP based entropy, sometimes
fail to capture the complexity of the system properly because of the choice of im-
proper distance threshold to obtain the binary recurrent matrix. Thus, an alternative
notion of Weighted RP (WRP) was introduced. The Shannon entropy based on WRP
is known as Entropy of the WRP (WRPE).

2.1 Entropy of the weighted recurrence plot

WRP, introduced by Deniz Eroglu et al. [20] is constructed just by considering the
distances between the points in the phase space. The distance matrix Wij is defined
as Wij = ‖xi − xj‖, i, j = 1, 2, 3, ..., N , where ‖.‖ is the Euclidean norm of the recon-
structed phase space. Unlike binary recurrent matrix R, which provides information
on whether or not two points xi and xj are close in a n−dimensional phase space
(say), W only represents the distances between every pair of points of the time se-
ries. Thus in order to consider the proximity between points of the time series, the
weighted matrix W̃ is defined as

W̃ij = e
−‖xi−xj‖. (1)

In (1), the inverse of the exponential function has been considered because it scales
the distances to the interval [0, 1], where 0 and 1 respectively indicate the distant
and close states. The advantage of this concept lies in the fact that without choosing
a threshold the proximity of the phase space trajectory points can be described. To
define the Shannon entropy based on this WRP, first the strength si of a point xi in
the phase space is calculated as

si =

N∑

j=1

W̃ij . (2)

si basically quantifies the heterogeneity of the density of a given point in the phase
space, which characterizes the amount of statistical disorder in the system through its
distribution P (s). This heterogeneity is calculated by the associated Shannon entropy

of weighted matrix W̃ given by

H = −
∑

{s}
p(s)ln(p(s)), (3)
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Fig. 1. The Power spectrum of the induced (a) power noise 1

fβ1
, β1 = 0.5, (b) power noise

1

fβ2
, β2 = 1, (c) music signal of traditional Vietnamese instrumental (m1), (d) music signal

of raga Dagar (m2), and (e) speech signal (s1).

where p(s) = P (s)/S is the relative frequency distribution of the distance matrix

strength and S =
∑N
i si is the total number of strengths. This WRP based entropy

(H) has certain advantages over the entropy measures based on RP. First of all, H
measures the complexity of scalar distributions (the strength si) for each time point
instead of measuring the complexity of distributions of the diagonals, which produces
the border effect, results in deceptive entropy values. Secondly, as H considers all time
points, the results are not biased by the number of diagonals and hence the time series
length and the recurrence threshold are not crucial as in the case of entropy based
on RP. H only depends on the estimation of p(s), i.e., the chosen binning. Moreover,
H is more correlated with the Lyapunov exponent than the RP based entropy. This
is because, for periodic or stochastic dynamics, the strength si is found to be very
similar for all time points, resulting in a confined distribution of p(s) and hence a
very low entropy value, while for chaotic dynamics, the strength si varies strongly
for different time points produces broad distribution of p(s) and a very high entropy
value. In fact, these features are all successfully verified in [20] for the discrete logistic
map, the continuous Rössler oscillator, and on experimental electrochemical data.

2.2 Computation of WRP entropy for the Lorenz-Stenflo and perturbed
Lorenz-Stenflo systems

We now compute the WRP based entropy, H described above to find the changes
in complexity of the four dimensional Lorenz-Stenflo (LS) system with respect to
the system parameter r, when perturbed with two different noises or two different
music signals or even with a combination of music and speech signals. The noises
are basically power noise ni =

1
fβi
, i = 1, 2; with β1 = 0.5, β2 = 1. The music signal

m1 is the recorded traditional Vietnamese instrumental, while the other music signal
m2 is the recorded Indian classical music of raga Dagar. The speech signal, s1 is
the recorded famous speech of Swami Vivekananda at the parliament of the World’s
Religions in Chicago in 1893. The power spectrum of these nonlinear signals are given
by Figs. 1a, 1b, 1c, and 1d respectively. Power spectrum is calculated by FFT method
with sampling frequency as 0.50. All of these external signals are nonlinear and non-
stationary, established by Surrogate data test [34] and quantile− quantile plot [35]
respectively.
Consider the 4D LS system [11] that is used to study the nonlinear basic equations

of acoustic gravity waves. This is given by Eq. (4).

(
dx1

dt
,
dx2

dt
,
dx3

dt
,
dx4

dt

)
= (a(x2−x1)+ cx4, x1(r−x3)−x2, x1x2− bx3,−x1−ax4);

(4)
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Fig. 2. 2D projection of the phase spaces comprising of the solution components x1, x4
of (a) 4D LS system, (b) 4D LS system perturbed with two different non-Gaussian noises
n1, n2, (c) 4D LS system perturbed with two different music signals m1,m2, (d) music (m1)
and speech (s1) signals induced 4D LS system.

.

a = 1.0, b = 0.7, c = 1.5, r ∈ [5, 26] and x1(0) = 0.001, x2(0) = 0.002, x3(0) = 0.003,
x4(0) = 0.004.

Also consider the LS system perturbed with two varieties of power noises ni =
1
fβi
, i =

1, 2;β1 = 0.5, β2 = 1, with two music signals (m1 and m2) and with one music
signal(m1) and another speech signal (s1) with different strengths α1, α2 respectively.
The general form of the perturbed LS system is given by Eq. (5).

(
dx1

dt
,
dx2

dt
,
dx3

dt
,
dx4

dt

)
= (a(x2 − x1) + cx4 + α1V1, x1(r − x3)− x2,

x1x2 − bx3 + α2V2,−x1 − ax4). (5)

For noise induced LS system, V1 = n1, V2 = n2, α1 = 5.5, α2 = 5.2; for the LS system
perturbed with two different music signals, V1 = m1, V2 = m2, α1 = 0.001, α2 =
0.002; for the LS system perturbed with a combination of music and speech signals,
V1 = m1, V2 = s1, α1 = 0.001, α2 = 0.002.
The parameter values a, b, c, r and the initial conditions remain same as the 4D

LS system given by Eq. (4).
The 2D projection of the 4D LS system and all of the perturbed systems show a

chaotic regime. However, the nature of the 2D projection of the phase spaces are not
exactly similar for all values of r lying in the range [5,27]. In other words, the system
changes its complex behavior with its parameter r, which is not possible to identify
from the projection of their phase spaces and even from their WRP ′s. As sample
illustration, the 2D projection of the 4D phase space of the LS system, noise induced
LS system, music signals induced LS system and music-speech induced LS system
comprising of the solution components x1 and x4 for the parameter value r = 26 are
given by Figs. 2a, 2b, 2c and 2d respectively. The corresponding WRP are shown by
Figs. 3a, 3b, 3c and 3d respectively.
In order to find the changes in complexity, the WRPE H(r) is computed for each

r in all of the above cases. These are given by Figs. 4a, 4b, 4c and 4d respectively.
It is evident from Fig. 4a that initially for r = 5, the complexity of the LS system

is low (close to 3.4) and then it gradually increases and settle down to the range
[3.7, 3.9] with few fluctuations for the higher values of r. This indicates that the LS
system was less complex initially for r = 5. However, it becomes more complex with
the increase in the value of the system parameter r with few exceptions. Figure 4b
indicates that the complex behavior of noise perturbed LS system remains almost
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Fig. 3. WRP for (a) 4D LS system, (b) 4D LS system perturbed with two different non-
Gaussian noises n1, n2, (c) 4D LS system perturbed with two different music signals m1,m2,
(d) music (m1) and speech (s1) signals induced 4D LS system.

similar to that of the LS system. For LS system perturbed by two different music
signals the complexity is sufficiently high from the initial stage i.e., for r = 5. With
the increase in the value of the system parameter r, the complexity decreases and
again increases frequently. As a whole, the system behaves less complex especially
for the higher values of r (Fig. 4c). In case of music-speech induced LS system, the
complexity graph is quite similar to that of the same for two different music signals
induced LS system with the exception that in this case the fluctuation of complexity
is less frequent (Fig. 4d).
For a better visualization of the changes of complexity in the aforesaid four cases

of LS system with respect to the parameter r ∈ [5, 26], we combined the complexities
obtained in each cases to form a contour plot. This is given by Fig. 4e.
Furthermore, we have observed the changes in complexity in the aforesaid three

perturbed systems for a fixed value of the system parameter r with respect to the two
different strengths α1, α2 of the external signals (noise, music and speech signals).
This is given by Fig. 5. It is evident from Fig. 5 that the strength parameter α2
influences the complexity of the perturbed LS system more than α1. For the noise
perturbed LS system, the complexity is comparatively less for lower values of α2 (α2 ∈
(0.001, 0.005)), for music signals perturbed LS system the complexity is comparatively
less again for lower values of α2 (α2 ∈ (0.001, 0.003)), while it is comparatively less for
higher values of α2 (α2 ∈ (0.008, 0.01)) in case of music-speech perturbed LS systems.

3 Measure of synchronization

Synchronization is basically an adjustment of rhythms of oscillating objects due to
their weak interactions. The specific synchronized motion that emerges for identical
systems is complete synchronization (CS). This is considered as the most natural
synchronization state corresponding to the equality of the state variables of the two
systems while they evolve in time. In this article since we have considered only the
4D LS system and perturbed the system in different ways by noise, music and speech
signals, it is, therefore, more convenient to study complete synchronization (CS).
Geometrically, CS corresponds to the collapse of the complete systems trajectory in
the phase space onto an identity hyperplane (known as synchronization manifold).

3.1 Synchronization error analysis

In Pecora and Carroll [32,33] coupling scheme known as PC configuration, com-
plete synchronization between a response system and its replica was investigated by
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Fig. 4. Graph of WRPE H(r) for r = 26 with respect to the parameter r for (a) 4D LS
system, (b) 4D LS system perturbed with two different non-Gaussian noises n1, n2, (c) 4D
LS system perturbed with two different music signals m1,m2, (d) music (m1) and speech
(s1) signals induced 4D LS system, and (e) Contour plot of WRPE, H(r) of 4D LS system
(S1) and perturbed LS system with two different non-Gaussian noises (S2), perturbed LS
with two different music signalsm1,m2(S3), perturbed LS with a combination of music (m1)
and speech (s1) signals (S4).
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Fig. 5. Graph of WRPE H(α1, α2) for r = 26 with respect to the parameter α1, α2 for (a)
4D LS system perturbed with two different non-Gaussian noises n1, n2, (b) 4D LS system
perturbed with two different music signals m1,m2, (c) music (m1) and speech (s1) signals
induced 4D LS system, Both of α1, α2 are taken in the range of [0.001, 0.01] with a step
length of 0.0001.

measuring the synchronization error between them. In fact, this is an alternative way
to check complete synchronization. In PC configuration, synchronization error (SE)
is defined as the norm of the difference between the system and its replica. For com-
plete synchronization (CS), SE → 0 as t → ∞. Thus, in order to test the existence
of CS between two identical coupled systems, we compute synchronization error with
respect to the coupling strength. For this purpose, we consider the perturbed LS
system given by (5) as driver and its replica (Eq. (6)) as response system.

(
dy1

dt
,
dy2

dt
,
dy3

dt
,
dy4

dt

)
= (a(y2 − y1) + cy4 + α1V1 + C(x1 − y1), y1(r − y3)− y2,

y1y2 − by3 + α2V2,−y1 − ay4); (6)

a = 1.0, b = 0.7, c = 1.5, r ∈ [5, 26] and y1(0) = 0.0015, y2(0) = 0.0025, y3(0) =
0.0035, y4(0) = 0.0045. In Eq. (6), C denotes the coupling strength.

For noise induced LS system, V1 = n1, V2 = n2, α1 = 5.5, α2 = 5.2; for the LS system
perturbed with two different music signals, V1 = m1, V2 = m2, α1 = 0.001, α2 =
0.002; for the LS system perturbed with a combination of music and speech signals,
V1 = m1, V2 = s1, α1 = 0.001, α2 = 0.002.
The change in SE with the increase of coupling strength and time in the aforesaid

three types of perturbed LS system is shown by Figs. 6a, 6b and 6c respectively. The
corresponding normalized synchronization error (NSE) is shown by Fig. 6d.
It clearly follows from Figs. 6a, 6b, 6c that synchronization error (SE) is more

in case of noise induced LS system than music signals induced and speech music
induced LS systems. However in each case, this error gradually decreases with the
increase in the coupling strength (C). This is confirmed in Fig. 6d, which shows that
as the coupling strength increases the normalized synchronization error (NSE) tends
to zero in all the three cases. Thus the system and its replica tend to a completely
synchronous state for higher coupling strength in each of the above three cases.

3.2 Mean Conditional Recurrence (MCR)

Whenever there is synchronization between two systems, one of the interesting phe-
nomena is to observe the complex coupling between them. Sometimes this coupling



Synchronization and Control: Networks and Chaotic Systems 167

0

2.2

c

3.8

50

2000

Time

4000

6000

0.5

1

1.5

2

2.5

3

0

S
E

0.5

1

1.5

2

2.5

(a)

0

2.2

c
3.8

50100020003000

Time

400050006000

1

1.5

2

2.5

3

0.5

0

S
E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

0

2.2

c

3.8

50

2000

Time

4000

20

15

10

5

0
6000

S
E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

Coupling strength (C)
1.5 2 2.5 3 3.5 4

NS
E(

C)

0

0.02

0.04

0.06

0.08

0.1
Noise induced LS system
Music signals induced LS system
Music & Speech signals induced LS system

(d)

Fig. 6. Surface plots describing the changes in Synchronization error (SE) with respect to
the coupling strength C and time for (a) noise perturbed 4D LS system, (b) music signals
induced 4D LS system, (c) music and speech signals induced 4D LS system, (d) Plot of NSE
against the coupling strength C for (a), (b), and (c).

is found to be symmetric and in most of the cases it is asymmetric in nature. In the
later case, it is, therefore, important to find the driver and response system. Mean
Conditional Recurrence (MCR) introduced by Romano et al. is the most promising
tool in this context. MCR is basically the mean conditional probabilities of recurrence
between the systems X and Y (say). MCR involves the concept of Recurrence Plot
(RP) and Joint Recurrence Plot (JRP).
The recurrence between any two points x1, xj ∈ Rn means how much they are

closed to each other in that phase space. Mathematically, x1, xj ∈ Rn are recurrent
if xj ∈ Nε(xi), where ε is a proper threshold. RP is diagrammatic representation of
the matrix Ri,j = Θ(ε − ‖xi − xj‖), i = 1, 2, ..., N , where ‖.‖, is the Euclidean norm
in �n and Θ is the Heaviside function. Thus, Rij = 1, if xj ∈ Nε(xi) and 0, other-
wise. In RP, 1 and 0 are represented by black and white dots respectively. Therefore,
recurrence of any two points in n−dimensional phase space is visualized as a black
spot in 2D RP.
On the other hand, Joint Recurrence Plot (JRP) is the pictorial representation

of the Joint recurrence matrix JRXYij = Θ(εX − ‖xi − xj‖)Θ(εY − ‖yi − yj‖), i =
1, 2, ..., N,, where εX , εY be the thresholds for the systems X,Y respectively. Unlike
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Fig. 7. Plot of Δ(MCR) with respect to the coupling strength C in noise perturbed, music
signals induced and music, speech signals induced LS system synchronization.

RP, JRP considers the recurrence of two systems X,Y simultaneously. JRP can be
used in measuring different kind of complex coupling. In fact, JRP can also be used to
detect generalized synchronization (GS), a stronger type of synchronization. However,
as far as direction of coupling is concerned, JRP alone cannot recognize the driver
and response system. Thus it is used jointly with RP to find the driver and response
systems in an asymmetric coupling scheme.

3.3 Detection of driver-response systems by Mean conditional recurrence

Mathematically, Mean conditional recurrence (MCR) of the system X with respect
to Y and that of the system Y with respect to X are respectively defined as

MCR(X|Y ) = 1
N

N∑

i=1

∑N
j=1 JR

XY
ij∑N

j=1R
Y
ij

,MCR(Y |X) = 1
N

N∑

i=1

∑N
j=1 JR

XY
ij∑N

j=1R
X
ij

, (7)

where RXi,j = Θ(εX − ‖xi − xj‖), RYi,j = Θ(εY − ‖yi − yj‖)i = 1, 2, ..., N .
To detect the asymmetry of the coupling, the following criteria is being used:

Δ(MCR) =MCR(X|Y )−MCR(Y |X),
Δ(MCR) > 0⇒ X drives Y,

Δ(MCR) < 0⇒ Y drives X. (8)

However if Δ(MCR) = 0, the coupling is symmetric.
For the noise induced LS system, we have considered X as the noise induced LS

system and Y as its replica. In case of music signals perturbed LS system, X is taken
as the music signals perturbed LS system, while Y represents its replica. On the other
hand, X is considered as music and speech signals induced LS system and Y as its
replica for the music and speech signals induced LS system. Figure 7 shows the change
of Δ(MCR) with the coupling strength c for each of the three perturbed systems.
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It is observed from Fig. 7 that, an asymmetric coupling exist initially in all of the
three cases. However, as coupling strength increases the asymmetric nature of the
coupling rapidly decreases and getting symmetric. This tendency is comparatively
high for the music signals perturbed LS system and music and speech signals induced
LS system. In a more details, for the music signals perturbed LS system and music
and speech signals induced LS system, the coupling becomes symmetric after c = 1.9,
while for noise induced LS system symmetric coupling is detected after c = 3.3. It
is also verified from Fig. 6 that in all of the three cases, the replica systems act as
response system.

4 Conclusions

In this article, we have first investigated the change in complexity of a stochastic
dynamical system induced by noise and various nonlinear signals by the entropy of the
weighted recurrence plot. In the next part of the analysis, the complete synchroniza-
tion (CS) between two systems induced by noise/signals are investigated with proper
coupling. The nature of the coupling has also been detected by mean conditional re-
currence(MCR). Numerical results show the variation of normalized synchronization
errors and MCR with the different choice of speech and music signals as well as vari-
ous noises. Future scopes include but not limited to its practical implementation for
the purpose of system identification.

This research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED)under grant number 102.02-2012.27.
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