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Abstract. Diverse mechanisms for animal locomotion in fluids rely on
vortex shedding to generate propulsive forces. This is a complex phe-
nomenon that depends essentially on fluid viscosity, but its influence
can be modeled in an inviscid setting by introducing localized veloc-
ity constraints to systems comprising solid bodies interacting with ideal
fluids. In the present paper, we invoke an unsteady version of the Kutta
condition from inviscid airfoil theory and a more primitive stagnation
condition to model vortex shedding from a geometrically contrasting
pair of free planar bodies representing idealizations of swimming ani-
mals or robotic vehicles. We demonstrate with simulations that these
constraints are sufficient to enable both bodies to propel themselves
with very limited actuation. The solitary actuator in each case is a
momentum wheel internal to the body, underscoring the symmetry-
breaking role played by vortex shedding in converting periodic varia-
tions in a generic swimmer’s angular momentum to forward locomotion.
The velocity constraints are imposed discretely in time, resulting in the
shedding of discrete vortices; we observe the roll-up of these vortices
into distinctive wake structures observed in viscous models and physical
experiments.

1 Introduction

The idealized representation of viscous vortex shedding enables the realization of
reduced-order models for diverse biological and biomimetic locomotion systems. Of
particular interest to the authors are the shedding of vorticity from the caudal fins
of certain fishes, the shedding of vortex rings from the bells of medusan jellyfish, and
similar localized phenomena that may be exploited by biologically inspired robotic
vehicles for propulsion. In the context of robotics, models of sufficiently low order
may be used not only for computationally efficient simulation but also for analytical
control design and motion planning.
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Fig. 1. Still images from simulations of four locomotion systems described in the text. In
each case, the body shown accelerates to the right from rest as a result of periodic variations
in a single control input. Discrete vortex elements are shaded according to their sign.

Models that represent vortex shedding and vortex-body interactions in terms of
inviscid point vortices have a rich history. Early examples of such work include the
investigation of wake characteristics for a cylinder started impulsively from rest [1]
and the dissipation in energy and vorticity in the near wake for flow past a bluff
body [2]. Inviscid vortices appear in models for planar fishlike swimming in [3–5].
The shedding of a vortex wake from a moving boundary is explored in [6,7] using
steady-vortex models and in [8–10] using unsteady-vortex models. Additional aspects
of dynamic interactions between free bodies and point vortices in inviscid fluids, and
elaborations on the preceding work, are considered in [11–17].
Noncanonical Hamiltonian structures have been shown to underpin the interac-

tions of free bodies with singular distributions of vorticity in both two- and three-
dimensional ideal fluids [18–21]. The authors and collaborators have constructed
a sequence of models for aquatic locomotion systems by augmenting the relevant
Hamiltonian equations with mechanisms for momentum-conserving discrete vortex
shedding. Figure 1 depicts four such models. At the top left of Fig. 1, a free hydrofoil
sheds vorticity from its trailing point as its camber varies sinusoidally. The shape of
the foil is realized as the image of a circle under a time-periodic Joukowski transfor-
mation. At the top right, the shape of such a foil is frozen with zero camber, but an
internal rotor is driven periodically to induce the foil to pivot. In each case, vortex
shedding is mediated by the time-periodic application of a Kutta condition at the
foil’s trailing point, corresponding to the requirement of stagnation at the preimage
of this point in the circle plane. The first of these two systems is described in greater
detail in [22,23]. The second is detailed in Sect. 2 of the present paper.

At the bottom left of Fig. 1, a vehicle with circular cross section is shown,
again driven by an internal rotor. The surface of this vehicle features no cusp; vortex
shedding is mediated by the time-periodic requirement of relative stagnation in the
physical plane at a chosen surface point. The wake of the vehicle at the top left is
characterized by the roll-up of shed point vortices into an inverse Kármán vortex
street, which may be regarded as comprising pairs of counter-rotating vortex struc-
tures that convey fluid momentum to the rear behind the foil. Vortex structures of
alternating sign travel in alternate directions around the vehicle at the bottom left;
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the vehicle accelerates to the right as these structures form pairs antipodal to the
shedding point. This system is described in greater detail in Sect. 3 of the present
paper.
At the bottom right of Fig. 1, a free sphere sheds vorticity according to the

time-periodic application of a velocity constraint along a circular contour that moves
periodically along the sphere’s surface. This constraint requires relative stagnation
perpendicular to the contour, which loosely models the undulating lip of a jellyfish
bell, and represents a higher-dimensional analogue of the velocity constraint applied
to the system at the bottom left. The system at the bottom right is discussed in
greater detail in [24].
In terms of the abstract formalism of [20,21], the velocity constraints depicted in

Fig. 1 may be associated with group-invariant distributions defined on the correspond-
ing systems’ configuration manifolds, and as such may be characterized as holonomic
or nonholonomic. Analogies between the dynamics of the systems in Fig. 1 and the
dynamics of simple mechanical systems subject to symmetry-breaking constraints
translate into analogies in the behavior of these systems under feedback control, a
point explored in preliminary form in [25,26].

2 Joukowski foil with an internal rotor

Consider a free hydrofoil surrounded by a fluid of unit density that extends to infinity
in all directions. We regard the plane of the fluid and the foil as the complex plane
and denote the region occupied by the foil by B. The geometry of the foil is defined by
mapping its boundary ∂B from a circle with radius rc in the complex plane through
a Joukowski transformation

z = F (ζ) = ζ + ζc +
a2

ζ + ζc
, (1)

where ζc is complex and a is real. We refer to the ζ plane as the circle plane and to
the z plane as the foil plane. For the zero-camber foil shown at the top right of Fig. 1,
ζc is real. The preimage of the trailing cusp on the foil is given by ζt = a − ζc. The
transformation is conformal everywhere in the open set |ζc| > rc. The derivative of
the transformation

F ′(ζ) = 1− a2

(ζ + ζc)2
(2)

exists everywhere except at ζt.
The free foil has three degrees of freedom; it can translate with velocity U =

(U1, U2) and rotate with angular velocity Ω. We suppose the foil to be coupled to
a balanced rotor with moment of inertia Ic that has no direct coupling to the fluid,
as depicted in yellow in Fig. 1. The rotor is affixed to the foil at the origin of the z
plane. The orientation of the rotor relative to the foil as the former spins is given by
the angle β.

2.1 Complex potentials

The fluid surrounding the foil is assumed to be ideal almost everywhere, with a
singular distribution of vorticity modeled by N point vortices at the points zk =
F (ζk). The strength of the kth vortex is equal to Γk in both the ζ plane and the
z plane. Following [27], the complex potential W (z) = w(ζ) may be decomposed in
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terms of its dependence on the translation of the foil, the rotation of the foil, and
each of the N point vortices in the form

w(ζ) =W (z) = U1w1(ζ) + U2w2(ζ) + Ωw3(ζ) +

N∑

k=1

wkv (ζ).

On the boundary of the circle, the real components φkv(ζ), φ1(ζ), φ2(ζ), φ3(ζ) of the
complex potentials wkv (ζ), w1(ζ), w2(ζ), w3(ζ) satisfy the boundary conditions

∇φkv · n = 0, ∇φ1 · n = 0, ∇φ2 · n = 0, ∇φ3 · n = 0, (3)

where n is a vector normal to the boundary.
The potential functions representing the motion of the foil are given by

w1(ζ) =
−r2c
ζ
+
a2

ζ + ζc
,

w2(ζ) = −ı
(
r2c
ζ
+
a2

ζ + ζc

)
,

w3(ζ) = −ı
(
r2c
ζ

(
ζc +

a2

ζc

)
−
(

a2ζc

r2c − |ζc|2
+
a2

ζc

)
a2

ζ + ζc

)
·

According to the Milne-Thomson circle theorem [28], the potential function wkv (ζ)
due to the vortex at ζk is

wkv (ζ) =
Γ

2πı

(
log (ζ − ζk)− log

(
ζ − r

2
c

ζ̄k

))
·

The flow represented by wkv (ζ) comprises that induced by the vortex at ζk and that
induced by an image vortex inside the preimage of the foil. The latter introduces a
net circulation around the foil; the development of circulation around the foil through
vortex shedding plays a fundamental role in the propulsion mechanism described
below.
We assume that each vortex in the foil plane is advected by the flow induced by

the remaining N − 1 vortices, by the N image vortices, and by the motion of the foil,
obtained from the potential function

Wk(z) =W (z)− Γ
2πı
log (z − zk).

The corresponding motion of the kth vortex in the circle plane is given by

ζ̇k =

(
dWk

dz
− (U1 + ıU2 + ıΩzk)

)
1

F ′(ζ)
·

2.2 Conservation of impulse

The dynamic interaction of a free body with a system of point vortices in a planar
ideal fluid is governed by a system of noncanonical Hamiltonian equations belonging
to the class of Lie-Poisson equations [29]. If the linear and angular impulse in the
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system are both zero initially, they will remain zero [27]; it was shown in [20] that
the Lie-Poisson equations in this case take the form

(
d

dt
+Ω×

)
L = 0,

dA

dt
+V × L = 0.

Here L and A are the linear and angular impulse in foil-fixed coordinates and the
linear impulse is the sum

L =MV + Lv

of the impulse due to the motion of the foil and the impulse due to the vortices. The
foil’s effective mass M includes both real and added mass. If r = (Re(z), Im(z)) and
nb is the normal vector on ∂B pointing into the fluid, then

Lv =

∮

∂B
r× (nb ×∇φv)ds+

N∑

k=1

Γkrk × e3

and

A = −1
2

N∑

k=1

Γk||rk||2 − 1
2

∮

∂B
||r||2(nb ×∇φb + nb ×∇φv)ds. (4)

It’s demonstrated in [20,22] that (4) can be simplified considerably to obtain a con-
servation law of the form

I

⎛

⎝
Vx

Vy

Ω

⎞

⎠+
(
Lv

Av

)
=

(
RTL0

A− Icβ̇

)
, (5)

where L0 is the linear impulse of the system in spatially fixed coordinates, R is the
rotation matrix that transforms body-fixed coordinates to spatially fixed coordinates,
U = RV, and I is the total effective inertia tensor for the body. The term Icβ̇ has been
added to right-hand side of (5) to account for the spinning of the rotor. The linear
impulse Lv and angular impulse Av are functions of the positions of the vortices
alone and do not depend on their velocity. They are given by

Lv = −
N∑

k=1

Γk

2πı

(
ζk − r

2
c

ζk

)

and

Av = Im

(
ı

4π

N∑

k=1

Γk

(
r2c + |ζc|2 +

2r2c
ζk

(
ζc +

a2

ζc

)

− 2a
2(r2c − |ζc|2)
ζc(ζk + ζc)

+
a4(ζk − ζc)

(r2c − |ζc|2)(ζk + ζc)
))
− 1
2

N∑

k=1

Γk|zk|2.

2.3 Vortex shedding

The fluid velocity at any point away from a vortex in the circle plane is given by

ζ̇ =

(
dW

dz
− (U1 + ıU2 + ıΩz)

)
1

F ′(ζ)
·
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(a) (b)

Fig. 2. The placement of (a) the first shed vortex and (b) subsequent shed vortices.

The boundary conditions (3) allow fluid to slip along the circle and foil, but the
cusp on the foil corresponds to a singularity of the Joukowski transformation. The
derivative F ′(ζ) vanishes there, causing the velocity of the fluid in the circle plane to
become undefined. The Kutta condition requires that at the preimage ζt of the foil’s
trailing cusp,

dw(ζ)

dζ

∣∣∣∣
ζ=ζt

= 0.

In simulating the fluid-foil system, we enforce the Kutta condition at frequent regular
intervals in time by permitting the shedding of new vortices from the cusp. We enforce
the additional requirement that the total impulse in the system be preserved through
each shedding event by altering the momentum of the foil impulsively at the same
time that we fix the strength of each new vortex and its initial position in the fluid
near the cusp. In particular,

I

⎛

⎝
ΔVx

ΔVy

ΔΩ

⎞

⎠+ ΓN+1
(
ΔLv

ΔAv

)
= 0,

where (ΔVx,ΔVy,ΔΩ) represent the discrete changes in the foil’s velocity associated
with a shedding event, ΓN+1 is the strength of the newly shed vortex, and (ΔLv,ΔAv)
are the changes in the fluid impulse that would correspond to the introduction of a
vortex of unit circulation.
The initial location of each newly shed vortex and the shedding frequency can be

chosen independently. We make the former choice according to a method employed
in [3,5,23]. The first shed vortex is placed an arbitrary small distance d from the
trailing edge of the foil along a line tangent to the cusp as shown in Fig. 2(a). For the
simulations in the present paper, z1 is initially 1.01zt. When k vortices are present in
the wake, the (k + 1)th vortex is placed on a circular arc joining the kth vortex and
the foil’s trailing edge, midway between the two, as shown in Fig. 2(b).
To determine an appropriate time interval Δt to separate vortex shedding events,

a sequence of simulations corresponding to a reference motion of the foil was per-
formed in which Δt was decreased gradually from 10−2 and resulting variations in
the foil’s predicted dynamics were assessed. Figure 3 depicts the outcome of a se-
quence of simulations in which Δt decreases from 10−2 to 10−4. The foil’s dynamics
appear to converge to a stable limit; the trajectory represented in Fig. 3 is nearly
indistinguishable for different values of Δt ≤ 10−3. For the simulations depicted in
the present paper, Δt was assigned the value 10−3 to minimize computational cost
within the stable range.
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Fig. 3. Trajectory of the foil during a single complete period of rotor oscillation, corre-
sponding to the time interval 0 < t < 0.62, for five different choices of the fixed interval Δt
between vortex shedding events. As this interval decreases through the sequence Δt = 10−2

(black), Δt = 0.5 × 10−2 (grey), Δt = 10−3 (blue), Δt = 0.5 × 10−3 (green), Δt = 10−4
(red), the trajectories become indistinguishable on the scale of the plot.
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Fig. 4. Acceleration of the foil from rest when the rotor angle varies as β = π
6
sin 10t.

2.4 Forward propulsion

We now demonstrate by solving the equations above numerically that sinusoidal os-
cillations in the rotor angle induce the foil to accelerate from rest in the forward
direction. Figure 4 depicts the configuration of the system at a sequence of four in-
stants in time for the case in which β = π

6 sin 10t. Reversals in the orientation of the
vortices being shed occur roughly concurrently with reversals in the rotor’s direction
of rotation. The system is shown at rest, after the first cluster of vortices with posi-
tive (counterclockwise) orientation have been shed, after the first cluster of vortices
with negative orientation have been shed, and after three pairs of clusters of vortices
with positive and negative circulation have been shed. The fourth panel demonstrates
the initial formation of the familiar inverse Kármán vortex wake as a byproduct of
the model’s dynamics. We note that this wake roll-up can cause the spacing between
individual vortices to become very small; regularization methods like δ-regularization
[30,31] may become necessary to reproduce this phenomenon with higher fidelity.
Figure 5 depicts the configuration of the system at a sequence of four instants in

time for the case in which β = π
2 sin 50t. Increasing the amplitude and frequency of

the rotor’s oscillation to this extent increases the foil’s translational acceleration while
decreasing the amplitude of the corresponding variations in the foil’s instantaneous
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t = 0.500 t = 1.000

Fig. 5. Acceleration of the foil from rest when the rotor angle varies as β = π
2
sin 50t.
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Fig. 6. The foil’s heading (left, in radians) and the total shed vorticity (right) as functions
of time when β = π

2
sin 50t.

heading. Figure 6 depicts the heading angle θ and the total shed vorticity as functions
of time for the simulation in Fig. 5.

2.5 Feedback control of the foil’s heading

The problem of steering the foil in the plane by varying the rotor angle β is a prob-
lem in underactuated control. The single input to the system provides insufficient
actuation to manipulate the foil’s three degrees of freedom independently, but it’s
possible to control the foil’s heading, and heading adjustments naturally generate
forward propulsion. In [26], the authors and collaborators considered the problem of
steering an analogous wheeled vehicle in the plane using a solitary internal rotor for
actuation, and it was found that the vehicle’s asymptotic heading and asymptotic
translational speed could be controlled simultaneously using a simple proportional
controller for heading regulation. This controller incorporated a scalar gain but guar-
anteed asymptotic convergence of the vehicle’s heading to a desired value regardless
of the value of the gain. The vehicle’s asymptotic forward speed, meanwhile, was a
monotonic function of the gain.
We demonstrate here that a feedback controller only slightly more complicated

than that in [26]–in this case, a PID controller rather than a P controller–is sufficient
to regulate the heading of the foil. We anticipate that variability of the gains in the
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Fig. 7. Reorientation of the foil from θ = 0 to θd =
π
4
via the feedback law (6). The bottom

right panel depicts θ (in multiples of π radians) as a function of time.

present controller afford additional authority over the translational speed resulting
from a heading adjustment.
We consider the situation in which the foil is initially at rest and the control

objective is to change the foil’s heading from θ = 0 to θ = θd. To achieve this change,
the rotor is driven such that

β̇(t) = Kp(θ(t)− θd) +Ki
∫ t

0

(θ(τ)− θd)dτ +Kdθ̇(t), (6)

with the gains Kp = 100, Ki = 1, and Kd = 0.5 chosen to ensure rapid convergence
to the desired heading. Figures 7 and 8 depict the evolution of the system when
θd = π/4 and θd = π/3, respectively. In each case the foil initially overshoots the
desired heading but recovers quickly thereafter.

3 Circular cylinder with an internal rotor

We now describe a system that’s more primitive and arguably less physical than the
system detailed in Sect. 2, but that demonstrates the universality of phenomena like
the rollup and pairing of vortex structures in propulsive planar wakes. Recall that
the Kutta condition was introduced to the model in Sect. 2 to address a singularity
that arose in the derivative of the Joukowski transformation for generic values of the
parameters a and ζc. If these parameters are varied smoothly to zero, the Joukowski
transformation becomes the identity and the singularity vanishes.
For the circular Joukowski foil arising in this case–referred to hereafter as a cylin-

der rather than a foil–we can introduce a mechanism for vortex shedding by requiring
relative stagnation of the fluid at a certain point in the physical plane rather than
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Fig. 8. Reorientation of the foil from θ = 0 to θd =
π
3
via the feedback law (6). The bottom

right panel depicts θ (in multiples of π radians) as a function of time.

the preimage plane. Such a point might represent a small but sharp protrusion on
the cylinder’s otherwise smooth surface. As was the case for the foil with an internal
rotor, the cylinder with an internal rotor can propel itself from rest in an ideal fluid
only if vortex shedding is permitted.

3.1 Equations of motion

Simplification of the Joukowski transformation relative to the general case considered
in Sect. 2 simplifies equalities like (4), in which the contour integral is now zero,
substantially. As before, we suppose the cylinder to interact freely with vortices in
the fluid according to the conservation of total linear and angular impulse, and we
constrain the mechanism whereby new vortices are shed to respect this principle.
New vortices are introduced to the fluid adjacent to a point (xp, yp) on the cylinder’s
surface at regular intervals to force relative stagnation there; the circulation around
the cylinder changes with each shedding event and the cylinder’s velocity is amended
discretely to compensate for the impulse of each new vortex.
Suppose N vortices with strengths Γk are present at the points rk prior to a shed-

ding event, and let the linear and angular impluse due to these vortices be (PxN , PyN )
and AN , respectively. Let the tangential velocity at rp = (xp, yp) due to these vor-
tices be utN (rp) and let the tangential velocity induced at this point by a vortex of
unit circulation at (xv, yv) be Δu(rp)t. With the introduction of a new vortex with
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t = 0.0220 t = 0.275

t = 0.500 t = 0.750

Fig. 9. Acceleration of the cylinder from rest when the rotor angle varies as β = 2 sin 30t.

strength ΓN+1 at (xv, yv), the velocity of the cylinder is amended to (U
+
x , U

+
y ,Ω

+);
these quantities are determined by the equality

⎛

⎜⎜⎜⎝

Δu(rp)t k1 k2 −a
ΔPx M 0 0

ΔPy 0 M 0

ΔA 0 0 (I1 + I2)

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

ΓN+1

U+x

U+y

Ω+

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

−utN (rp)
Lx − PxN
Ly − PyN
A−AN − I2β̇

⎞

⎟⎟⎟⎠

with k1 =
∂φ1
∂x
(cos θ− sin θ)+ sin θ and k2 = ∂φ2

∂y
(cos θ+sin θ)− cos θ. The quantities

I1 and I2 denote the moments of inertia of the cylinder and the rotor, respectively,
about their shared center.

3.2 Simulation results

As was the case for the foil in Sect. 2, the cylinder translates when oscillations in the
orientation of the internal rotor induce the shedding point on the cylinder’s surface to
move relative to the fluid, but we observe both qualitative and quantitative differences
distinguishing the behavior of the two systems. A qualitative difference visible in Fig. 1
and in Fig. 9 is that the cylinder is propelled, in the net, toward the shedding point on
its surface and not away from it. Shed vortices don’t move away from the cylinder’s
surface but cling to it; clusters of vortices with opposite sign migrate around the
cylinder in opposite directions and meet to form pairs to the cylinder’s left. These pairs
then separate from the cylinder, carrying fluid momentum to the left and inducing
the cylinder to move right, but do not assemble into the vortex street of Fig. 5.
A quantitative difference between the acceleration of the cylinder and that of

the foil is apparent in Fig. 9, which depicts the evolution of the system when β =
2 sin 30t. The oscillations of the rotor are larger in amplitude than those depicted in
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Figs. 4 and 5 and relatively rapid, yet the displacement of the cylinder after several
oscillations is relatively small.

4 Conclusions

Localized velocity constraints can be used to represent conditions for localized vortex
shedding in otherwise inviscid models for diverse fluid-body interactions. The imposi-
tion of such constraints discretely in time in an impulse-conserving way is compatible
with existing Hamiltonian formalism for problems involving the interactions of bodies
with discrete distributions of vorticity, and simulations based on models constructed
in this way are qualitatively consistent with the observed behavior of hydrofoils shed-
ding vorticity in real fluids. In this paper, we’ve described two models for free bodies
shedding discrete vorticity in accordance with localized velocity constraints and high-
lighted some of their similarities and differences. We’ve supposed each body to be
coupled to an actuated internal rotor as a source of control and explored both recti-
linear propulsion and steering as control objectives. We’ve alluded to a fundamental
link between the systems considered herein and other mechanical control systems
in which nonintegrable velocity constraints play an essential role; this link will be
explored in detail in a forthcoming paper.
The present paper suggests several additional avenues for future work. In each

of the models we’ve presented, for instance, vortex shedding has been constrained
to a single body-fixed point, but the underlying methodology is compatible with the
imposition of shedding conditions at any finite number of points. The basic analogy
to fishlike swimming suggested by the morphology of the hydrofoils in Fig. 1 could
be developed with the addition of shedding points representing pectoral fins; the in-
troduction of control authority to mediate shedding from these points would enable
the computational study of multimodal propulsion and steering akin to that demon-
strated by real fish. Models for the dynamic interactions of multiple fish could in
turn be developed using more sophisticated conformal maps and recently developed
methods for realizing complex potentials appropriate to vortex dynamics in multiply
connected domains [32].
The development of biomimetic aquatic vehicles is motivated in part by the

efficiency with which aquatic organisms can propel themselves and maneuver.
The prospect of linking the models from the present paper more directly to bio-
logical systems suggests an investigation of the efficiency of the systems considered
in Sects. 2 and 3. The simulations we’ve presented represent parametric choices that
illuminate qualitative features of these systems but are neither optimized for propul-
sion nor suggested by specific biological data. At least two notions of efficiency are
appropriate for systems like these: one based on the degree of actuator movement
associated with a given maneuver and one based on the energetic cost of actuator
movement. The latter may be more meaningful from the standpoint of robotic ve-
hicle design, but the models presented herein–involving no calculation of forces or
moments–accommodate the former more directly. The present models allow direct
assessment, however, of notions from the biomechanics literature like that of a locally
optimal Strouhal number for forward swimming [33]. The authors intend to address
this topic in a forthcoming paper.
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