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Abstract. The collective dynamics of Kuramoto oscillators with a pos-
itive correlation between the incoherent and fully coherent domains in
clustered scale-free networks is studied. Emergence of chimera states
for the onsets of explosive synchronization transition is observed dur-
ing an intermediate coupling regime when degree-frequency correlation
is established for the hubs with the highest degrees. Diagnostic of the
abrupt synchronization is revealed by the intrinsic spectral properties
of the network graph Laplacian encoded in the heterogeneous phase
space manifold, through extensive analytical investigation, presenting
realistic MC simulations of nonlocal interactions in discrete time
dynamics evolving on the network.

1 Introduction

A fundamental problem in dynamics of complex systems exhibiting nonlocal coupling
is the integration of information processed in different spatiotemporal regimes. Apart
from the effect of noise-induced phase synchronization [1] on maintaining the stable
linear coherent state, it is shown that spatially modulated delayed feedback [2] applied
to a system of globally coupled oscillators, induces coexistence of generic composi-
tions of coherent and incoherent fluctuations of the phase difference among specific
domains of coupled oscillators.
The particular inherent mode, exhibited by the system of nonlocaly coupled os-

cillators integrated in the complex Ginzburg-Landau equation, was recently revealed
by Kuramoto and colleagues [3] as a remarkable phenomenon of simultaneous coex-
istence of coherence and incoherence signatures, which is called a chimera state [4].
Under such cases, it was shown that chimera states can be induced both by the exter-
nal source and by avalanches of internal exponentially or linearly driven perturbation
in form of time delayed feedback stimulation when the group and phase delay and
oscillator coupling strength are monitored [5–7].
Recent results have putted in forefront the particular effects which impose the

geometrical structure and topological characteristics [8] of the system over the value
of the critical coupling, manifesting the explosive synchronization [9].
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Here we study a scale free (SF) network of coupled Kuramoto like oscillators where
the global system is influenced by a stochastic switching perturbation which induces
noise independently on the internal Markovian dynamics of the system. Such char-
acteristic nonlinear response can be represented via Laplacian coupling schemes [10]
which are induced on one dimensional simplicial complex as a dichotomic Markovian
dynamics of adjacently coupled oscillators in the vicinity of a continuous homoge-
neous oscillatory instability [11]. In particular, we have analyzed the effect of coupling
strengths of phase oscillators, associated with different edge weights, on emergence
of chimera states during the explosive synchronization. It is shown that the synchro-
nization of clusters of nodes exhibits essential correlation with the specific dynamics
of the network encoded in topological structure.
Assuming the globally coupled network of oscillators mapped to a simplicial com-

plex, coupled dynamical ODE-s are numerically integrated by applying the fourth-
order Runge-Kutta scheme with time-step dt ≤ 0.01, where the spatial coupling of the
1-dimensional simplicial complexes is obtained using a 5-point stencil method in a 2-D
grid [12]. During the simulation, the total number of oscillators was set to N = 1000.
Characteristic frequencies of individual topological clusters are estimated using FFT
of time-series for a continuance 105 time intervals. The evolution of the model for
a specific set of variables of local order parameter r and corresponding eigenvalues
λi, is analyzed over 2000 MC realizations of the uniform intrinsic frequency distrib-
ution −1 ≤ ωi ≤ 1 with random initial conditions. Estimation of order parameters
is performed in forward and backward transitions [13] for associated λ, in adiabatic
approximation, where increasing of each successive Δλ is done with step of 0.01.

2 Results and discussion

We consider the coupled oscillator model [14] as a connected digraph G(V,E) defined
on a vertex set V := {1, . . . , n} and edge set E ⊂ V ×V , where the nodes are spatially
localized into n clusters of a SF network with specific geometry and different topolog-
ical and frequency configurations, and subjected to Laplacian coupling schemes [10].
In particular, accounting that clusters of the nodes match the subcomplexes which are
coupled by exact adjacency relations, we construct a weighted and directed network
of N coupled phase oscillators [15]. The phase of each oscillator is given by ϑi(t),
where i = 1, . . . , N evolves in time following the Kuramoto regime [3]:

ϑ̇i,1(t) =

⎛
⎜⎝
f (x1,1, t)
...
f (xn,1, t)

⎞
⎟⎠+ αi,1

di,1∑
j=1

Aij sin (ϑj,1 − ϑi,1) ,

ϑ̇i,2(t) =

⎛
⎜⎝
f (x1,2, t)
...
f (xn,2, t)

⎞
⎟⎠+ αi,2

di,2∑
j=1

Aij sin (ϑj,2 − ϑi,2) ,

...

ϑ̇i,n(t) =

⎛
⎜⎜⎝

f (x1,n, t)

...

f (xn,n, t)

⎞
⎟⎟⎠+ αi,n

di,n∑
j=1

Aij sin (ϑj,n − ϑi,n),

(1)
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Fig. 1. Amplitude-frequency characteristic obtained by applying oscillations of nearly con-
stant amplitude and variable frequency along weighted edges of a SF network (represent-
ing 1000 Kuramoto oscillators) in the linear mode with increasing non normalized cou-
pling strength αi,n. Input and output amplitudes of the respective associated frequencies
ωi,n = f(xi,n, t) are set into the relationship with the corresponding eigenvalues in the
Laplacian spectrum, showing the coexistence of non-locally coupled coherent and incoherent
phase domains.

where ωi,n = f (xi,n, t) term represents the intrinsic frequency of the i-th oscillator
(see Fig. 1) belonging to n-th subcomplex, αi,n is the coupling strength between i-th

and n-th collection of nodes, ki =
N∑
j=1

Aij is the degree of i-th node, where Aij are

the elements of adjacency matrix: Aij =

{
1 if i, j ∈ E,
0 if i, j /∈ E.

The equations of motion in (1) are essentially unaffected by the permutations
of the subscripts i, n in each cluster. Thus, from the fact that all nodes represent
elements of a simplicial complex K (encoded in the Laplacian matrix, Fig. 2), the
nodes associated with different subcomplexes all receive the same total stimulus from
the nodes belonging to neighboring subcomplexes. Under given circumstances, if a
different weighs are introduced over a network structure, such connection between
the local topology and the coupling strength leads to a phenomenon of explosive syn-
chronization [9] between associated subcomplexes. To every edge it is associated the
local order parameter, characterizing the i, n-th oscillator dynamics of the network,

ri(t)e
iϕ(t) = 1

N

N∑
j=1

eiϑj(t), 0 � ri � 1, and representing the key factor in modeling

the evolution of each oscillator instantaneous phase with time (see Fig. 3).
In particular case, the time domain is introduced considering that f(x, t) from

Eq. (1) defines the dynamics of a discrete Witten-Morse function [16]. Note that in
general case when the time dependency does not figure, for each N we can consider
the Laplacian [17] (where ∂∗ is the adjoint of boundary operator ∂ with respect to
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Fig. 2. Top: phase space representation of the Laplacian matrix encoded in heterogeneous
SF network of 1000 nodes, exhibiting nonsymmetric coupling between the hubs and periph-
eral nodes. Two pairs of essentially different (inhomogeneous) non-locally coupled structures
are created in the phase panel of SF network: two coherent and two incoherent parameter
domains under intermediate coupling regime αi,n = 0.1 − 0.5 as a function of average de-
gree 〈k〉. Bottom: normalized Laplacian matrix encoded in SF network of 1000 nodes, where
input coupling strengths of each distinct node are summed to unity. Increasing of the cou-
pling strength to αi,n = 0.7 − 1.0 (strong coupling regime) increases the synchronization
and strongly confines the coupled structures preventing at the same time the simultaneous
existence of coherent and incoherent phase domains.
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Fig. 3. Right: snapshot of the local order parameter r(t) dependency on coupling induced
oscillator frequencies ωα, for the 1000 nodes distribution function ρ(k;ϑ, t), with parameters:
t = 800MC steps, k = 7, referring to coexistences of synchronous and asynchronous phase
domains, obtained as a solution of discrete Witten-Morse function. Introduced non-local
coupling is αi,n = 0.2. Left: local order parameter vs N -component eigenvectors V

α, of

the Laplacian
N∑

j=1

Lij(σα)V
α
j = λi(σα)V

α
i , for SF network of N = 1000 nodes, with degree

distribution P (k) ∼ k−3. The existence of a chimera state is marked by point symbols (open
circles) on the parameter space diagram. The coupling strength α is mapped to eigenspace
and consequently increased for associated λi starting from λ0 by amounts Δλ = 0.01, in
order to obtain a scaled order parameter r for λi = λ0, λ0+Δλ, . . . , λ0+nΔλ. Prior to each
Δλ step, the system was integrated for 105 time steps to approach near stationary values.

inner products on the chain CN spaces):

ΔN ≡ ∂n+1∂∗n+1 + ∂∗n∂n : CN → CN . (2)

Definition: A function f(x, t) : K → R, defined on a simplicial complexK, represents
a discrete Morse function if for all simplices σ ∈ K holds:
i) If σ is an irregular face of u(i+1) then f(u) > f(σ) and #{u(i+1) > σ|f(u) �
f(σ)} � 1.

ii) If v(i−1) is an irregular face of σ then f(v) < f(σ) and #{v(i−1) < σ|f(v) �
f(σ)} � 1.

Considering that the network topology and time scales are mapped on dynamical
manifold M, where the sets of i-dimensional simplexes σi are organized into finite
simplicial complex K, a discrete Morse function on M behaves as a function on K.
A (discrete) Witten-Morse function in fact represents the operation of identifying

of a single real number to each simplex on simplicial complex K, representing the
Laplacian: ΔαN (t) ≡ ∂i(t)∂∗i (t) + ∂∗i (t)∂i(t) : Cα(K,R) → Cα(K,R), where ∂∗i (t) is
the adjoint of ∂i(t) with respect to the inner product on Cα(K,R) chains such that
the boundary operations over simplices σ are given by the following relations:

∂i(t)σ =
∑

v(i−1)<σ
±et(f(v)−f(σ))v,

∂∗i (t)σ =
∑

u(i+1)>σ

±et(f(σ)−f(u))u,
(3)
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where σ, v, u ∈ K, and if σ < u, then σ is a face of u. For each oriented i-cell,
etf (σ) = etf(σ)σ, the induced Laplace operators are given by ∂n(t) = e

tf(v)∂ne
−tf(σ),

where the boundary operator ∂n(t) is a map from the simplices of dimension n to their
faces. Hence, Eq. (2) is obtained from the fact that the graph Laplacian L = D − A
coincides with a one dimensional simplicial complex (here encoded in SF network),
then the adjacency matrix is given by:

A(x, t) =
N∑
i=1

kii − ∂1(t)(σ(i))∂∗1 (t)(σ(i))
(4)

=
N∑
i=1

kii −
⎛
⎝ ∑
v(i−1)<σ

∑
σiα>v

±et(2f(v)−f(σ)−f(σα))
⎞
⎠σα,

∀x = x(i, j) which denotes the coordinate of each i = 1, . . . , N oscillator (node),
where D =

N∑
i=1

kii is the degree matrix.

Without loss of generality the level of phase coherence in the non-locally coupled
network of oscillators ϑ̇N (t) can be estimated via the global order parameter [9]:

R(t)eiϕ(t) = 1
N

N∑
j=1

eiϑj(t), 0 � R(t) � 1, where the network written in compact form

is represented by the Laplacian coupling scheme:

ϑ̇N (t) =

⎛
⎜⎝
f (x1,1, t)
...
f (xn,1, t)

f (x1,2, t)
...
f (xn,2, t)

· · ·
f (x1,n, t)
...
f (xn,n, t)

⎞
⎟⎠ +αi,n

N∑
i=1

kii

−
⎛
⎝ ∑
v(i−1)<σ

∑
σiα>v

±et(2f(v)−f(σ)−f(σα))
⎞
⎠σα

di,n∑
j=1

sin(ϑj,n − ϑi,n). (5)

In particular, the normal coordinates ϑ̇i in Eq. (1) split into the subsets encoded into
the Laplacian spectra, displaying the specific phase dynamics. They reflect not only
the network topology, but also detect system degrees of freedom responsible for, on
one side, the explosive synchronization by promoting the onset of partial synchroniza-
tion, and on the other for the emergence of chimera state as a mark of inhibition of the
global synchronization in a clustered SF network. The collective coordinates
(Eq. (5)) can be represented in terms of projections onto eigenvectors of the Laplacian,
as following:

θ̇(t) = F (θ) + α (L⊗ Im) θ(t), (6)

where L is the Laplacian symmetric matrix

L =WMW ∗, (7)

where M = diag(λ0, λ1, . . . , λn) is the eigenvalue matrix.
Defining a vector field X = col(x1, x2, . . . , xn) on a manifold M, Eq. (1) can be

expanded in terms of Laplacian eigenmodes

Θ(t) = (W ⊗ Im)X =
n∑
i=1

θi(t)⊗ xi. (8)
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The spectral gap from Eq. (6) is defined as g(A) = λ1 − λ2, while the total con-
tribution of the spectrum is given by ω(A) = λ2 − λn. The gaps in the spec-
trum are signature of different time scales between Laplacian eigenmodes which
on the other hand detect different topological scales of the system [18]. The ratio
R = (λ1 − λ2)/(λ2 − λn) denotes a global parameter of the spectral distance between
the first eigenvalue and the main part of the distribution of eigenvalues normalized
by the algebraic connectivity λ2 in relation to a total spectrum.
Following the increase of algebraic connectivity, λ2, more and more free oscillators

will be inclined to synchronize toward each of the distinct topological clusters, but
these clusters are suppressed from merging with each other as a result of the presence
of lowest eigenvalue mode 0 = λ1 < λ2 ≤ · · · ≤ λn with high level of multiplicity which
corresponds to the number of discrete components in network (mapped to simplicial
complex). At the same time, increasing of the coupling strength α strongly affects
the Witten-Morse function which behaves as a weighting function to each simplex on
simplicial complex, as

W (x, t)ki = A(x, t) exp [if
α(x, t)] ,∀x = x(i, j), (9)

where fα(x, t) ≡ ∑i ϕiV αi , with ωα ≡
∑
i ϕiV

α
i , is induced oscillator frequency by

the non-local coupling, ϕi are coupled oscillators phases, and A(x, t) is substituted
from Eq. (4) giving rise to a critical value when no more free oscillators are left
and when the nodes from the hubs with high degree of correlation k are diverging in
synchrony toward phase chimera state [15,19] establishing asymmetrical connection to
peripheral nodes characterized by low degree k, displaying as a result a discontinuous
and abrupt dynamics of R(t) as a consequence of the sudden explosive transition to
synchronization, see Fig. 4.
By setting a time differential of Eq. (8) and combining Eq. (5),

Ẇ = A(x, t)− (1 + iC2)|A(x, t)|2A(x, t) + α(1 + iC1)
(
Ā(x, t)−A(x, t)) , (10)

we obtain the familiar form of nonlocal complex Ginzburg-Landau equation [20],
where C1, C2, and α denote linear and the nonlinear dispersion constant, and coupling
strength, respectively, and Ā(x, t) is the nonlocal mean field variable. In α	 1 limit
Eq. (9) reduces to a manifold of dynamical phase space corresponding to chimera
states, which is determined by critical points of Witten-Morse function.
In particular, following the Morse Lemma [21] there are points (ϕ1(t), . . . , ϕn(t)),

for x ∈ (0, . . . , 0), such that in these coordinates

F (ϕ1(t), . . . , ϕn(t)) = F (x)− ϕ12(t) +
n−1∑
i=2

kϕi
2(t), (11)

where from beginning at the point x, function F decreases from both sides in the ϕ1
direction, while in the transverse directions it increases. In particular case, for the
critical edge σα of a discrete Morse function f(x, t), (see Eqs. (5), (9)), starting from
the edge to either boundary node f(x, t) decreases, while in each transverse direction

it increases. As a result, σ
(i)
α as a critical simplex on induced fα(x, t), represents the

i-dimensional “unstable” α-coupled space at a smooth critical point of index i [21].
Coupled oscillator phases defined at smooth critical points, satisfy the flow equation

d
dt
ϕi +∇ϕfα(x, t) = 0. (12)

The Eq. (12) states that coupled phases ϕi(t) of oscillators trajectories diffuse in

the direction of − ∇fα
|∇fα| . For coordinates x(ti) ∈ (0, . . . , 0) by modeling choice from
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Fig. 4. Top from left to right: stability diagram showing the number of synchronized critical

clusters σ
(i)
α (see text) equivalent to number of null eigenvalues on i-dimensional α coupled

space as a function of time for 2000 MC iterations. The blue-pattern areas mark the phase
chimeras that are observed in the weak coupling limit. Right: synchronization diagram with
forward (black line with diamonds) and backward (red line with diamonds) synchronization
transitions as a function of Laplacian eigenvalues of SF network with N = 1000 oscillators
with introduced non-local coupling α = 0.45 and degree k = 7. Bottom: the local order
parameters of SF network, r, in nonstationary regime as a function of the coupling strength
for different α, showing the abrupt transition to synchronization regime. The simulation
parameter values are 〈k〉 = 7, C = 0.95, see Eq. (14). Right: the evolution of the global
order parameter in 2000 MC time steps as a function of various α for symmetrical and
asymmetrical non-local coupling, which is exhibited in normalized and heterogeneous SF
network with high clustering, respectively.

Eq. (11), and considering that fα(x, t) ≡ ωα(x(t)) (see Eq. (9)), solutions satisfy

ωα(x(t)) +

T∫

0

∣∣∣∣
dϕi

dt

∣∣∣∣
2

dt = ωα (x0) , ∀T > 0. (13)

The collective dynamics of the system of non-local coupled oscillators evolves at the
total dissipation rate corresponding to

∑n−1
i=2 Cϕ̇

2
i , where C > 0 is a total dispersion

constant. Putting Eq. (11) and the dissipation together, results in the set of equations
from which we can construct geometric flow of coupled oscillator phases at critical
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points, which corresponds to explosive synchronization, as following

Cϕ̇1 = k (ϕ2 − ϕ1) ,
Cϕ̇i = k (ϕi+1 − 2ϕi + ϕi−1) ,
Cϕ̇n = k (ϕn−1 − ϕn) ,

(14)

for i = 2, . . . , n− 1.

3 Conclusions

In conclusion, we reported on a chimera state existence during cluster explosive transi-
tions to synchronization regime. Using the discrete Witten-Morse function framework
for the observation of SF network topology we have established the connection be-
tween natural frequencies and local topology of each cluster setting. Particular forms
of the distribution of natural frequencies in fact serve as a basis for exact encod-
ings of the local structure dynamics which lead to explosive synchronization. Our
findings confirmed the simultaneous existence of both coherent and incoherent phase
domains during transition to explosive synchronization in particular examples of (SF)
networks, explicitly under intermediate coupling.

Author acknowledges ObAd 1007211 for the sponsorship provided.
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