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Abstract. This paper analyzes the dynamics of a model dinoflagellate
predator-prey system and uses simulations to validate theoretical and
experimental studies. A simple model for predator-prey interactions is
derived by drawing upon analogies from chemical kinetics. This model
is then modified to account for inefficiencies in predation. Simulation
results are shown to closely match the model predictions. Additional
simulations are then run which are based on experimental observa-
tions of predatory dinoflagellate behavior, and this study specifically
investigates how the predatory dinoflagellate Karlodinium veneficum
uses toxins to immobilize its prey and increase its feeding rate. These
simulations account for complex dynamics that were not included in
the basic models, and the results from these computational simula-
tions closely match the experimentally observed predatory behavior of
K. veneficum and reinforce the notion that predatory dinoflagellates
utilize toxins to increase their feeding rate.

1 Introduction

Dinoflagellates are the second largest group of phytoplankton in marine environ-
ments [15,29]. They comprise a diverse group of species with lifestyles ranging from
symbiotic associations with corals to free-living flagellates to parasitic species [24,28].
Trophic status can also vary, with the number of heterotrophic and autotrophic species
about equally divided. There is mounting evidence, however, that the majority of au-
totrophic dinoflagellate species are also mixotrophs [16,35]: they are capable of growth
through photosynthesis but may also acquire carbon through predation. Predatory
dinoflagellates, along with other microzooplankton species in the marine environment,
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Fig. 1. Schematic of a dinoflagellate identifying the two flagella.

consume about 60% of marine primary production [25] and thus are an important
avenue for the transfer of carbon to higher trophic levels.
Predation by dinoflagellates and other microzooplankton species is driven by

swimming behavior in response to chemical gradients [4,11,19]. Dinoflagellates swim
using two flagella, a transverse flagellum and a longitudinal flagellum, that emanate
from the ventral side of the cell in most dinoflagellate species (see Fig. 1). The ribbon-
like transverse flagellum is located in a groove, the cingulum, which lies around the
mid-section of the cell and provides forward locomotion and rotation about the cell’s
axis. The longitudinal or trailing flagellum also provides forward propulsion and lies
in the sulcus, a groove that transverses from the flagellar pore to the posterior end.
Differences in the placement of the flagellar groove result in swimming characteristics
that differ between species. The combination of logitudinal and transverse flagellar
motion results in a helical swimming pattern (see Frenchel for an overview [12]) and
allows the cell to orient itself in response to chemical gradients and the presence of
prey. For instance, to demonstrate that it is possible for helical swimmers to track
up or down a gradient, Crenshaw explored an empirical control strategy that ad-
justs the orientation of the swimmer’s angular momentum based on its instantaneous
response to a sensed chemical field [8]. In the first part of this work, we seek to con-
nect the swimming properties of dinoflagellate predators and prey with their grazing
success. We characterized the predation rate of dinoflagellates from fundamental phys-
ical principles, drawing upon basic ideas of chemical kinetics and known properties
of phytoplankton swimming to derive a mathematical model for predation.
A small number of dinoflagellates are also considered harmful algal bloom (HAB)

species and produce a suite of complex toxic compounds. The release of toxins during
blooms (commonly known as red tides) can impact human health through shellfish
poisoning or impact marine ecosystems by causing massive fish kills [13,17,18,31].
Toxin production by HAB dinoflagellates may confer an ecological advantage to these
species by inhibiting grazers (e.g. [6,30,34]). Recent studies, however, indicate that
toxin production by mixotrophic dinoflagellates may also facilitate predation by im-
mobilizing prey [27]. Here, we describe a set of simulations based on experimental
observations of Sheng et al. [26,27] for the mixotrophic dinoflagellate, Karlodinium
veneficum [5,21,22]. K. veneficum is a globally distributed HAB dinoflagellate that
produces a potent toxin, karlotoxin (KmTx) [9,10,32,33], that kills fish and con-
tributes to harmful algal bloom formation [2,17]. The effects of KmTx were also
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observed to significantly slow down and often immobilize the prey of K. veneficum
[27], leading Sheng et al. to conclude that toxin production played a role in pre-
dation success. Moreover, Sheng et al. also demonstrated that toxic K. veneficum
dramatically altered its own swimming behavior in the presence of prey. In the sec-
ond part of this study, we use theory and computational simulations based on our
mathematical model for predation to explain experimental observations of Sheng et al.
We show that toxin-induced changes in swimming behavior of K. veneficum and its
prey enhance predation by influencing (i) the frequency of predator-prey encoun-
ters and (ii) the efficiency of converting those encounters into successful predation.
To our knowledge, this is the first mechanistic model to describe predation rates of
K. veneficum.

2 Determining the rate of predator-prey encounters when predation
is perfectly efficient

This section derives a simple relationship for the rate of predator-prey encoun-
ters when predation is perfectly efficient by drawing upon analogies from chemical
kinetics [3]. A set of simulations is then used to validate this model, with the re-
sults showing good agreement between theory and simulation. The parameters used
in the simulations were based on experimental observations of dinoflagellate behavior
[26,27].

2.1 Mathematical model for perfectly efficient predation

Simple mass-action linear behavior between predators (A) and prey (B) is common
in nature, and phytoplankton predation is no exception. Thus, if ρA and ρB denote
the densities of the predator and prey species respectively, then

dρB

dt
= −kρAρB , (1)

where k is a constant that is independent of the predator-prey densities which deter-
mines the decline in the prey population due to predator-prey encounters. Unfortu-
nately, these models are too general to provide much predictive power to scientists
because k must be empirically determined. One of our objectives is to systematically
derive and verify how k depends on independently measurable environmental quan-
tities. For predation to occur, predator and prey must first encounter each other.
If we assume that these single-celled organisms cannot sense each other at ranges
exceeding a body length, then encounters are purely random. Drawing upon basic
analogies from chemical kinetics [3], we can derive a simple expression to quantify
encounter rates. If we assume the predators and prey are spheres with radii rA and
rB , and that the predator moves at speed S relative to prey, a solitary predator will
encounter

π(rA + rB)
2S Δt ρB (2)

prey individuals in time Δt as shown in Fig. 2. So the encounter rate between preda-
tors and prey is

π(rA + rB)
2S

︸ ︷︷ ︸

k

ρAρB , (3)
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Fig. 2. The geometry of predator-prey encounters. A predator will encounter any prey that
are within the indicated cylinder surrounding its path.

in agreement with the mass-action assumption commonly used in ecological modeling.
To calculate a mean encounter speed, we begin with the law of cosines on vrel =
vA − vB ,

|vrel|2 = |vA|2 + |vB |2 − 2|vA||vB | cosϕ, (4)

where vA and vB are the velocities of the predator and prey individuals, respectively.
If we define α = |vA|/|vB | then

|vrel|2 = |vA||vB |
(

α+ α−1 − 2 cosϕ) . (5)

Without loss of generality, ϕ is the collision angle in a spherical polar coordinate
system centered on the predator with the north pole aligned with its direction of
motion. The azimuthal angle θ plays no role in the relative collision speed. If we
assume that directions of motion of predators and prey are uniformly distributed,
then we can define the ensemble average relative speed as the mean over all possible
θ’s and φ’s over which the collision can occur.

〈|vrel|〉 ≡
[∫ 2π

0

∫ π

0
|vA||vB |

(

α+ α−1 − 2 cosϕ) sinϕdϕdθ
∫ 2π

0

∫ π

0
sinϕdϕdθ

]1/2

=

[

1

2

∫ π

0

|vA||vB |
(

α+ α−1 − 2 cosϕ) sinϕdϕ
]1/2

=
(|vA|2 + |vB |2

)1/2
. (6)

In short, we define the mean encounter speed in the L2 or root mean square sense.
Following along with our assumption that the predation rate depends only upon the
relative speed or kinetic energy of the encounters between predators and prey, the
interactions will be independent of the relative orientations θ of the colliding bodies.
We will retain this assumption for the remainder of this paper. We assume that the
probability that predation will occur is related to the physical parameters of the
collision. For our purposes, we will disregard the orientation of the collision and focus
on the collision speed only:

P (predation) = η(|vrel|), (7)
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where η is a function describing the efficiency of the predator. The simplest case is
when η(|vrel|) = 1, where predation always occurs perfectly whenever a predator and
prey meet. Thus, if all the predators move with speed |vA| and prey with speed |vB |,
we can use the encounter rate (3) with S replaced by 〈|vpred|〉 to model the prey
consumption as

dρB

dt
= −π(rA + rB)2

√

|vA|2 + |vB |2ρAρB , (8)

where rA, rB , vA and vB are all independently measurable parameters. Therefore,
the encouter rate (which is the same as the predation rate when predation is perfectly
efficient) can be expressed as

k = π(rA + rB)
2
√

|vA|2 + |vB |2. (9)

2.2 Simulations for perfectly efficient predation

A set of numerical simulations were run to validate this simple model for predation.
The simulations tracked the motion and interactions of predator-prey dinoflagellates.
The dinoflagellates were randomly assigned initial positions and orientations within
a cubic volume. At each time step, the algorithm updated the positions of each di-
noflagellate and determined whether a predator-prey encounter occurred by calculat-
ing the absolute distance between predator-prey dinoflagellates from their coordinates
to determine if their separation distance was below the critical collision threshold (the
sum of the predator and prey radii: rA + rB). Periodic boundary conditions were ap-
plied to the cubic volume in order to simulate an infinite space and remove boundary
effects from the simulations. During the simulations, the dinoflagellates moved within
the cubic volume in helical trajectories, which matches their observed motile behavior
[7,26,27]. Helical motion can be described parametrically as

H(t) = R
[

cos (ωt)̂i+ sin (ωt)ĵ
]

+

(

pωt

2π

)

k̂, (10)

where R is the helical radius, ω is the angular frequency, and p is the helical pitch.
The velocity v of a dinoflagellate can be calculated as

v = ω

√

R2 +
( p

2π

)2

. (11)

It is important to remember that the predation rate k is independent of the predator-
prey densities. Any density-dependent effects that might be observed in a simulation
would be the result of simulation artifacts. It was therefore important to choose suffi-
cient densities of predator and prey and to run the simulation for an adequate amount
of time at an appropriate time step to obtain accurate results. If the density was too
sparse, the time duration too short, or the time step too large, then random errors
were introduced to the computations due to the simulation mechanics operating in a
discrete environment as opposed to a continuum. The simulation results were found
to converge on a consistent solution when they considered 100 predator dinoflagellates
and 100 prey dinoflagellates in a cubic volume of side length 1mm and were run for
1000 seconds with a time step of 0.01 seconds. A snapshot of the simulation at a given
time step can be seen in Fig. 3.
Four different sets of simulations were run to validate the theoretical predation

rate k (9). The predator-prey velocities and radii that were selected were based on
experimental data collected by Sheng et al. [26,27]. Four different strains of K. venefi-
cum were analyzed as the predators, and S. major was analyzed as the prey. At this
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Fig. 3. Snapshot of a simulation showing the randomly distributed predators (blue) and
prey (red) moving within a cubic volume with periodic boundary conditions.

Table 1. Comparison of theoretical and simulated predation rates k when predatory effi-
ciency is assumed to be η = 1. It should be noted that rA = 4.5 μm, rB = 3.5 μm, and
vB = 86.4 μm/sec for all simulations.

K. veneficum vA (μm/sec) Theoretical Simulated % Error
Strain k (m3/sec) k (m3/sec)

MD5 81.3 2.39× 10−14 2.25× 10−14 5.9
1974 102.3 2.69× 10−14 2.54× 10−14 5.6
BM1 111.2 2.83× 10−14 2.62× 10−14 7.4
2064 80.9 2.38× 10−14 2.18× 10−14 8.4

stage of the paper, we are not yet attempting to match experimental results, but
are rather trying to validate our theoretical and computational models of predator-
prey dinoflagellate dynamics. Therefore, the parameters selected for the simulations
were based on the controlled observations where the predator-prey dinoflaggelates
were not mixed with each other. One hundred simulations were run for each of the
four parameter combinations to provide a large sample size of computational data.
The simulated values for k were very close to the theoretical values, with less than
10% error, defined as |ksim − kth|/kth × 100% for all cases. The predation rates from
simulations are slightly lower than the theoretical values, which is a consistent trend
for all cases. This is likely caused by the discrete nature of the simulations, which
differs from the continuum that the theory represents. Since the simulations can only
analyze positions at discrete times, it is likely that a small number of predator-prey
interactions occurred between discrete steps and thus were not counted. This would
lead to a slightly lower predation rate for the simulated system. These results are
shown in Table 1.

3 Accounting for inefficiencies in predation

Not every encounter between a predatory dinoflagellate and its prey results in a
successful feeding event. When initial contact is made, the two organisms typically
struggle against each other for up to 30 seconds, with the prey often escaping [1]. Some
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strains of K. veneficum are known to release toxins, which impair the ability of their
prey to escape capture and thus increase predation efficiency [1,27]. K. veneficum has
also been observed to alter its swimming behavior in the presence of prey, typically
decreasing its speed. It has been hypothesized that K. veneficum does this to to reduce
its hydrodynamic profile and thus avoid detection by its prey [26,27]. Therefore,
this section modifies the previously derived encounter/predation rate (9) to account
for imperfect predator efficiency. We first propose a model that bases the efficiency
on a sharp cutoff related to the relative velocities of the predator and prey during
their collisions. Simulations are then used to verify this model. A more sophisticated
efficiency model based on the individual velocities of the predator and the prey is then
presented. This more sophisticated model is applied to computational simulations in
Sect. 4 in an attempt to match experimental data.

3.1 Mathematical model for inefficient predation based on relative velocity

Realistically, predation will not be perfectly efficient. To explore this further, we define
vpred to be vrel only when predation occurs. In the general case when η(|vrel|) �= 1,
we can calculate 〈|vpred|〉 directly.

〈|vpred|〉 ≡
[

1

2

∫ π

0

|vA||vB |
(

α+ α−1 − 2 cosϕ)

× η(|vA||vB |
(

α+ α−1 − 2 cosϕ)) sinϕdϕ
]1/2

,

〈|vpred|〉
√|vA||vB |

≡
[

1

2

∫ π

0

(

α+ α−1 − 2 cosϕ)

× η(|vA||vB |
(

α+ α−1 − 2 cosϕ)) sinϕdϕ
]1/2

. (12)

Predators typically require some handling of the prey for predation to occur. One
simple case might be that predation only occurs if the relative encounter speed is
below a threshold handling speed Sh ≤ |vA|+ |vB |,

η(|vrel|) =
{

1, |vrel| < Sh,
0, otherwise

. (13)

Defining β = S2h/(|vA||vB |), we can determine a maximum angle ϕ0 at which preda-
tion can occur:

ϕ0 = arccosw, w =
1

2

(

α+ α−1 − β) . (14)

In this case, the normalized predation speed is

〈|vpred|〉
√|vA||vB |

=

[

1

2

∫ ϕ0

0

(

α+ α−1 − 2 cosϕ) sinϕdϕ
]1/2

,

=
1

2

[

(1− w)(α+ α−1 + β − 2)]1/2 . (15)

From (3), we know that the predation rate is directly proportional to 〈|vpred|〉. There-
fore, we can rewrite (15) as

〈|vpred|〉2 = S
2
h

8

1

β

[

β2 − (2− (α+ α−1))2
]

. (16)
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Fig. 4. 〈|vpred|〉/Sh as a function of α = |vA|/|vB | and β = S2h/|vA||vB | over the domain
where Sh is relevant. The two red lines indicate two level sets of vA. The lower line has
a local maximum within the domain. Note that for the dinoflagellates K. veneficum and
S. major, values of α are typically between 1 and 4. Impairing S. major with toxins shifts
the position in parameter space up and to the right along lines radiating from the origin.

where this function has the domain α+α−1−2 ≤ β ≤ α+α−1+2 from (14). We plot
contours of the normalized 〈|vpred|〉, which is proportional to the predation rate, over
its domain in Fig. 4. A predator-prey system characterized by vA, vB and Sh can be
visualized as a point (α, β) in this contour plot. For β < α + α−1 − 2, predation is
impossible because all collision speeds are greater than Sh, regardless of orientation.
This corresponds to a scenario where both predator and prey are moving very quickly
relative to the handling threshold, so near perfect alignment in trajectory and speed is
necessary for predation to occur. For β > α+α−1+2, all collisions result in predation:

〈|vpred|〉2 = S
2
h

β
(α+ α−1). (17)

We observe that S2hα/β = |vA|2 so that in the (α, β) plane, level sets of |vA| are lines
radiating from the origin. (Similarly, levels sets of |vB | are hyperbolas.) In Fig. 4,
we see that slowing the prey leads to higher predation rates. Along the first upper
line (slope=1), 〈|vpred|〉 is monotonically increasing along the level set, so lower prey
speeds always lead to greater predation rates. Along the lower level set (slope =
2/3), there is a local maximum. Notice that all level sets except those with unit slope
will eventually leave the domain where Sh becomes relevant. These trends establish a
theoretical basis for toxins being advantageous in plankton and other similar predator-
prey relationships. Toxins have been observed to slow the predators too [27], so a more
detailed quantitative analysis of the relative fitness of toxic versus non-toxic species
is more complex and left for future work. For instance, if karlotoxin were to slow
predator and prey by the same relative amount, it would correspond to an increase in
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β with constant α, yielding higher 〈|vpred|〉. Differing reductions to vA and vB would
shift the state of the system left or right in Fig. 4.
It is more realistic to create a model where there is a distribution of speeds amongst

both predator and prey populations as has been observed in experiments [26,27]. That
is, the prey density distribution μB(s, t) depends on prey speed s and time t, so that
the total prey density at any moment in time is:

ρB(t) =

∫ ∞

0

μB(s, t)ds. (18)

We assume the predator speed distribution is not dependent on time, μA ≡ μA(s).
Furthermore, we assume that the orientations of prey moving at any given speed are
uniformly distributed and the same is true for predators. Therefore,

∂μB

∂t
(s, t) = −

∫ ∞

0

k(s′, s)μA(s′)μB(s)ds′, (19)

where k(s′, s) is the predation rate between predators moving at speed s′ and prey
moving at speed s. We can calculate this value to be:

k(s′, s) = π(rA + rB)2〈|vpred|〉(s′,s), (20)

where 〈|vpred|〉(s′,s) is the ensemble predation speed between predators moving at
speed s′ and prey moving at speed s determined by (12). Thus, we can derive an
evolution equation for the prey speed distribution:

μB(s, t) = μB(s, 0) exp

[

−π(rA + rB)2
∫ ∞

0

〈|vpred|〉(s′,s)μA(s′)ds′t
]

. (21)

3.2 Simulations for inefficient predation based on relative velocity

Simulations similar to the ones presented in Sect. 2.2 were used to validate the model
for predation rates presented in Sect. 3.1 which defined efficiency based on a sharp
cutoff determined by relative velocity (13). To compare results, we define a normalized
predation rate k̄,

k̄ =

[

(1− w)(α+ α−1 + β − 2)|vA||vB |
]1/2

2
√|vA|2 + |vB |2

, (22)

where k̄ is the predation rate that accounts for inefficiency normalized by the per-
fectly efficient predation rate (9). One hundred simulations were run for each of the
four parameter combinations (see Sect. 2.2), and the cutoff velocity Sh was varied
at intervals from zero to the maximum possible relative velocity (vA + vB). The re-
sults can be seen in Fig. 5, which shows close correspondence between the simulated
results and the theoretically predicted rates. The rates from simulations are slightly
lower than the theoretical values, which is consistent with the simulation results from
Sect. 2.2 and likely has similar causes.

3.3 Determining predation efficiency by considering predator-prey velocities
individually

The simple efficiency model presented in Sect. 3.1 is useful from an illustrative stand-
point to demonstrate a basic mechanism to account for predation inefficiency. How-
ever, in this section we propose a more sophisticated and phenomenologically accurate
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Fig. 5. Plots comparing theoretical predation rates to simulated predation rates (22). The
black lines represent the theoretical rates, while the red dots represent simulated results.
The cutoff velocity has been normalized using the following convention: S̄ = Sh/(vA + vB).
The K. veneficum strains that were analyzed in the simulations were: (a) MD5, (b) 1974,
(c) BM1, and (d) 2064.

efficiency model that accounts for the predator-prey velocities individually. Specifi-
cally, we propose a 2-D low-pass filter concept, where the efficiency η is given as

η(vA,vB) =
1

√

1 +
(

vA
λA

)2ξA
+
(

vB
λB

)2ξB
. (23)

This “filter” increases the likelihood of successful feeding during a collision when
the velocities of both predatory dinoflagellates and their prey are low relative to
the cutoff velocities λA and λB, respectively. The parameters ξA and ξB are related
to the sharpness of the cutoff. This efficiency model is supported by experimental
observations of dinoflagellate predation events [1,27]. This 2-D filter model will be
implemented with simulations in Sect. 4 to match experimental studies and to gain
further insight into the predatory behavior of dinoflagellates.

4 Comparisons with experimental studies

This section describes a set of simulations that seek to replicate the experimental
results obtained by Sheng et al., who observed that some strains of the mixotrophic
dinoflagellate K. veneficum release karlotoxins to immobilize their prey and enhance
predation [27]. The simulations accounted for the distributed parameters and immotil-
ity fractions of the dinoflagellates and calculated predation inefficiencies as a function
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Table 2. Summary of experimental results from Sheng et al. [27]. Not to be confused with
the helical radius R, the spherical radii rA and rB were 4.5 μm and 3.5 μm, respectively, for
all cases. Note: the h5 data for experiments involving 1974 is not available.

Species v (μm/sec) R (μm) ω (rad/sec) χ (%) γ (1/hr)
S. major (control) 86.4± 47.0 5.8± 6.1 7.3± 4.0 31
MD5 (control) 81.3± 44.9 4.57± 4.9 6.98± 3.7 26
MD5 (h0) 84.5± 48.6 4.6± 5.3 6.9± 2.2 25
MD5 (h5) 82.3± 50.1 4.7± 5.1 6.8± 3.0 26
S. major (h0) 85.2± 46.1 5.1± 5.9 7.2± 3.8 28
S. major (h5) 86.8± 40.1 6.1± 4.8 7.8± 2.5 29 0.03± 0.12
1974 (control) 102.3± 56.4 9.2± 8.6 5.67± 2.9 17
1974 (h0) 160.4± 59.6 16.2± 5.7 8.7± 6.1 28
S. major (h0) 42.7± 37.7 2.9± 4.3 8.1± 4.1 53 0.39± 0.13
BM1 (control) 111.2± 55.15 9.3± 8.8 6.7± 3.1 6
BM1 (h0) 81.8± 55.5 6.5± 7.4 6.4± 3.0 21
BM1 (h5) 92.7± 43.6 8.7± 7.5 5.6± 2.7 40
S. major (h0) 65.1± 41.9 4.1± 4.8 6.9± 3.2 28
S. major (h5) 69.8± 44.6 5.1± 6.0 6.7± 3.3 53 0.36± 0.06
2064 (control) 80.9± 38.9 6.5± 6.8 5.0± 2.7 11
2064 (h0) 37.8± 40.1 3.76± 5.0 6.8± 3.8 25
2064 (h5) 59.4± 35.1 4.7± 5.1 5.5± 3.0 25
S. major (h0) 81.7± 44.4 4.7± 5.2 6.9± 3.5 37
S. major (h5) 63.2± 44.1 4.2± 5.6 6.4± 3.0 60 0.30± 0.11

of the velocities of the predator and the prey at the moment of the collision (23). A
heuristic parameter estimation algorithm was used to determine the efficiency coeffi-
cients (λA, λB , ξA, ξB), and the simulated predation rates closely matched the exper-
imentally determined predation rates for all three strains of predatory K. veneficum.

4.1 Summary of prior experimental studies

In addition to observing that some strains of the mixotrophic dinoflagellate K. venefi-
cum release karlotoxins to immobilize their prey and enhance predation, Sheng et al.
also observed that the toxic strains of K. veneficum dramatically altered their swim-
ming behavior when they were introduced to prey [27]. Using digital holographic
microscopy, they were able to characterize the swimming properties of the various
dinoflagellates (v, r, ω), as well as their immotility (χ) and the time-averaged preda-
tion rate γ. Immotility (χ) is defined as the percentage of dinoflaggelates that are
immobilized, and the time-averaged predation rate (γ) is defined as the number of
prey that disappeared per predator per hour. The experiments were conducted with
four strains of K. veneficum (MD5, 1974, BM1, and 2064), with MD5 serving as a
control due its nontoxic (and nonpredatory) nature. The cryptophyte S. major was
used as prey during the experiments. The swimming properties were observed prior
to mixing (control), immediately after mixing (h0), and 5 hours after mixing (h5). A
summary of the experimental results from their study is shown in Table 2.
Several interesting observations can be made from the experimental data. The

nontoxic (and nonpredatory) K. veneficum MD5 dinoflagellates did not change their
swimming behavior when S. major was introduced to their environment, and the cryp-
tophyte prey S. major did not change their swimming behavior either. Conversely,
the toxic strains of K. veneficum altered their swimming behavior dramatically when
S. major was introduced to their environment. The proportion of immotile cells
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Table 3. Predatory efficiency coefficients. The standard deviations are included since the
genetic algorithm used for the parameter estimation was run multiple times to compensate
for its heuristic nature. The standard deviations are small relative to the mean values of the
parameter estimates, which indicates that the algorithm successfully reached convergence.

Coefficient Value
λA (μm/sec) 152± 20
λB (μm/sec) 20± 2
ξA 3.0± 0.1
ξB 25.5± 4.1

Table 4. Predation rate comparisons. Note that k now represents the encounter rate and
not the predation rate, since predation inefficiencies are being considered.

K. veneficum Strain Experimental γ (1/hr) Simulated γ (1/hr) Simulated k (m3/sec)

1974 (toxic) 0.39± 0.13 0.39 2.87× 10−14
1974 (control) 0.31 2.98× 10−14
BM1 (toxic) 0.36± 0.06 0.36 2.16× 10−14
BM1 (control) 0.21 3.35× 10−14
2064 (toxic) 0.30± 0.11 0.30 1.65× 10−14
2064 (control) 0.27 2.73× 10−14

increased for all three toxic strains upon introduction of prey, and K. veneficum BM1
and 2064 immediately experienced a sharp decrease in speed, while the average speed
of K. veneficum 1974 increased instead. Toxin cell quotas presented by Sheng et al.
suggest that K. veneficum released toxins when they encountered prey (S. major),
resulting in a large increase in the proportion of immotile cells and sharp reductions in
prey velocity. The experimental results presented by Sheng et al. are consistent with
toxin potency and agree with previous studies [27]. The predation rate determined
for K. veneficum MD5 is not an actual predation rate, since K. veneficum MD5 is
nonpredatory, but rather an indicator of noise in the measurements.

4.2 Simulations based on experimental studies

Using the experimental data from Table 2 as a reference point, 100 simulations were
run for each of the three strains of toxic dinoflagellates using the same simulation
guidelines outlined in Sects. 2.2 and 3.2. These simulations accounted for the dis-
tributed parameters and immotility fractions of the dinoflagellates and calculated
predation inefficiencies as a function of the velocities of the predators and the prey at
the moment of collisions (23). The simulations in Sects. 2.2 and 3.2 used parameter
sets from the dinoflagellates in their controlled (un-mixed) environments. However,
the goal of the simulations presented in this section was to account for all of the
complexities involved in dinoflagellate predation, including toxin release, immotility,
parameter distributions, and inefficient predation. Therefore, the parameters were
selected from the experimental cases where the K. veneficum was mixed with S. ma-
jor. A genetic algorithm [14,20,23] was used to perform the parameter estimation
for the predation efficiency coefficients, which are shown in Table 3. The resulting
predation rate comparisons can be seen in Table 4, with good agreement between the
simulated and experimental values. The simulation results indicate that the speed of
the prey at the time of collision is the primary factor for determining predation effi-
ciency based on our model (23), as λB � λA and ξA � ξB . This indicates that there
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is a sharp dropoff in predation efficiency at relatively low prey speeds as opposed to
a gradual decline in efficiency at relatively high predator speeds. This result is some-
what intuitive and suggests that the use of toxins primarily enhances the predatory
efficiency of the toxic strains of K. veneficum by enabling them to slow down and
immobilize their prey.
A further set of simulations were used to quantitatively verify whether the re-

lease of toxins provided a predatory advantage to the toxic strains of K. veneficum.
Using the behavior of the non-toxic MD5 dinoflagellate as a reference, 3 sets of “con-
trol” simulations were run where the predator-prey parameters were matched to the
parameters of the species when they were not interacting with each other. Using
the efficiency parameters calculated from the first set of simulations (see Table 3),
the predation rates for these interactions were calculated for comparison and are
shown in Table 4. The encounter rate k was also provided for comparison. These
simulations show that the use of toxins increases the predation rates of the preda-
tory dinoflagellates anywhere from 11% to 71% depending on the specific variation,
despite a reduction in the encounter rates. These results suggest that toxins
increase predation rates by increasing predation efficiency at the expense of lowering
the interaction rates. The benefit gained by increasing efficiency appears to outweigh
the decrease in collision events.

5 Conclusions and future work

In this paper, we have applied modeling principles from simple swimmers and chemical
kinetics to understand predation in plankton species. Leveraging recent experimen-
tal techniques that can determine swimming velocities with great precision, we have
developed mathematical models that provide insight into how predator and prey
species interact at a detailed level. Furthermore, we can validate our theory through
simulation. We are particularly interested in the role of predation efficiency and toxins
which can be deployed by predators to slow prey. We have demonstrated quantita-
tively that lowering the swimming speed can paradoxically increase predation. The
explanation is that under certain circumstances, fewer interactions can lead to a net
gain in predation when the individual interactions are more likely to lead to predation.
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the support of camp coordinator Prof. Schwendeman at Renssaeler Polytechnic Institute,
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Karkoska, Tim Krumwiede, Brittany McCollom, Rashmi Murthy, Thao Nguyen and Yuzhou
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ical discussions. We are also grateful to Dr. Allen Place (University of Maryland Center for
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