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1 Introduction

Consider a fish. It moves effortlessly through water, undulating its body to move for-
ward efficiently, while using its lateral line system to sense and align with the ambient
flow [1]. Its agile locomotion is tailored to capitalize on the environment in which it
moves [2,3] through a complex behavioral repertoire [4,5]. In a school, multiple fish
swim in unison, like a single entity, which could be described through a seemingly
simple set of interaction rules [6–9]. If a predator strikes, the information quickly
travels through the group [7,10,11], which adaptively morphs itself out of the direc-
tion of attack. These fascinating and unique capabilities are reflected in ingenious
robots designed to capture desired aspects of the fish [12], for example, the style of
locomotion or the information shared through social interactions.
The dynamics of animal systems includes the study of how animals move,

navigate their environment, and interact with each other. Systems of biological or-
ganisms display an array of complex motion patterns and collective behaviors, and
individuals sense each other and their environment through different communication
channels [13–17]. These systems operate over a wide range of spatial and temporal
scales, thus motivating their study towards solutions to problems across disciplines.
Vice-versa, solving related problems in other fields may complementarily inform the
study of biological systems.
A diverse set of problems in dynamical systems is motivated by empirical stud-

ies on animals. These include biomechanics of locomotion, population dynamics of
predator-prey groups, collective motion of animal aggregations, structure and func-
tion of neural networks, and biological rhythms of coupled oscillators [18–23].
The ideas underlying this topical issue were inspired by the success of a two-part

mini-symposium at the 17th U.S. National Congress on Theoretical & Applied
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Mechanics in East Lansing, Michigan, USA, to which a subset of the authors of
this issue contributed. This highly interdisciplinary issue covers theoretical and ex-
perimental research that falls under the broad heading of the dynamics of animal
systems.
Papers in this topical issue are categorized into three areas of interest: physics of

locomotion, where the mechanics underlying the locomotion of organisms is studied;
physics of social interaction, which covers mathematical models and analysis of col-
lective animal behavior and predator-prey interactions in nature; and applied physics
and robotics, which involves the design of engineering systems that are inspired in
their form and function by animals.
We hope that this collection will generate significant interest among the physics,

mathematics, biology, and engineering audiences of the journal. Junior researchers
might also find this collection useful as an inspiration to initiate graduate study in
this emerging and exciting field of research.
In what follows, we first frame the general concepts for each area of interest and

then highlight the content of each paper as summarized by the authors. We then draw
the readers’ attention to some open questions that, based on this collection and our
own line of research, should be relevant to the general audience of this journal.

2 Physics of locomotion

Through evolutionary processes, each organism–from the unicellular paramecium to
the echolocating bat–has acquired unique behaviors and form to navigate [24]. The
physics of their locomotion can improve our understanding of their interactions with
the environment [25]. Examples include the unique turning mechanisms of species of
microorganisms and the diverse ways in which flight has been achieved across insects,
birds, and bats via convergent evolution.
The section begins with a review by Brumley et al. [26], who analyze selected

physical processes in the ecology of microorganisms. The authors consider the rich
physical interactions between microbial motility, flagellar dynamics, and ambient fluid
flows. They present several examples where methodological approaches (microfluidics,
dynamic imaging) and physical frameworks (mechanics, low Reynolds number fluid
dynamics) have shed light on the underlying dynamics, illustrating the depth and
breadth of contributions that physics can make to microbial ecology.
Next, Hatton and Choset [27] provide a tutorial showing how ideas from geomet-

ric mechanics can be used to capture the physics behind self-propelled locomotion
undertaken by animals and micro-organisms. In particular, the authors employ Lie
group theory and differential geometry formalism to provide a broader perspective on
two common attributes of animal locomotion, that the animal: (1) generates thrust
by changing shape to push against its surroundings, and (2) can break the symmetry
of its interactions with the environment, enabling it to extract net displacements from
cyclic changes in shape.
Huang and Kanso [28] explore the intrinsic self-oscillatory behavior of an insectile

wing model, consisting of two rigid wings connected at their base by an elastic tor-
sional spring. The authors start from the hypothesis that the maximum power output
of insects’ flight muscles is insufficient to maintain observed wing flapping frequencies,
without the storage of elastic energy. Three types of behavior are identified in the
study: end-over-end rotation, chaotic motion, and periodic flapping. The fact that pe-
riodic motion is favored by increasing the stiffness is consistent with the observation
that flight muscles and wings are stiff, and suggests that insects can maintain periodic
flapping for a range of operating conditions by adjusting their muscle stiffness to the
desired energy level.
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In the framework of geometric mechanics, Tallapragada and Kelly [29] introduce
a model of vortex shedding to achieve propulsion in aquatic environments inspired by
animal locomotion. The authors define swimmers whose propulsion is driven by an
internal momentum wheel. Vortex shedding depends essentially on fluid viscosity,
but its influence can be modeled in an inviscid setting by introducing localized
velocity constraints to the swimmers interacting with ideal fluids. Through simul-
ations, the authors demonstrate that a class of these constraints is sufficient to enable
self-propulsion with very limited actuation. The swimmer’s solitary actuator under-
scores the symmetry breaking role played by vortex shedding in converting periodic
variations in angular momentum to forward locomotion.
Bookending the section with the locomotion in micro-organisms, Zhang et al. [30]

investigate the energetic benefit on the Paramecium locomotion from its body asym-
metry. The authors combine particle image velocimetry and the boundary element
method to develop a model of the fluid motion around a swimming Paramecium.
Their results show that the body asymmetry may lead to an increased fluid flux into
the Paramecium cilia layer and thus increase the feeding efficiency.

3 Physics of social interactions

Many animal species demonstrate some kind of cooperative behavior to perform a
task, which would otherwise be impractical or sometimes not feasible for a single
individual [31,32]. For example, birds flock together to avoid predation [33], and ants
locate foraging sites with seemingly random initial motion. At the same time non-
cooperative behavior between predators and their prey is a fundamental activity in
which animals engage [34]. Pursuit-evasion strategies that underlie such predator-
prey interactions find strong interest in robotics and aerial navigation. In each case,
mathematical models have greatly contributed to our understanding of the interac-
tion rules that shape animal behavior. With advancements in data collection methods
and new measurement tools, calibration of such models is now possible giving new
insights into the physics of social interactions.
Citing examples of insect swarms and bird flocks, a critical issue in the quantifica-

tion of collective animal behavior is addressed by Cavagna et al. [35], who investigate
the main sources of error in three-dimensional reconstruction using a stereo camera
setup. The authors perform a detailed analysis of trajectory accuracy of individual
animals in such scenarios and perform precision tests, highlighting how to detect
sources of inaccuracy. The authors analyze errors showing how to properly select
camera setups that may be used in the design of three-dimensional experiments with
collective animal behavior.
Rheotaxis is a behavior in which fish orient themselves relative to flow. Despite the

fact that most species of fish school during at least some portion of their life, little
is known about the importance of rheotactic behavior to schooling fish and, con-
versely, how the presence of nearby conspecifics affects rheotactic behavior. In their
paper, Chicoli et al. [36] explore how group size and sensory noise affect schooling
and rheotactic behavior. The authors propose a mathematical model in the form of a
coupled-oscillator framework to model group rheotactic behavior. They further show
that under noisy environmental conditions, increased group size improves rheotaxis.
In a multi-agent model of collective behavior, Gajamannage et al. [37] describe

group motion as switching between low-dimensional embedding manifolds. They in-
troduce a simple mapping for the agents between consecutive time-steps together with
a novel metric of collective behavior, which encapsulates variations in the collective
motion. The metric is successful in revealing the presence of distinct manifolds on
which changes in collective behavior take place. Complementary to dimensionality-
reduction techniques, this approach provides an effective model-free framework for
the dynamic analysis of collective behavior.
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Predatory dinoflagellates along with other microzooplankton consume about sixty
percent of marine primary production, thus forming an important avenue for the
transfer of carbon to higher trophic levels. In their work, Mazzoleni et al. [38] derive
a simple model of dinoflagellate predator-prey system by drawing upon analogies from
chemical kinetics. They modify their model to account for inefficiencies in predation.
Simulation results are shown to match predictions and account for complex dynamics
that were not included in the basic models; the results closely match the experimental
observations thus reinforcing the notion that predatory dinoflagellates utilize toxins
to increase their feeding rate. These findings lay the foundation for more predictive
behavioral models of swimming behavior as a function of environmental variables and
predation as a function of collision parameters.
In their paper, Ni and Ouellette [39] challenge existing definitions of collective be-

havior, which are typically associated with order in motion. They present and analyze
insect swarms in a controlled laboratory setting, which though spatially disordered
still exist as a collective. They measure the trajectories of each individual insect,
and report negligible correlation. Their results, in contrast to long-range correlations
found in wild swarms, point towards an alternate hypothesis: in a natural setting,
insects may be independently responding in a similar way to some external stimulus,
which would produce an apparent correlation in their behavior. The authors suggest
new laboratory experiments to test this hypothesis where controlled external stimuli
are intentionally introduced.
What are the determinants of social behavior and leader-follower relationships?

These are open questions in animal dynamics that are also relevant in bio-inspired
control of engineered multi-agent systems. In their work, Orange and Abaid [40] use
an established model-free measure of causality to unravel interactions between flying
bats. The authors study ten pairs of bats from a wild swarm navigating an environ-
ment near their roost and compute the transfer entropy between the curvatures of
their flight paths. They find that a higher transfer entropy, meaning more informa-
tion transfer, is computed from leading to following bats rather than from following
to leading bats, which suggests that information propagates from front to rear bats
as they fly in a group.
Pursuit and capture strategies in animals can inspire the navigation and control

of unmanned aerial vehicles. In a review of the aerial prey capture dynamics in in-
sects and bats, Pal [41] uses experimental data derived from literature to categorize
prey pursuit and capture mechanisms into five different strategies. The author points
out that established models of prey capture dynamics consider the pursuer and the
prey as massless particles, and identifies possible future directions where detailed
biomechanical models can be integrated with neural models of sensory input to ex-
pand the applications of pursuit and capture in bio-inspired design, navigation and
control.
Strömbom et al. [42] study flocking behavior in moving animal groups using self-

propelled particle models, in which traditional alignment-based rules are removed.
The authors build on existing literature showing that models based on attraction
only can generate a range of dynamic groups in two dimensional domains with
periodic boundary conditions. By considering a weak global attraction term and
by removing periodic boundary conditions, they show that there is no substantial
difference between two and three-dimensional patterns of self-organization. Moreover,
including repulsion results in the formation of global patterns that are consistent with
characteristic collective features observed in animal groups.
Wongkaew and coauthors [43] utilize social balance theory proposed by F. Heider

[44] to formulate a leadership-based optimal control problem with the purpose of
driving a social network to attain a desired balanced state. Through numerical exper-
iments, the authors demonstrate the ability of the proposed control strategy to drive
the Heider balance model to friendship. The novelty of this work is manifold, since it
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formulates and investigates a strategy to control (or stabilize) social networks in the
sense of Heider. It is also interesting that this model focuses on the dynamics of the
links-relationships that also enter as control functions.
Combining theoretical and experimental work, Zienkiewicz et al. [45] address the

open question of how the underlying structure and dynamics of interactions between
similar individuals allows for the emergence of leaders within the group. In particular,
the authors propose a mathematical framework to capture the dynamics and interac-
tions of small shoals of zebrafish, informed directly from experimental observations.
They demonstrate how speed regulation can be leveraged to promote dynamical
entrainment with an informed individual, and how the relative speed and interac-
tion strength directly affects the degree to which an informed individual can a naive
group.

4 Applied physics and robotics

Animals provide an everlasting resource of inspiration to physicists and engineers.
Examples include bio-inspired and biomimetic systems for sensing and navigation,
distributed algorithms for autonomous robots, novel tools of measurement and analy-
sis that lead to a better understanding of the ecology and animal behavior, and the
development of new materials inspired from the structure and function of animal
parts [46–48].
Highlighting how the interaction between an animal and its environment may lead

to novel solutions in engineering, Amador et al. [49] propose an alternative function
to dense arrays of hairs observed throughout the compound eyes of insects, arising
from their aerodynamics. After a thorough investigation comprising anatomical
measurements using scanning electron microscopy, numerical fluid simulations, and
wind tunnel experiments with insect eye mimics and at-scale micropillar arrays, the
authors find that the hair arrays observed in 18 species of insects reduce airflow at
the ocular surface by up to 90%. These results may motivate bio-inspired solutions
for protecting sensitive surfaces, like lenses and sensors, from accumulating airborne
debris, like dust and pollen.
Coral et al. [50] present a mathematical model for the free transverse vibration

of a robotic fish, based on a continuous and non-uniform flexible backbone with dis-
tributed masses. The proposed approach is based on Timoshenko beam theory. The
effects of the masses on the value of natural frequencies are investigated. Results are
validated against analytical solutions available in the literature, and experiments on a
physical prototype of a flexible fish backbone. The method allows the study of struc-
tures with nonuniform mass distributions and complex cross sections, which include
realistic descriptions of biological systems and their biomimetic implementations.
Müller [51] investigates the dynamic properties of the horseshoe bat biosonar

system that is characterized by an unusual dynamics at the interfaces between the
animal and its environment. In particular, baffle structures in the biosonar system
change their shapes to diffract the outgoing ultrasonic pulses and the returning echoes.
The guiding hypothesis for this work is that the dynamics is key to encoding sen-
sory information about structure-rich natural environments. Since navigating such
environments still poses an insurmountable problem to engineered sensing solutions,
insights into the dynamic sensory encoding in bat biosonar may have a transforma-
tive impact on the ability of man-made systems to operate in natural environments
autonomously.
Timm-Davis and Fish [52] study flow dynamics within the nasal cavity of spiny

dogfish using flow visualization techniques. In contrast with traditional assumptions
on the morphology of the olfactory cavity, the authors demonstrate flow through the
nasal apparatus and from the excurrent nostril to the mouth when respiratory flows
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were simulated in dead animals. They find that the single nasal valve functions as an
organization mechanism for the fluid, resulting in a coherent flow of water through the
cavity. The results indicate that water could be drawn through the olfactory cavity
via the morphology of the nasal apparatus and active swimming.
In the use of smart materials for biomimetic locomotion of robotic fish,

Shahab and coauthors [53] explore the dependence of hydrodynamic thrust levels
in macro-fiber composite actuators on the length-to-width aspect ratio. Using a non-
linear semi-empirical Euler-Bernoulli-Morison model and Lighthill’s theory to model
the vibration response and experiments at various actuation voltage levels, the
authors find that, while the inertia and drag coefficients are strongly dependent on
the aspect ratio, resonant mean thrust to power consumption ratio is insensitive to
this aspect ratio.

5 Open questions

Dynamics in animal systems fosters several broad areas of open research that demand
attention from the scientific community. Five such open questions are highlighted
here with the hope that they may inspire the curiosity of both experienced and junior
researchers alike.
In light of the inherent inspiration that this work takes from biological systems, a

first open question is how to build a stronger connection between mathematical mod-
els of animal dynamics and experimental data. Validating such models against noisy
and sparse data from natural systems is a crucial step for which standard methods are
often inadequate. A particularly elusive question entails the identification of model
parameters that are involved in collective motions [54–61]. Since a particular instance
of group coordination may result from a non-unique set of individual behaviors and
interaction rules, how can we solve the inverse problem of determining model para-
meters? Simply put, when we observe a bird flock flying synchronously, how can we
discover the rules that individuals use to attain those striking coordinated patterns?
Following up the idea of modeling an animal system, a second open question is

to bridge the gap between highly refined physical models, minimalistic lumped pa-
rameters models, and practical experimentation [62–67]. This translational work is
necessary to allow modeling efforts to become cogent tools for empirical studies on an-
imal systems. While biological systems are often over-actuated and over-sensorized,
such detail in physical models could be unnecessary and impractical for the goal
of understanding a biological system. With that in mind, how do we determine
the salient variables for reduced-order modeling in the context of a given research
question?
From an experimental perspective, a third open question is how to devise high

throughput techniques for calibrating models and validating key hypothesis on
animal dynamics, such as their locomotion, sensing, or social behavior [68–74].
Currently, ethograms of animal behavior are often constructed around a sequence
of observer-driven data analysis steps, which are both time-intensive and subjective
to observer training and bias. Since large scale model validation will rely on ethograms
based on both temporally and spatially resolved data sets, how can we achieve suffi-
cient technological advances in data collection and processing?
Beyond purely observational approaches, a fourth open question focuses on using

biologically-inspired robotics to better understand the dynamics of animal systems.
While significant efforts have been devoted to such robots, the range of applications
is primarily human-centered. Specifically, a wide range of robots is currently being
developed based on their animal counterparts, yet these robots are seldom used to
interact with animals. We posit that such robots may offer a unique opportunity to



Dynamics of Animal Systems 3115

influence animal behavior and design new hypothesis-driven experiments in which we
could precisely isolate desired independent variables [75–86]. For example, if we were
interested in understanding the role of body size on fish social behavior, we could en-
gineer an array of robots that are identical in their morphology and locomotion, and
systematically vary their size. By studying the response of live fish to such robots, we
could precisely isolate the role of the body size as an independent variable. In more
general terms, how can we use these incredible technological advancements to better
understand the dynamics of animals?
Comparing animal systems across species and physical scales, a fifth open question

deals with universality classes and scaling laws in animal physiology, behavior, and
sociality. While much data may be collected and conclusions drawn about isolated
animal systems, a way to relate these results across systems is currently lacking. We
can all appreciate similarities between human crowds and ant colonies or fish schools,
yet a physically-grounded rigorous approach to abstract the key features of animal
dynamics is currently not available. Dimensionality reduction techniques have been
proposed as a valuable tool to shed light on such similarities in the context of collec-
tive behavior [87–91], but the state of the art still lacks of a robust theoretical basis
to systematically abstract, without human intervention, common features of animal
dynamics across different phyla of life. How can we identify invariant aspects of ani-
mal systems to enable the development of unifying theories governing the dynamics
of such systems?
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