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Abstract. The Heider social balance model describes the evolution of
the relationships in a social network of humans or animals. This model
is built upon the concept of balance of triads consisting of friendly or
hostile edges representing the state of the network. In this differential
model, a leader is introduced in order to control the system and to drive
the social network to a desired relationship state. Further, the stability,
the local controllability, and the optimal control through leadership of
the Heider model are investigated. Results of numerical experiments
demonstrate the ability of the proposed control strategy to drive the
Heider balance model to friendship.

1 Introduction

The balance theory proposed by F. Heider [13,14] attempts to model how individuals
develop their relationships with other individuals and with objects in their envi-
ronment based on a cognitive consistency motive that drives toward psychological
balance. This motive urges to maintain one’s values and beliefs over time resulting
in the preference to have a balanced state where the affect valence in the system
multiplies out to a positive result. Specifically, in the relation of three individuals,
balance state occurs when all sign multiplication of sentiment relations is positive.
In this way, the balance state occurs when the sentiment relations are all positive or
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two negatives and one positive. We refer to sentiment relation between two people
as a linking edge to which a positive value is associated in case of friendship or a
negative value in case of hostility. We remark that Heider balance has been identified
experimentally in society of hyraxes [15] and, in particular, this model can be applied
to certain mammals; see also [18] for further discussion.

In a system of many people or animals, the concept of social balance is related
to the balance of each triad consisting of friendly or hostile edges. The resulting
system can be investigated in the framework of network dynamics by using math-
ematical modeling based on agent-based simulation and in the framework of graph
theory where nodes represent individuals and their links represent relationships; see
[1–3,7,17,19,20,22,23] for a partial list of references on these approaches.

From a mathematical point of view, it is certainly advantageous to consider a
continuous time Heider balance system [16]. Indeed, in this case powerful tools for
the investigation of the dynamics of this system can be applied; we refer to [16,17]
for some fundamental results and to [2,3,17,22] for further developments and
applications.

Our purpose is to investigate an optimal control strategy for the continuous time
Heider balance (HB) model proposed in [16]. In this strategy, an additional “reference”
agent enters in the network with partial or full connection to the other individuals
of the network. This agent acts on the network by modifying the values of the edges
that connect to it with the purpose to attain a desired objective. The motivation for
this approach is twofold. First, it is more realistic as it describes real social behavior
as, for example, in politics. Second, it can be implemented as soon as a reference
agent is available. For a similar control method, we refer to [5,24], however in the
present case, the control functions represent the values of the edges connecting to the
reference agent, while in [5,24] the control is implemented in the leader agent.

Our work is organized as follows. In Sect. 2, we begin with a survey on the con-
tinuous time HB model. In addition, the issue of stability is explored. Section 3 is
devoted to the local controllability properties of the HB model where a leader is added
to the network and the control input is implemented on the links between the leader
and the other individuals. In Sect. 4, we formulate an optimal control problem gov-
erned by the HB model with an objective function of the final observation and of the
cost of the control. Correspondingly, we introduce the optimality system representing
the first-order optimality conditions. We also illustrate a Runge-Kutta discretization
scheme that guarantees high-order accuracy of the numerical solution of the optimal
control problem. In Sect. 5, results of numerical experiments demonstrate the validity
of our control strategy to drive the Heider balance model to friendship. A section of
conclusion completes this work.

2 The continuous time Heider balance model

The structure of the Heider balance model consists in a signed graph where its nodes
represent individuals and the corresponding valued pairwise links denote the relation-
ships. The continuous time HB model involving N > 2 agents is proposed in [16]. It
is given by

ẋij(t) = c(xij(t);R)
N∑

k=1
k �=i,j

xik(t)xkj(t), for i, j = 1, ..., N, i �= j, (1)

with given initial conditions xij(0) = x0ij . The indices i, j represent the individu-
als in the network while xij ∈ R denotes the relationship between agents i and j.
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A positive value of xij determines friendship; conversely, a negative value of xij ex-
presses hostility. Namely

sign(xij) :=

⎧
⎨

⎩

1, if i and j are friends,
0, if i and j have no relationship,
−1, if i and j are enemies.

(2)

In the dynamics given by (1), we assume that xii = 0, that each agent is connected
to all agents in the network, that is, social structure can be seen as fully connected
graph, and that xij = xji for any i and j.

The function c : R→ R in (1) is defined by

c(xij ;R) =
1

N − 2

(
1− x

2
ij

R2

)
, R > 0. (3)

The structure of the function c(xij ;R) := cij is not unique and it is added to system
for the purpose of a well-behaved evolution, in the sense to keep the relations within
some finite range. Without this function, the value xij could diverge. A well-behaved
model is also obtained by choosing

c(xij ;R) :=

{
1, if −R < xij < R,
0, else.

(4)

Notice thatN > 2 since at least three nodes are necessary. The essence of the structure
of c is that the relation between the i-th node and the j-th node is influenced by the
k-th node, as seen in (1). For example, for N = 3 and cij = 1, i, j = 1, 2, 3, we have

ẋ12 = x13x32,

ẋ13 = x12x23,

ẋ23 = x21x13,

with the symmetry condition xij = xji. Then in any stationary state the positive
product of xikxkj forces xij to increase; and similarly with the negative values. This
is exactly the condition of the Heider balance; see also [8].
Notice that in a fully connected network with N nodes, the total number of relations
Nr and triads of relations N� are given by

Nr :=
N(N − 1)

2
,

and

N� :=
N(N − 1)(N − 2)

6
,

respectively.
In the next section, we analyze the stability of the HB system, which is a significant

property for studying controllability. An investigation of controllability and of optimal
control of a similar problem is proposed in [22]. However, the major difference is that
the dynamics of our system has bounded solutions, that is not considered in [22].
Therefore, the spectral analysis proposed in [22] does not apply in our case.

2.1 Stability of the HB model

In this section, we discuss stability of (1). In accordance to the Heider theory, a stable
state of the HB model is defined as the balance in the triad of relation �ijk between
individuals i, j and k. The balance of a triad is determined by the product of the
values of the corresponding edges as follows.
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Definition 1. The triad �ijk of relationship between agents i, j and k is balanced
if xijxjkxki > 0, that is,

sign(xijxjkxki) = 1, (5)

for any i, j, k = 1, . . . , N pairwise distinct, otherwise the triad is unbalanced.

Concerning the evolution of the HB model towards a balanced state, we have the
following result.

Proposition 1. If xij(0) ≥ −R, i, j = 1, . . . , N , then there exits T > 0 such that all
triads become balanced, that is, the product of links on triads �ijk is positive

xij(T )xjk(T )xki(T ) > 0

for i, j, k = 1, . . . , N pairwise distinct.

Proof. Consider

d

dt

N∑

i=1

N∑

j=1
j �=i

N∑

k=1
k �=i,j

xijxjkxki

=
N∑

i=1

N∑

j=1
j �=i

N∑

k=1
k �=i,j

(ẋijxjkxki + xij ẋjkxki + xijxjkẋki)

=

N∑

i=1

N∑

j=1
j �=i

ẋij

⎛

⎜⎝
N∑

k=1
k �=i,j

xjkxki

⎞

⎟⎠+

N∑

j=1

N∑

k=1
k �=j

ẋjk

⎛

⎜⎝
N∑

i=1
i�=j,k

xjixik

⎞

⎟⎠

+

N∑

i=1

N∑

k=1
k �=i

ẋki

⎛

⎜⎜⎝
N∑

j=1
j �=i,k

xkjxji

⎞

⎟⎟⎠

=

(
1

N − 2

)
⎛

⎜⎜⎝
N∑

i=1

N∑

j=1
j �=i

(
1− x

2
ij

R2

)⎛

⎜⎝
N∑

k=1
k �=i,j

xikxkj

⎞

⎟⎠

2

+

N∑

j=1

N∑

k=1
j �=j

(
1− x

2
jk

R2

)

×

⎛

⎜⎝
N∑

i=1
i�=j,k

xjixik

⎞

⎟⎠

2⎞

⎟⎠+

(
1

N − 2

)
⎛

⎜⎜⎝
N∑

i=1

N∑

k=1
k �=i

(
1− x

2
ik

R2

)
⎛

⎜⎜⎝
N∑

j=1
j �=i,k

xijxjk

⎞

⎟⎟⎠

2⎞

⎟⎟⎠ .

We have the following cases,

Case I: |xij | < R, for i, j = 1, . . . , N and i �= j.
In this case d

dt
(xijxjkxki) > 0, which implies that the product of links in each

triads is increasing. Then there exists T > 0 such that xij(T ) = R and
d
dt

(xij(t)xjk(t)xki(t))
∣∣∣
t=T

= 0.

Case II: xij >R, for i, j= 1, . . . , N and i �= j.
In this case d

dt
(xijxjkxki)< 0, which implies that the product of links in each triads

is decreasing. Therefore there exists T > 0 such that d
dt

(xij(t)xjk(t)xki(t))|t=T = 0,
that is xij = R.
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Case III: xij < −R, for i, j = 1, . . . , N and i �= j.
In this case d

dt
(xijxjkxki)< 0, which implies that the product of links in each

triads is decreasing, then the value of xij is decreasing and limt→∞ xij(t) = −∞.
�

The following Proposition establishes the asymptotic behavior of a balanced HB
model.

Proposition 2. If the HB model (1) is balanced, then

lim
t→∞xij(t) = R or lim

t→∞xij(t) = −R, (6)

for i, j = 1, . . . , N and i �= j.

Proof. Consider

V (x) =
1

2

N−1∑

i=1

N∑

j=i+1

(x2ij −R2)2.

We have

dV (x)

dt
=
N−1∑

i=1

N∑

j=i+1

1

2

d

dt
(x2ij −R2)2

=

N−1∑

i=1

N∑

j=i+1

(x2ij −R2) (2xij ẋij)

=
N−1∑

i=1

N∑

j=i+1

(x2ij −R2)

⎛

⎜⎝2xij

(
1

N − 2

)(
1− x

2
ij

R2

)
N∑

k=1
k �=i,j

xikxkj

⎞

⎟⎠

= − 2

N − 2

N−1∑

i=1

N∑

j=i+1

⎛

⎜⎝
(x2ij −R2)2
R2

N∑

k=1
k �=i,j

xijxikxkj

⎞

⎟⎠ .

Since (1) is balanced, every triads �ijk is balanced, that is,

xijxikxkj > 0,

for i, j, k = 1, . . . , N pairwise distinct. In particular dV (x)
dt
< 0, which concludes the

proof. �

As a result of Proposition 1 and Proposition 2, if an edge starts with a value
greater than or equal to −R, then the HB model reaches a balanced state where the
trajectories of relationships may divide into two groups, one of them asymptotically
reaches the value R and the other the opposite attains value −R. Notice that even if
some initial elements xij are zero, soon they become finite, as long as the initial graph
is connected. This is a consequence of the Heider balance rules. Then, the condition of
all-to-all coupling is not a limitation. However, it is seen that if the graph is initially
divided into separated pieces, then they remain separated.
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Next, we study the dynamics of (1) in the neighborhood of the equilibrium points
x∗1 = R̄ and x∗2 = −R̄, where R̄ = (R, . . . , R) ∈ RNr . For this purpose, it is convenient
to represent the HB model in the following form

ẋ(t) = F (x), (7)

x(t0) = x0,

where x = (x12, x13, . . . , x1N , x23, . . . , x2N , . . . , x(N−1)N ) ∈ RNr and F (x) = (f12(x),

. . . , f1N (x), f23(x), f2N (x), . . . , f(N−1)N (x))T .
The linearized HB model can be written as follows

ẋ = Anx,

for n = 1, 2, where A1 and A2 denote the Jacobian matrix of F with respect to x at
x∗1 and x∗2, respectively. They are given by

∇xF (x∗) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f12

∂x12
(x∗)

∂f12

∂x13
(x∗) · · · ∂f12

∂x(N−1)N
(x∗)

∂f13

∂x12
(x∗)

∂f13

∂x13
(x∗) · · · ∂f13

∂x(N−1)N
(x∗)

...
... · · · ...

∂f(N−1)N
∂x12

(x∗)
∂f(N−1)N
∂x13

(x∗) · · · ∂f(N−1)N
∂x(N−1)N

(x∗)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A1 = ∇xF (x∗1) =

⎛

⎜⎜⎜⎜⎝

−2R 0 · · · 0

0 −2R · · · 0

...
... · · · ...

0 0 · · · −2R

⎞

⎟⎟⎟⎟⎠
,

A2 = ∇xF (x∗2) =

⎛

⎜⎜⎜⎜⎝

2R 0 · · · 0

0 2R · · · 0

...
... · · · ...

0 0 · · · 2R

⎞

⎟⎟⎟⎟⎠
.

Notice that with A1, all eigenvalues of the linearized system are strictly less than
zero and therefore the equilibrium point x∗1 = R̄ is asymptotically stable while the
equilibrium point x∗2 = −R̄ is unstable since all eigenvalues of linearized system about
x∗2 = −R̄ are strictly greater than zero.

To give experimental evidence of the theoretical results discussed above, in
Figs. 1(a) and 1(b) we show numerical results of the HB model with two differ-
ent initial configurations. We chose R = 5. In Fig. 1(a), at initial time t0, values of
relationships are distributed between (−5, 5), while in Fig. 1(b) all agents in the net-
work start with hostility. Additional details of results of these experiments are given
in Table 1 and Table 2, respectively.

We can see from Figs. 1(a) and 1(b) that individuals adjust their relation-
ship so that the social group is balanced at final time. Moreover, as predicted by
Proposition 2, when the HB model reaches the balance, the final states of relation are
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Fig. 1. Simulation with N = 20 agents. The status of relation of individuals in Figure (a)
is started with friendship or hostility. Figure (b) shows relationships of all agents beginning
with hostility.

divided into two groups, one of them arrives to R, the other meets −R. Furthermore,
we investigate the behavior of the HB system where some initial relations are zero,
that is, at the beginning, we assume that some agents do not know each other or their
relationships are unclear. It can be seen in Fig. 2 and corresponding Table 3 that as
long as the graph is connected, relations between agents are developed and then the
system becomes balanced in final time.

Next, we investigate numerically the stability properties of the HB model.
Figure 3(a) shows that x∗1 = R is asymptotically stable since trajectories starting
in a neighborhood of R asymptotically reach this point. Conversely, in Fig. 3(b), tak-
ing a starting value close to the equilibrium point x∗2 = −R, we obtain trajectories
diverging from −R.
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Table 1. The number of triads of relationship between agents corresponding to Fig. 1(a).

initial time final time
total triads (N�) 1140 1140
balanced triads (N�b) 532 1140
unbalanced triads (N�ub) 608 0

Table 2. The number of triads of relationship between agents corresponding to Fig. 1(b).

initial time final time
total triads (N�) 1140 1140
balanced triads (N�b) 0 1140
unbalanced triads (N�ub) 1140 0

Table 3. The number of triads of relationship between agents corresponding to Fig. 2.

initial time final time
total triads (N�) 1140 1140
balanced triads (N�b) 0 1140
unbalanced triads (N�ub) 285 0
triads containing unclear-relationship links (N�nor ) 855 0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Time
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Fig. 2. Simulation with N = 20 agents. Initially, relationships of individuals are divided
into two groups, one of hostility and the other of different values.

We remark that the dynamics of the HB model is confined in −R ≤ xij ≤ R.
As proved in Proposition 1, the HB model always tends to balance, that is a stable
configuration of the system. In addition, Proposition 1 also investigate stability in
the case xij(0) > R and xij(0) < −R, respectively. In the former case, x∗1 = R̄ results
asymptotically stable; see also Fig. 3(a). In the latter case, x∗2 = −R̄ is unstable for
links starting with xij(0) < −R; see Fig. 3(b).

3 Local controllability of the HB model

Consider the control of the HB model where the controlling agent is linked to all agents
of the network. The resulting system of relationship of N interacting agents together
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Fig. 3. Simulation with N =20 agents. Figure (a) shows the solution of the HB model
where the relations of all agents begin with friendship. Figure (b) shows the relationship of
all agents starting with hostility.

with one reference agent is governed by the following set of differential equations

ẋ0i(t) = ui(t),

ẋij(t) =
1

N − 2

(
1− x

2
ij(t)

R2

)
N∑

k=1
k �=i,j

xik(t)xkj(t) + γx0i(t)x0j(t),
(8)

for i, j = 1, . . . , N , with given initial relationships xij(t0) = x0ij . The index 0 denotes
the leader, and the index i denotes the i-th individual in the network. The variables
x0i, i = 1, . . . , N , denote the relationships between the leader and the other indi-
viduals, while xij represent relationships between individuals in the community. The
function ui(t) ∈ L2((0, T ),R) is the control and the parameter γ > 0 is added in order
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to avoid divergence of states. We notice that the model (8) now has Nr = (N+1)N
2

equations, whereas Nc = N equations are related to the controlling links. We denote
Nuc = Nr −Nc the number of uncontrolled links.

In this section, we discuss the local controllability for the HB system. Consider
the linearization of system (8) around the equilibrium points x∗1 = R and x∗2 = −R.
The linearized system for the variable x̃ = x− x∗ is given by

˙̃x = Ax̃+Bu, (9)

where A is a block matrix and B is a block vector as follows

A =

(
0Nc,Nc 0Nc,Nuc
L D

)
, B =

(
INc,Nc
0Nuc,Nc

)
, (10)

where 0n,m is a n × m null matrix and In,n denote an n × n identity matrix, L ∈
R
Nuc×Nc and D ∈ RNuc×Nuc are presented as follows

L = γ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x∗ x∗ 0 · · · 0

x∗ 0 x∗ · · · 0

...
...

...
. . .

...

x∗ 0 0 · · · x∗
0 x∗ x∗ · · · 0

...
...

...
. . .

...

0 0 0 x∗ x∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Nuc,Nc

,

D =

⎛

⎜⎜⎜⎜⎜⎝

−2x∗ 0 · · · 0

0 −2x∗ · · · 0

...
...

. . . 0

0 0 0 −2x∗

⎞

⎟⎟⎟⎟⎟⎠

Nuc,Nuc

.

We can see that rank of the Kalmann matrix K(A,B)

K(A,B) =
[
B AB A2B . . . ANr−1B

]

=

[(
INc,Nc
0Nuc,Nc

) (
0Nc,Nc
LNuc,Nc

) (
0Nc,Nc

(DL)Nuc,Nc

)
. . .

(
0Nc,Nc

(DNr−2L)Nuc,Nc

)]

is equal to 2Nc, that is, it has full rank if and only if Nuc = Nc. Therefore in the case
of three agents and one leader (with Nr = 6, Nc = 3, and Nuc = 3) is system (8) is
locally controllable around the equilibria R and −R. Indeed A and B are given by

A =

(
03,3 03,3

L D

)
, B =

(
I3,3
03,3

)
,

with the matrix

L = γ

⎛

⎜⎝
x∗ x∗ 0

x∗ 0 x∗

0 x∗ x∗

⎞

⎟⎠ , D =

⎛

⎝
−2x∗ 0 0

0 −2x∗ 0

0 0 −2x∗

⎞

⎠ .



Dynamics of Animal Systems 3335

Therefore the Kalmann matrix given by

K(A,B) =
[
B AB A2B A3B A4B A5B

]

=

[(
I3,3

03,3

) (
03,3

L

) (
03,3,

DL

) (
03,3

D2L

) (
03,3

D3L

) (
03,3

D4L

)]
.

has full rank. In general, in all the other configurations we cannot infer any control-
lability property from the analysis of the linearized system.

4 A HB optimal control problem

In this section, we formulate an optimal control problem of the HB model with the
presence of a leader, that is

Minimize

J(x, u) =
1

2

N∑

i=1

(xij(T )− xdes(T ))2 +
ν

2

∫ T

0

‖u(t)‖2dt, (11)

subject to the differential constraint given by

ẋ0i(t) = ui(t),

ẋij(t) =
1

N − 2

(
1− x

2
ij

R2

)
N∑

k=0

xikxkj + γxi0xj0,

xij(0) = x0ij .

(12)

for i, j = 1, . . . , N . This optimal control problem requires to find a vector of controls
ui: (0, T ) → R, i = 1, . . . , N , such that the HB model evolves from the given ini-
tial condition to a final state x0i(T ) that is as close as possible to the desired state
xdes(T ) while minimizing the cost of the control given by the second term of the cost
functional J , where ν > 0 represents the weight of the cost of the control. We denote
‖u(t)‖2 = u21(t) + . . .+ u2N (t).

In order to solve (11)–(12), we discretize (12) using the Runge-Kutta (RK) dis-
cretization scheme proposed in [11,12]. This choice guarantees a high-order approxi-
mation of the HB model that is suitable to construct a discretization scheme for the
adjoint HB problem that an exact numerical gradient is obtained. See [5,24] for suc-
cessful applications of this scheme to discretize flocking and opinion forming optimal
control problems.

In the following, we illustrate this particular RK scheme to approximate the opti-
mality system that characterizes the optimal solution to our optimal control problem.
For this purpose, we reformulate (11)–(12) as the following general optimal control
problem

min J(x,u) = φ(x(T ))

subject to ẋ(t) = F (x(t),u(t)), t ∈ [0, T ] (13)

x(t0) = x0,

where x(t) ∈ H1((0, T );RNr ) and u(t) ∈ RNc are called the state and control vari-
ables, respectively. We choose u ∈ L2((0, T );RNc). The function φ : RNr → R repre-
sents the objective and the dynamic of the model is given by F : RNr ×RNc → RNr .
We assume that for a given u the dynamical model in (13) admits a unique solution
x = x(u) and the map u �→ x(u) is differentiable.



3336 The European Physical Journal Special Topics

We introduce the following equation

˙̂x(t) =
ν

2
‖u(t)‖2.

x̂(t0) = 0,

so that the optimal control problem (11)–(12) can be written as

min J(x̃,u) =
1

2

N∑

i=1

(xij(T )− xdes(T ))2 + x̂(T ) (14)

subject to ẋ0i = ui(t)

ẋij =
1

N − 2

(
1− x

2
ij

R2

)
N∑

k=0

xikxkj + γx0ix0j , for i = 1, . . . , N,

˙̂x =
ν

2
‖u(t)‖2.

with given initial conditions. For the ease of notation, we can write (14) as follows

min J(x̃,u) =
1

2

N∑

i=1

(xij(T )− xdes(T ))2 + x̂(T ) (15)

subject to ˙̃x = f̃(x̃,u),

where x̃ = (x01, x02, . . . , xN(N−1), x̂)T ∈ RNr+1. We consider the discretization of the
optimality system (15) by a RK scheme on a uniform time mesh, with the following
time-step size

h =
T

n
,

where n is the total number of discrete time intervals in (0, T ) and the value of x̃(t)
at the discrete time tk is denoted with

x̃k = x̃(tk), tk = kh, for k = 0, . . . , n.

Corresponding to the RK discretization setting, the optimal control problem (15)
with s-stage RK scheme becomes the following

min J(x̃,u) =
1

2

N∑

i=1

(xij(T )− xdes(T ))2 + x̂(T )

subject to x̃k+1 = x̃k + h

s∑

i=1

bif̃(yi,uki), x̃(t0) = x̃0,

yki = x̃k + h

s∑

j=1

aij f̃(y,kj ,ukj), (16)

for ñ = 1, 2, 1 ≤ i, j ≤ s, and 0 ≤ k ≤ n− 1.
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where the vector uk ∈ RNc×s represents the s-stages of the RK discrete control vector
at time step k. We have

uk = (uk1,uk2, . . . ,uks) ∈ RNc×s.

Summing-up, the RK discretization of the optimal control problem of the HB system
are governed by the following

min J(x̃,u) =
1

2

N∑

i=1

(xij(T )− xdes(T ))2 + x̂(T )

subject to x̃k+1 = x̃k + h
s∑

i=1

bif̃(yi,uki), x̃(t0) = x̃0,

yki = x̃k + h

s∑

j=1

aij f̃(y,kj ,ukj), (17)

The discrete optimality system corresponding to (16) is given by

x̃k+1 = x̃k + h
∑s
i=1 bif̃(yki,uki), x̃(t0) = x̃0,

yki = x̃k + h
∑n
j=1 aij f̃(ykj ,ukj),

Ψk = Ψk+1 +
∑s
i=1 biχki, Ψn = −∇xφ(x̃n),

χki = (∇xf̃(yki,uki))�
(
Ψk+1 +

∑s
j=1

bjaij
bi
χkj

)
.

(18)

From this system, the following gradient results

∇ukiJ(u) = −(∇uf̃(yki,uki))�
⎛

⎝Ψk+1 +

s∑

j=1

bjaij

bi
χkj

⎞

⎠ . (19)

for 1 ≤ i, j ≤ s, and 0 ≤ k ≤ n− 1.

To investigate the well-posedness of the optimal control problem (16), we remark
that the smoothness and coercivity conditions stated in [11] can be verified for the
optimal control problems governed by the HB system (16). It follows that the accu-
racy results stated in Theorem 2.1 in [11] for the RK scheme applied to (16) hold.

Next, we discuss a model predictive control (MPC) scheme (see, for instance
Ref. [9]) implementing a closed-loop control strategy for the HK model in order to
track a given sequence of desired configurations in time. Let (0, T ) be the time inter-
val where the evolution is considered. We assume time windows of size Δt = T/M for
positive integer M . Let tm = mΔt, m = 0, 1, . . . ,M . At time t0, we have given initial
conditions denoted with x̃0. We also have the desired positions at the end of each
time window xdes(tm), m = 1, . . . ,M . Our MPC strategy starts at time t0 and solves
the open-loop optimal control problem (16) defined in the interval (t0, t1). Then, the
results x̃ of system measured in time t = t1 will be a initial value for the subsequent
optimization problem defined in the interval (t1, t2). This procedure is repeated by
receding the time horizon until the last time window is reached. We notice that the
closed-loop system with the MPC scheme is nominally asymptotically stable; see [9].
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The MPC procedure is summarized in the following algorithm.

Algorithm 1(MPC Control). Set m = 0, x̃(0) = x̃0;

1. measure the state x̃(tm) = x̃m and the target xdes(tm+1);
2. in (tm, tm+1), set initial condition x̃

0
m = x̃m;

3. solve (16), thus obtain the optimal pair (x̃, u);
4. If tm+1 < T , set m := m+ 1, x̃m = x̃(tm), go to 1.
5. End.

Concerning the third step of Algorithm 1, consisting in solving the optimal control
problem (16), notice that the solution of the state equation in (16) gives the mapping
u → x̃(u), that allows to transform the constrained optimization problem in an
unconstrained one as follows

min
u∈U
J(u) := J(x̃(u),u). (20)

We solve these problems implementing a nonlinear conjugate gradient strategy. The
evaluation of the corresponding gradient is given in (19): For a given u, we solve
first the forward equation and then the adjoint problem. We solve (16) implementing
the gradient in a nonlinear conjugate gradient (NCG) scheme; see, e.g., Ref. [4]. For
details on NCG implementation see, for instance, Refs. [11,12].

5 Numerical experiments

The objective of this section is to present results of numerical experiments with our
HB optimal control problem. We chose the time horizon T = 2. The objective is to
find the optimal control in order to drive the HB system to reach a friendship state
where xij = R for all i, j = 0, . . . , N, i �= j. We consider three series of experiments;
in the first one, the initial conditions xij(0) ∈ (−5, 5). In the second one, the state of
relations starts with hostility, that is, in a neighborhood of the unstable equilibrium
point x∗ = −R̄. In the third one, at the initial time, relationships between leader
and agents in network are given to be zeros, otherwise they are randomly chosen
between friendly or hostile. For all cases, we solve the optimal control problem (11)
with N = 9 individuals and one leader, with R = 5. In the objective functional we
take ν = 0.001. Furthermore, the target is xdes = R. To apply the MPC strategy,
the time horizon is divided into subintervals of size Δt = 0.25.

Case I. The initial state of relationships of agents in our network is randomly
chosen with friendly and hostile values. With this set of initial conditions, we get
the results shown in Fig. 4, where Fig. 4(a) shows the solution of the HB model
with zero control u0i = 0, for i = 1, . . . , N , and in Fig. 4(b) the controllers are
activated into the HB system. As we see in Fig. 4(a), the HB model evolves towards
the equilibrium states as expected because the value of the controls u0i is equal to
zero. Therefore the leader has no influence on the other agents and fails in steering
the agents to a friendship state. On the other hand, as we see in Fig. 4(b), as soon
as the control is active, friendship is obtained.

Case II. In this case, the initial state of relationships of the agents in our net-
work is randomly placed in a neighborhood of the unstable hostile equilibrium point,
x∗ = −R. With this set of initial conditions, we get the results as shown in Fig. 5.
Specifically in Fig. 5(a), we see that the solution of the HB model without active
control is unstable. On the other hand, whenever the leader is actively controlling
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Fig. 4. Simulation with N+1 = 10 agents. The status of relation of individuals in Figure (a)
are started randomly with friendship or hostility, xij ∈ (−5, 5). Figure (a) shows the results
where no controller is included in the system while in Figure (b) controllers are included
in the HB system. The dot-lines represent state of the relationship of leader and normal
individuals, otherwise are of normal individuals.

the system, the HB system successfully reaches the desired friendship state; see
Figure 5(b).

Case III. In this case, at the initial time the status of relationships between leader
and agents in network is zero, x0oi = 0, while the state of relationships between other
agents in the network are randomly chosen friendship, hostility, or unclear relation-
ship. Figure 6(a) shows the results of the HB system when controls are not included
in the system. However, when the controls enter in the system, the status of relation-
ships of all agents in network are forced to reach the friendship as seen in Fig. 6(b).

We remark that results of numerical experiments show that our control strategy
is ineffective in driving the HB model to hostility.
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Fig. 5. Simulation with N + 1 = 10 agents. The status of relation of individuals in
Fig. (a) is started with hostility xij ∈ (−6, 3). Figure (a) shows the results where no con-
troller is included the system while in Fig. (b) controllers are included in the HB system.
The dot-lines represent state of the relationship of leader and normal individuals, otherwise
are of normal individuals.

6 Conclusion

The continuous time Heider balance model and related control issues are investi-
gated. The HB model describes the evolution of relationship in a social network. It is
shown that in the absence of controls, this model evolves towards equilibrium states of
friendship and/or hostility. In correspondence to these states the local stability of the
linearized system is discussed. Furthermore, an optimal control strategy steering the
relationships in the network to a desired friendship state is investigated. The corre-
sponding optimization problems are solved with an appropriate Runge–Kutta method
that guarantees accurate gradients of the objectives. These gradients are implemented
in a nonlinear conjugate gradient solution procedure and a model predictive control
scheme. Results of numerical experiments demonstrate the effectiveness of the pro-
posed control strategy.
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Fig. 6. Simulation with N+1 = 10 agents. The status of relation of leader and individuals in
Figure (a) is started with x0i = 0, for i = 1, . . . , N , whereas another status is randomly given
between friendship, hostility or no relation. Figure (a) shows the results where no controller
is included the system while in Figure (b) controllers are included in the HB system. The
dot-lines represent state of the relationship of leader and normal individuals, otherwise are
of normal individuals.

It is proved that the HB model evolves to reach a balanced configuration. We ex-
pect this behavior to persist also if small perturbations in the model are introduced.
Nevertheless, it would be interesting to study a stochastic extension of the HB model
in the spirit of [6,10,21].
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