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Abstract. Collective motion of animal groups often undergoes changes
due to perturbations. In a topological sense, we describe these changes
as switching between low-dimensional embedding manifolds underly-
ing a group of evolving agents. To characterize such manifolds, first
we introduce a simple mapping of agents between time-steps. Then,
we construct a novel metric which is susceptible to variations in the
collective motion, thus revealing distinct underlying manifolds. The
method is validated through three sample scenarios simulated using a
Vicsek model, namely, switching of speed, coordination, and structure
of a group. Combined with a dimensionality reduction technique that
is used to infer the dimensionality of the embedding manifold, this ap-
proach provides an effective model-free framework for the analysis of
collective behavior across animal species.

1 Introduction

In animal groups, the response to a perturbation–internal or external–is often mani-
fested in the form of changes in group speed, coordination, or structure [4,6,18,30].
Such changes are witnessed in fish schools and bird flocks under attack [17,19,25],
foraging animal groups [5,9], and human crowds exposed to alarm situations leading
to panic [22]. Based on our recent effort demonstrating that collective motion is asso-
ciated with a low-dimensional embedding [1,2,7,8,11], we expect that such behavioral
changes should be manifested in variation of the topology of an underlying manifold.
Coordinated group behaviors can be represented as a manifold,M, in an abstract

phase space of a group such that configurations A evolve in time, t, according to the
mapping

Φ(t)(A) :M→M. (1)
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Fig. 1. A simulation of self-propelled particles in two dimensions. Changes in coordination
can be seen as switching of embedding manifolds of different dimensions. The top row shows
snapshots of self-propelled particles as they move with low, high, and then low noise again.
The bottom row displays the normalized Isomap residual variance for each instance (a, b,
c) and the combination of all three (d). The location of elbow in each plot indicates that
low noise instances are low-dimensional, high noise instance results into a high-dimensional
embedding. The embedding dimensionality for the combined motion should be three.

The presence of a phase change, could therefore be defined as a union of two distinct
underlying manifoldsM(j), j = 1 and 2.
As an illustrative example of change between high and low coordination in a

group, we simulate 20 self-propelled particles using the Vicsek model [26] by alter-
natively imposing low and high noise to their individual dynamics in three distinct
phases. Figure 1 shows the resulting variation in the coordination of agents. Following
our previous work [1,2,7,8], we run an established dimensionality reduction routine
called Isomap [24] on configurations from each phase as well as the whole dataset
comprising all three phases to infer the dimensionality of the underlying embedding.
The residual of the reconstruction error shows that the first and last instances (low
noise) embed on manifolds with lower dimensionality than the middle instance (high
noise) [1]. However, when the same routine is applied to the full dataset, we find
an embedding dimensionality that is in neither an indicator of high nor low group
coordination. This example suggests that group behavior is manifested in distinct
embedding manifolds, and a naive implementation of dimensionality reduction could
result in a loss of information about critical changes in collective behavior [1].
In this paper, we propose a method to study higher-dimensional alternating man-

ifolds in response to an internal or external perturbation to a group of agents. Our
approach shares similarities with the coarse-grained analysis of stochasticity-induced
switching in one-dimensional model of collective motion [16]. Therein, a single coarse
observable, the average nearest-neighbor distance, is used to distinguish between the
stationary and mobile states in the collective motion.
Here, we characterize group motion by using a single coarse observable Δ, which

computes the distance between sub-manifolds corresponding to distinct group actions.
Specifically, we use agent positions in each configuration to create a single weighted
metric of group speed, orientation, and structure. The positions of agents between
consecutive time-steps are mapped using a nearest-neighbor search in position and
velocity, which suffices to characterize the group motion. We succinctly present our
approach in Sect. 2, with further technical details on the velocity computation re-
ported in the Supplementary materials. In Sect. 3, we assess the performance of our
methodology on three synthetic examples of collective behavior, similar to [13,14],
using the Vicsek model [26] to simulate changes in group speed, coordination, and
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structure. We conclude in Sect. 4 with a discussion of the performance of the method
and ongoing work.

2 A method for characterizing alternating manifolds

We assume that agents move in a two-dimensional space, so that the raw data for
our method consists of two-dimensional position vectors of all the agents in time. For
a group of N agents, the position vector of the i-th agent at the t-th time step is

denoted by a
(t)
i ∈ R2. The configuration vector, defined as

A(t) = [a(t)1 ;a(t)2 ; . . . ;a(t)N ] ∈ R2N , (2)

is a point on the manifold that represents the position of the entire group at time t.
The order of the agents in the configuration vector is not required to be preserved
for this method, since the mapping described herein determines the order of each
agent in consecutive configurations. The data acquired from the group at distinct

times t = 1, 2, . . . , T is consolidated in the dataset Q = {A(t)}Tt=1. If the complete
dataset Q of configurations is partitioned into m distinct sub-manifolds, such that
M = ∪j=1,...,mM(j), the dimensionality of each sub-manifold can then be found by
implementing a dimensionality reduction algorithm, such as Isomap [24].
We describe the underlying manifold using the speed, coordination, and struc-

ture of the agents in the group. In order to compute group speed, we calculate the
velocity of each from a time step to the next one. For that, we first construct a bijec-
tive evolution function, Φ(t) in (1), for agents between time steps. Then, we compute
the individual velocity components of agents in each time step from their displace-

ments (see Appendix A). The magnitude of the mean velocity, ‖µ(t)V ‖, is taken as
the speed of the whole group at the t-th time step. The normalized group speed,

‖µ(t)V ‖/max{‖µ(t)V ‖;∀t}, is then used to detect speed changes in the group.
Coordination of agents at the t-th time step is measured by the polarization [2],

P(t) = 1
N

∥
∥
∥
∥
∥

N∑

i=1

[

cos(θ
(t)
i )

sin(θ
(t)
i )

]∥
∥
∥
∥
∥
, (3)

where θ
(t)
i = tan

−1
(

v
(t)
i,2/v

(t)
i,1

)

is the orientation of the i-th agent moving with velocity

v
(t)
i =

[

v
(t)
i,1 , v

(t)
i,2

]T

computed through the aforesaid mapping of agents. Polarization

ranges between 0 and 1, such that 1 identifies perfect coordination, while 0 implies
no coordination.
Change in structure is measured as the number of connected components, C(t), of

the interaction network of the agents at each time step, by representing the interaction
network of agent positions as a time-varying graph. This network is made at each time
step by linking the adjacent agents determined by the range search algorithm in [10].
For each agent, this algorithm searches all other agents within a given Euclidean
distance

ε =
2

TN(N − 1)
T∑

t=1

∑

i,j=1,...,N

‖a(t)i − a(t)j ‖, (4)

which is the average distance of each pair of nearest neighbors of all agents over all
time steps. The normalized number of connected components [23], C(t)/N ∈ [0, 1], is
used to detect changes of the structure.
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We define the set X = {X (t)}Tt=1, which contains the values generated from a
convex combination of the speed, polarization, and number of clusters, all scaled
between 0 and 1. That is, for ξ1 and ξ2 ∈ [0, 1], we let

X (t) = ξ1 ‖µ(t)V ‖
max{‖µ(t)V ‖;∀t}

+ ξ2P(t) + (1− ξ1 − ξ2)C
(t)

N
, (5)

so that the metric distance Δ : {1, . . . , T} × {1, . . . , T} → R is defined as

Δ(t1, t2) =
∣
∣
∣X (t1) −X (t2)

∣
∣
∣ . (6)

Since X (t) is a convex combination, the relative importance of the speed, coordina-
tion and structure can be changed by varying the scalars ξ1 and ξ2 so that distinct
group actions driven by changes in speed, coordination, and structure should be

represented through distinct manifolds. In other words, two configurations, A(t1)
and A(t2), should give a large metric distance, Δ(t1, t2), if they are sampled from
different manifolds representing different group actions.

3 Examples

Here, we evaluate the metric on three simulations of self-propelled particles [26]. The
self-propelled particle model [26] updates the position and orientation of each particle
under the influence of its nearest-neighbors within a given distance. Briefly, for a

nearest-neighbor set N
(t)
i , comprising all agents within a unit distance from agent i

(including agent i itself), the Vicsek model updates the orientation θ
(t)
i ∈ [−π, π] of

the i-th agent at t-th time step as

θ
(t+1)
i = arg (V

(t)
i ) + ε

(t)
i , (7)

where ε
(t)
i is the orientation noise parameter for the i-th agent at the t-th time-step

and V
(t)
i is the average direction of motion of all nearest-neighbors including the

agent. We assume that the noise is sampled from a uniform distribution between α1
and α2, U[α1, α2].
We augment the model by including a two-dimensional rotation matrix Rti for the

i-th agent at the t-th time-step. Such a rotation matrix can be used to change the

orientation of select agents so that the group can split and rejoin. The position a
(t)
i

of the i-th agent at the t-th time step is therefore updated as

a
(t+1)
i = a

(t)
i + s

(t)
i R

(t)
i

⎡

⎣
cos(θ

(t)
i )

sin(θ
(t)
i )

⎤

⎦ δt,

V
(t)
i =

1

|N (t)i |
∑

j∈N(t)i

R
(t)
j

⎡

⎣
cos(θ

(t)
j )

sin(θ
(t)
j )

⎤

⎦ ,

(8)

where δt is a duration of a time unit and s
(t)
i is the speed of the i-th agent at the

t-th time step. The agent speed (assumed constant in the original Vicsek model) is

modeled as time varying here. If R
(t)
j is a 2 × 2 identity matrix for all j and s(t)i is

constant, the model (8) specializes to the classical Vicsek model.
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Fig. 2. (a) Distribution of X (t) versus configurations. Snapshots in each section show the
structures and velocities of the agents. Therein, the length of the lines measures the speeds
and the directions quantify the orientations of motion. Normalized Isomap residual variance
versus dimensionality plots for each section are presented in the top row. For any two given
configurations A(t1) and A(t2) where t1, t2 ∈ 1, . . . , T , and any arbitrary t0 ∈ 1, . . . , T , if
the distance metric image (b) shows the same color at two points (t0, t1) and (t0, t2), then
those configurations lie on the same manifold.

In order to produce collective motion, three simulations of the augmented Vicsek

model are carried out by changing s
(t)
i , ε

(t)
i , and R

(t)
i for T time steps for N agents

in a rectangular domain of size 2L × 2H with periodic boundary conditions [26].
Initial alignments of agents are set to zero, and positions are sampled from a uniform
distribution in a circle of radius 2 centered at (−L+ 2, 0). The size of the time step
δt is taken to be 0.05.
The metric in Eq. (6) is computed from the positions of agents and is used to

identify and characterize the distinct manifolds representing different group actions.
For all the examples shown here, we set ξ1 = 1/3 and ξ2 = 1/3, so that the speed,
coordination, and structure are weighted equally. The pairwise metric distances are
then used to identify separate group actions which are then further analyzed using
Isomap.

3.1 A simulation of Vicsek model with switching speed

To study changes in collective motion governed by differences in group speed, we
simulate 50 agents (N) through 150 time steps (T ) in a domain with L = 8 and
H = 5 and impose the following speed changes,

s
(t)
i =

⎧

⎪⎨

⎪⎩

0.05 + εs, if t < 50

0.1 + εs, if 50 ≤ t < 100
0.05 + εs, if t ≥ 100

, (9)

where εs ∈ U[−0.01, 0.01] represents individual variability in speed with respect to
the group. We set the orientation noise ε

(t)
i ∈ U[−0.01, 0.01] for all agents and choose

the rotation matrix as the identity matrix for all agents.
Figure 2(a) shows that configurations for t between 51 and 100 are characterized

by high values of X (t) compared to configurations through the time steps 51–100 and
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Fig. 3. (a) Distribution of X (t) versus configurations with snapshots showing the structures
along with velocities of the agents. There-in, the lengths measures their speeds and arrows
quantify their orientations. Normalized Isomap residual variance plots for each section (red,
green, yellow) are shown in the top row. For any two given configurations A(t1) and A(t2)
where t1, t2 ∈ 1, . . . , T , and any arbitrary t0 ∈ 1, . . . , T , if the distance metric image (b)
gives the same color for pixels at two points (t0, t1) and (t0, t2), then those configurations
are in the same manifold, or in different manifolds otherwise.

101–150. This is evidenced from the right and left snapshots which display low speeds,
while the middle snapshot that shows high speed. Residual variance plots (Fig. 2(a)
top row), obtained after running Isomap over the data, reveal that the first (red) and
last (yellow) sections lie on an underlying manifold of dimensionality two. In contrast,
Isomap indicates that the middle section (green) manifold has dimensionality five.
Metric distances between all pairs of configurations are computed and rescaled to
range between 0 and 1. Then, rescaled distances are converted to a gray color image,
presented as Fig. 2(b), such that black refers to 0 and white to 1. Based on evidence
in Figs. 2(a) and 2(b), we find that configurations between 1–50 and 101–150 lie
on the same sub-manifold, while those between 51–100 are embedded on a different
sub-manifold.

3.2 A simulation of Vicsek model with switching coordination

To study changes elicited by differences in group coordination, we simulate a group
of 50 agents through 150 time steps with L and H = 6 and consider the following
noise on the heading of each agent in the three sections

ε
(t)
i ∈

⎧

⎪⎨

⎪⎩

0.01εc, if t < 50

0.2εc, if 50 ≤ t < 100,
0.01εc, if t ≥ 100

(10)

where εc ∈ U[−1, 1]. The speed of agents is set to 0.05 + εs where εs ∈ U[−0.01, 0.01]
and the rotation matrix is chosen to be the identity matrix.
Figure 3(a) demonstrates that configurations through time steps 51–100 are char-

acterized by higher values of X (t)i than those between time steps 1–50 and 101–150.
Such a variation should be ascribed to the changes in the coordination of the group,
as further evidenced from the snapshots presented therein. Specifically, while the
right and left snapshots look similar, with agents moving with high coordination, the
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Fig. 4. Trajectories of agents of two connected components, with red and blue curves
depicting the motion of their centroids.

middle snapshot displays low coordination. The Isomap residual plot in Fig. 3(b) con-
firms these similarities in terms of the dimensionality, in that the first (red) and last
(yellow) sections lie on an underlying manifold of dimensionality three, while the
second (green) manifold has dimensionality four. As in the previous example, the
metric distances between all pairs of configurations are computed and presented as
an image in Fig. 3(b). Results in Figs. 3(a) and 3(b) confirm that configurations
between time steps 1–50 and 101–150 lie on one sub-manifold, while configurations
between 51–100 embed on a different sub-manifold.

3.3 A simulation of Vicsek model with switching number of clusters

In this example, we simulate a group of agents that initially move together, then
break into two subgroups, and eventually rejoin. We use a rotation matrix to change
the orientation of agents such that the two subgroups move in different directions
(Fig. 4).

We compute two-dimensional coordinates [x(1); . . . ;x(T )] where x(t)=(x
(t)
1 , x

(t)
2 )∈ R2 to obtain the movement of the centroid of the upper half of the group as shown

by red in the Fig. 4. We discretize the horizontal axis into T segments ranges from
−6 to 6 by

x
(t)
1 = 6(2t− T )/T ; t = 1, . . . , T. (11)

Subgroup trajectories are obtained by using the difference of two sigmoid
functions as

x
(t)
2 = 5

(
1

1 + e−( T12 t−4)
− 1

1 + e−( T12 t−8)

)

; t = 1, . . . , T. (12)

The rotation angle between t-th and (t+ 1)-th time steps for half the agents is

γ(t) = tan
(

(x
(t)
2 − x(t−1)2 )/(x

(t)
1 − x(t−1)1 )

)

; t = 2, . . . , T. (13)

The rotation angles for the other half is −γ(t) for t = 2, . . . , T . We arbitrarily split
the whole group into two groups as

R
(t)
i =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(

cos γ(t) − sin γ(t)
sin γ(t) cos γ(t)

)

, if 1 ≤ i ≤ N/2,
(

cos(−γ(t)) − sin(−γ(t))
sin(−γ(t)) cos(−γ(t))

)

, if N/2 + 1 ≤ i ≤ N.
(14)
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Fig. 5. (a) Distribution of X (t) versus configurations with snapshots giving the structures
and velocities. Therein, the length of lines measures their speeds and arrows quantify the
their orientations. The top row of plots shows normalized Isomap residual variance versus di-
mensionality for each section (red, green, yellow). For any two given configurationsA(t1) and
A(t2) where t1, t2 ∈ 1, . . . , T , and any arbitrary t0 ∈ 1, . . . , T , if the distance metric image
(b) gives the same color for pixels at two points (t0, t1) and (t0, t2), then those configurations
are in the same manifold, or in different manifolds otherwise.

This special rotation matrix is used to simulate changes in group structure for

50 agents with L = H = 6. We select ε
(t)
i ∈ U[−0.01, 0.01] and s(t)i = 0.05 + εs with

εs ∈ U[−0.01, 0.01].
Figure 5(a) reveals that configurations between 66–145 result in higher X (t) val-

ues than those in during time steps 1–65 and 146–220. The right and left snapshots
illustrate that the group moves as one, while the middle snapshot indicates the pres-
ence of two subgroups. Isomap (Fig. 5(a)) implementation demonstrates that the first
(red) and last (yellow) sections lie on an underlying manifold of dimensionality two,
while the middle section (green) manifold has dimensionality four. Metric distances
presented as an image (Fig. 5(b)) show that the configurations between 1–65 and
146–220 lie on one manifold and those between 66–145 on a different manifold.

4 Discussion

Three diverse examples of changing speed, coordination, and structure are simulated
using an augmented Vicsek model to validate our novel method of identifying man-
ifolds. Once distinct manifolds are revealed on the basis of metric distance, Isomap
dimensionality reduction routine is used to compare their dimensionalities. The three
examples presented here offer some validation of our method and provide useful in-
sight into the possibility of handling alternating group actions of multi-agent systems
in a fully data-driven approach. Though the Vicsek model simulates agent positions
in time and records them in the same order between all time steps, our method is
also robust to the unavailability of such ordering information. This is particularly
important in dealing with real experimental data, where tracking individuals and
preserving their identities [15,20,27,28] may be challenging.
In this study, we proposed a novel metric to characterize alternating manifolds of

a group of agents. The method takes two-dimensional positions at each time step as
input. Individual positions in successive configurations are mapped for each agent by
a simple nearest-neighbor search in position and then velocity. While more accurate
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methods exist for individual tracking [29], we found that this approach is O(logN)
fast and robust to errors in position assignments to individual agents in successive
configurations, much in the spirit of a coarse observable.
The relative importance of the weights for the average speed, polarization, and

normalized connected components used in the proposed metric can be changed by
tuning the scalars ξ1 and ξ2. Accordingly, to preserve the definition of the metric for
different datasets, these weights must be preset prior to analysis.
Compared to [16], where average nearest-neighbor distance (ANND) is used to

distinguish between states resulting from repelling forces only and those resulting
from forces of attraction and orientation, the proposed metric captures changes across
multiple types of group motion. While ANND is able to differentiate between the
stationary states, where neighboring agents move in random directions, and parallel
motion, it is less sensitive to the formation of subgroups [16]. In contrast, while the
number of connected components used in the proposed metric does not capture group
cohesion, it directly counts the number of subgroups, and may be therefore useful to
analyze datasets where group fragmentation is expected [8].
The proposed metric is able to isolate distinct phases of collective motion in

three separate scenarios. The separation of these phases as sub-manifolds in a low-
dimensional space was further confirmed by the Isomap algorithm, which measures a
different dimensionality for each of these phases. Further based on metric distances
it was possible to group similar actions together. This has potential application in
using the proposed metric to train specific events of interest and process long videos
to highlight the same. As this method combines similar group actions occurring alter-
natively in group motion, it may be difficult to either record such real-life biological
data from an experiment or find data in the literature. Thus, we simulated all the
data using Vicsek model imitating alike motions.
While the artificial separation of phases was distinct in the simulated examples

presented here, future work will evaluate the performance and sensitivity of this
metric to gradual changes over a sequence of time-steps. We will utilize the method
to analyze videos for classifying collective behavior [3]. In the future, we will also
seek to clarify inherent patterns of collective behavior across animal species [7] to
characterize alternating manifolds through the novel metric presented herein.
Multi-agent groups often change their behavior due to natural perturbations [3,5,

11,16,27]. We assert that the entire evolution can be described by a collection of sub-
manifolds, each representing similar group actions. Identifying such sub-manifolds
may offer important insight in the analysis of collective motion, and serve as an
important step before more detailed investigations are conducted. Here, we presented
a method capable of characterizing sub-manifolds representing similar group actions
using a novel metric. This metric produces a single coarse observable measuring speed,
group coordination, and the structure of a multi-agent system.

Kelum Gajamannage and Erik M. Bollt have been supported by the National Science
Foundation under grant No. CMMI-1129859. Sachit Butail and Maurizio Porfiri have been
supported by the National Science Foundation under grant no. CMMI-1129820.

Appendix A: Construction of the bijective evolution function and
computation of velocity components

Here, we detail the construction of the bijective mapping of agents’ evolution. The
identity of agents in the input data is not required to be preserved for this method, as
the mapping presented below automatically finds any agent’s position change between
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Fig. A.1. Mapping of positions of agents between two consecutive time-steps. Same colored
square and circle pair refers to the same agent. Squares represent agents’ positions at the
t-th time step and circles represent agents’ positions at the (t+ 1)-th time-step.

consecutive time steps. Given that this mapping has a rather modest computational
cost of O(logN), we opt for this approach in favor of more accurate but computa-
tionally costly methods [15,27].
We assume that the position of an agent at the next step are in a neighborhood

of its position at the previous time step. We search the nearest neighbor [10], say

a
(t+1)
j ∈ A(t+1), for an agent, say a(t)i ∈ A(t), and map them through Φ(t)f as

Φ
(t)
f : A(t) → A(t+1) such that Φ(t)f (a(t)i ) := a(t+1)j . (A.1)

Similarly, we apply Φ
(t)
f to all the agents at the t-th time step to map the correspond-

ing agents at the (t + 1)-th time step. Since some agents at the t-th time step may

share the same nearest neighbor at (t+1)-th time step, Φ
(t)
f maps more than one agent

in A(t) into the same agent in A(t+1) and violate the uniqueness of the mapping. In
order to ensure the uniqueness of the mapping, Φ

(t)
f should be a bijection which is

defined to be a one-to-one correspondence of agents between consecutive time steps.

We define and extract the sub-domain D(t) ⊆ A(t) as all agents bijectively mapped
with agents in A(t+1) through Φ(t)f . The rest of the agents are mapped using a dif-
ferent map that assures the bijection, as described in what follows. We denote the

bijective mapping Φ
(t)
f in D(t) by Φ(t)g

Φ(t)g : D(t) → A(t+1). (A.2)

Mappings Φ(t) and Φ
(t)
g and the domain D(t) for six agents are illustrated in Fig. A.1.

For convenience and without lack of generality, we assume that the first m agents at

the t-th time step are in D(t). The velocity of the i-th agent in D(t), say v(t)i ∈ R2 for
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i = 1, 2, . . .m, is defined as the displacement from the current positions to the next
position

v
(t)
i = Φ

(t)
g (a

(t)
i )− a(t)i . (A.3)

We compute the mean velocity of the agents in D(t) as µ(t)1 =mean{v(t)i ; i=1, 2,
. . . ,m} and use this quantity to map the remaining elements in A(t).
Mapping of the remaining elements in the configuration A(t), denoted as

A(t)\D(t), with the remaining elements in A(t+1), denoted as A(t+1)\Φ(t)g (D(t)),
is presented below. We choose an agent a

(t)
i ∈ A(t)\D(t) for i = m + 1, . . . , N

and compute displacement components from that agent to all the agents a
(t+1)
j ∈

A(t+1)\Φ(t)g (D(t)); j = m+1, . . . , N . We use the mean velocity, µ(t)1 , to approximate
the positions of unmapped agents in the t-th time step. If the displacement computed

between a
(t)
i and a

(t+1)
j is the closest to the mean velocity of the agents mapped

bijectively, µ
(t)
1 , then a

(t)
i is mapped to a

(t+1)
j . Thus, we map all the agents bijec-

tively between time steps t and t+1 such that they all follow the same group action.

We apply this mapping for all the agents in A(t)\D(t). The mapping between agents
A(t)\D(t) and A(t+1)\Φ(t)g (D(t)) is defined as

Φ
(t)
h : A(t)\D(t) → A(t+1)\Φ(t)g (D(t)), (A.4)

such that a
(t)
i ∈A(t)\D(t) is mapped into a(t+1)j ∈A(t+1)\Φ(t)g (D(t)) for i, j=m+ 1,

. . . , N , if

‖a(t)i − a(t+1)j ‖ ≈ ‖µ(t)1 ‖ and (a(t)i − a(t+1)j ) · µ(t)1 ≈ 0.

Figure A.1 also illustrates the mapping Φ
(t)
h and the domain A(t+1)\Φ(t)g (D(t)) for

six agents. The velocity components v
(t)
i for i = m + 1,m + 2, . . . , N , of agents in

A(t)\D(t) are defined as the displacements of position

v
(t)
i = Φ

(t)
h (a

(t)
i )− a(t)i . (A.5)

The set V(t) = {v(t)1 ,v(t)2 , . . . ,v(t)N } represents all the individual velocity components
at the t-th time step. Thus, the mapping Φ(t) in (1) is defined as a union of two

individual maps Φ
(t)
g and Φ

(t)
h such that

Φ(t) = Φ(t)g ∪ Φ(t)h . (A.6)

The mean velocity, µ
(t)
V = mean(V(t)), is considered to be the velocity of the whole

group at time t. The normalized mean speed,

‖µ(t)V ‖
max{‖µ(t)V ‖ ;∀t}

, (A.7)

is used to detect speed changes in the group.
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