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Abstract. This paper presents a Differential Quadrature Element
Method for free transverse vibration of a robotic fish based on a contin-
uous and non-uniform flexible backbone with distributed masses (fish
ribs). The proposed method is based on the theory of a Timoshenko
cantilever beam. The effects of the masses (number, magnitude and
position) on the value of natural frequencies are investigated. Govern-
ing equations, compatibility and boundary conditions are formulated
according to the Differential Quadrature rules. The convergence, effi-
ciency and accuracy are compared to other analytical solution proposed
in the literature. Moreover, the proposed method has been validate
against the physical prototype of a flexible fish backbone. The main
advantages of this method, compared to the exact solutions available
in the literature are twofold: first, smaller computational cost and sec-
ond, it allows analysing the free vibration in beams whose section is an
arbitrary function, which is normally difficult or even impossible with
other analytical methods.

Nomenclature

x Global Spatial Coordinate
ξ Dimensionless Global Spatial Coordinate
x(i) Local Spatial Coordinate of Element i
ζ(i) Dimensionless Local Spatial Coordinate of Element i
L Total Length of the Beam (m)
t Time (s)
w(x,t), W (x) Transverse Displacement
ψ(x,t), Ψ(x) Rotation Angle Due to Bending (rad)
W (i) Transverse Displacement of Element i
Ψ(i) Rotation Due to Bending of Element i
v(i) Dimensionless Transverse Displacement of Element i
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l(i) Dimensionless Length of Element i
A(x) Cross Sectional Area of the Beam
I(x) Moment of Inertia About the Neutral Axis (kg*m2)
A0 Values of the Cross-Section at the Clamped Edge
I0 Values of the Moment of Inertia at the Clamped Edge
k Shear Correction Factor
E Young’s Modulus of Elasticity (GPa)
G(x) Shear Modulus of Beam Material (GPa)
ϑ Poisson’s Ratio
ρ Mass Density (kg/m3)
ω Angular Natural Frequency of Vibration (rad/s)
λ Dimensionless Natural Frequency of Vibration
r Slender Ratio
N Number of Grid Points
M (i) Bending Moment in Element i
V (i) Transverse Force in Element i
αi Dimensionless Value of the i

th Concentrated Attached Mass
J(x) Mass Moment of Inertia of the Beam per Unit Length (kg*m2)
A(x) Cross Sectional Area of the Beam
Q(x) Beam Shear Rigidity, kG(x)A(x)
mi Translational Inertia of the i

th Concentrated Mass (kg)
s Elastic Section Modulus

1 Introduction

The literature of robotic fishes and bio-inspired robots has several examples of struc-
tures using flexible materials that bend to produce thrust, for maneuvering [4,18],
and even for energy harvesting [2]. However, few works analyze the normal frequency
of vibration of the flexible structures employed as a way to optimize energy consump-
tion. This allows a relatively small force applied repeatedly to make the amplitude
of the oscillating system become very large. The purpose of this work is to study the
resonance in the structure and how to create a steady motion with low energy con-
sumption. This to build robots with improved energy efficiency. Thus, we take into
consideration a robotic fish composed of a flexible backbone made of polycarbonate,
and a series of relatively heavy (i.e. whose weigh is non negligible) ribs (Fig. 1). The
dynamic characteristics of systems with flexible components is a very important issue
that allows the study of robots based on a jointless structure. Researchers have ad-
dressed the problem of vibration analysis of structures with distributed masses located
at arbitrary positions using the Delta Dirac function [3], introducing the mass in the
boundary conditions [12], using the Rayleigh-Ritz method [13] or analyzing the case
of flexible structures carrying distributed mass along the structure (including a free
end) [5,8,9,16]. In all such cases, the authors use the Bernoulli-Euller beam theory to
model simple structures, which is reliable just for slender beams. In order to increase
the accuracy and reliability (especially for the beams with low length-to-thickness
ratio), for the natural frequencies of a Timoshenko beam with a central point mass,
a coupled displacement field method has been proposed (see, e.g., [17]).
The Differential Quadrature Element Method (DQEM), provides a powerful nu-

merical method to analyze the behavior (both static and dynamic) in structures with
some discontinuities in loading, material properties or in its geometry. Thus, this
method is applied to solve many problems especially in vibration analysis.
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Fig. 1. The robotic fish prototype is composed of 19 ribs (excluding the head and the tail)
made of 3D-printed ABS plastic that form the distributed masses.

1.1 Structure of the paper

In the following sections, we develop the method proposed to analyse the vibration
of a non-uniform cantilever with distributed masses. Initially the method adopts the
Differential Quadrature Element Method (DQEM, see Sect. 2) to get high accuracy for
estimating the boundary conditions in more than two points. This method is more
efficient than the one presented by Timoshenko for each section along the beam.
In Sect. 3, governing equations are set for the free vibration using the Timoshenko
beam. Section 4 shows the accuracy of the proposed DQEM, which is verified by
comparison with the exact solutions of the uniform Timoshenko beam presented by
other researchers. Finally, we present an application of the proposed method to our
concrete case.

2 Differential quadrature method

The Differential quadrature (DQ) method allows expressing function derivatives in
x = xi in terms of the value of function along the domain as:

drf

dxr

∣
∣
∣
∣
x=xi

=

N∑

j=1

Aij
(r)fj , (1)

where A(r) represents the weighting coefficient associated with the rth order derivative
and N the number of grid points [1]:

Aij
(1)=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∏

m=1
m�=i,j

(xi−xm)

N∏

m=1
m�=j

(xj−xm)
, (i,j=1,2,3, ...N ;i�=j)

N∑

m=1
m�=i

1
(xi−xm) , (i=j=1,2,3, ...N)

Aij
(r)=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r
(

A(r−1)iiA(1)ij−A
(r−1)

ij

xi−xj
)

, (i,j=1,2,3, ...N ;i�=j)
−

N∑

m=1
m�=i

A(r)im, (i=j=1,2,3, ...N) 1<r≤ (N−1)

(2)
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Fig. 2. Non-uniform robotic fish backbone with distributed masses.

Using a set of grid points (blue dots pot Fig. 2) following Gauss-Lobatto-
Chebyshev points for interval [0, 1] we have

xi=
1

2

{

1− cos
[
(i−1)π
(N−1)

]}

, (i=1,2,3, ...N) . (3)

This set of grid point shows the compression of the two end points in the interval
[0, 1], providing in this way high accuracy for estimating the value of the derivative
of the function at the boundary points.

3 Vibration analysis

3.1 Governing equations

Figure 2 shows the robotic fish backbone. Note that the mass of each rib is different
and the backbone is non-uniform. The entire surface is modelled like a nonuniform
cantilever Timoshenko beam. The Free Vibration governing equations for a Timo-
shenko beam [20] with distributed masses are written as1:

∂

∂x

{

kGA (x)

[
∂w (x,t)

∂x
−ψ (x,t)

]}

−ρA (x) ∂
2w (x,t)

∂t2
=0

∂

∂x

[

EI (x)
∂ψ (x,t)

∂x

]

+kGA (x)

[
∂w (x,t)

∂x
−ψ (x,t)

]

−ρI (x) ∂
2w (x,t)

∂t2
=0

(4)

where w(x, t) is vertical displacement. The term k is introduced to take into account
the geometry dependent distribution of the shear stress and depends on the shape
of the section and the Poisson ratio of the material [10]. The displacement w(x, t)
and rotation due to bending ψ(x, t) can be assumed as the product of the functions
W (x) and Ψ(x) which only depend on the spatial coordinate x and a time dependent
harmonic function, as:

w(x,t)=W (x)eiωt ψ(x,t)=Ψ(x)eiωt. (5)

1 We don’t use the Euler-Bernoulli beam theory because in this study the beam thickness
is very small.
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Substituting the Eq. (5) into the set of Eq. (4), we obtain

d2W (x)

dx2
−dΨ(x)

dx
+
1

A∗(x)
dA∗(x)
dx

[
dW (x)

dx
−Ψ(x)

]

+
ρω2

kG
W (x)=0,

EI0

kA0G

[
d2Ψ(x)

dx2
+
1

I∗(x)
dI∗(x)
dx

dΨ(x)

dx

]

+
A∗(x)
I∗(x)

[
dW (x)

dx
−Ψ(x)

]

+
ρI0ω

2

kA0G
Ψ(x)=0.

(6)
The second moment of inertia and cross-sectional area are written in the following
dimensionless form:

I∗(x)=
I(x)

I0
A∗(x)=

A(x)

A0
(7)

where I0 and A0 are values of the moment of inertia and cross-section at the clamped
edge of the beam. For the ith sub-beam, the set of Eqs. (6) are written as

d2W (i)(x(i))

d(x(i))
2 −dΨ

(i)(x(i))

dx(i)
+
1

A∗(x)
dA∗(x)
dx

[

dW (i)(x(i))

dx(i)
−Ψ(i)(x(i))

]

+
ρω2

kG
W (i)(xi)=0

EI0

kA0G

[

d2Ψ(i)(x(i))

d(x(i))
2 +

1

I∗(x)
dI∗(x)
dx

dΨ(i)(x(i))

dx(i)

]

+
A∗(x)
I∗(x)

[

dW (i)(x(i))

dx(i)
−Ψ(i)(x(i))

]

+
ρI0ω

2

kA0G
Ψ(i)(x(i))=0.

(8)
Introducing the dimensionless parameters:

ξ=
x

L
ζ(i)=

x(i)

L(i)
v(i)=

W (i)

L
l(i)=

L(i)

L
(9)

the set of Eqs (8) can be rewritten as

(
1

l(i)

)2 d2v(i)
(

ζ(i)
)

d
(

ζ(i)
)2 −

(
1

l(i)

)
dΨ(i)

(

ζ(i)
)

dζ(i)
+
1

A∗ (ξ)
dA∗ (ξ)
dξ

×
[(
1

l(i)

)
dv(i)

(

ζ(i)
)

dζ(i)
−Ψ(i)

(

ζ(i)
)
]

+λ4s2v(i)
(

ζ(i)
)

=0

s2

[(
1

l(i)

)2 d2Ψ(i)
(

ζ(i)
)

d
(

ζ(i)
)2 +

1

I∗ (ξ)
dI∗ (ξ)
d (ξ)

(
1

l(i)

)
dΨ(i)

(

ζ(i)
)

dζ(i)

]

+
A∗ (ξ)
I∗ (ξ)

[(
1

l(i)

)
dv(i)

(

ζ(i)
)

dζ(i)
−Ψ(i)

(

ζ(i)
)
]

+λ4s2r2Ψ(i)
(

ζ(i)
)

=0,

(10)
where

λ4=
ρA0L

4ω2

EI0
, s2=

EI0

kA0GL
2=
2(1+v)

k
r2, r2=

I0

A0L2
· (11)

Assuming all grid points are the same for the sub-beams, then

ζ(1)=ζ(2)=ζ(3)=...=ζ(i)=...=ζ(n+1)=ζ. (12)
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Thus, Eq. (10) can be simplified:

(
1

l(i)

)2
d2v(i) (ζ)

dζ2
−
(
1

l(i)

)
dΨ(i) (ζ)

dζ
+
1

A∗(ξ)
dA∗ (ξ)
dξ

[(
1

l(i)

)
dv(i) (ζ)

d (ζ)
−Ψ(i) (ζ)

]

+λ4s2v(i) (ζ)=0

s2

[(
1

l(i)

)2
d2Ψ(i) (ζ)

dζ2
+
1

I∗(ξ)
dI∗ (ξ)
dξ

(
1

l(i)

)
dΨ(i) (ζ)

dζ

]

+
A∗(ξ)
I∗(ξ)

×
[(
1

l(i)

)
dv(i) (ζ)

d (ζ)
−Ψ(i) (ζ)

]

+λ4s2r2Ψ(i) (ζ)=0.

(13)
Furthermore, we introduce a modified form of the weighting coefficients of element i
to simplify the differential quadrature (DQ) analogue equations defined as

[A]
(i)
=
[A]
(i)

l(i)
[B]
(i)
=
[A]
(i)

(

l(i)
)2 · (14)

Using Eq. (14), we obtain for the governing set of equations of element i the DQ
analogue:

[Bve]
(i){v}(i)−[Ase](i){Ψ}(i)+λ4s2{v}(i)=0,

[Bse]
(i){Ψ}(i)−[Ave](i){v}(i)+λ4s2r2{Ψ}(i)=0

(15)

where

[Bve]
(i)
=[B]

(i)
+

[
1

A∗ (ξ)
dA∗ (ξ)
dξ

](i)

[A]
(i)

[Ave]
(i)
=

[
A∗ (ξ)
I∗ (ξ)

](i)

[A]
(i)

[Bse]
(i)
=s2

(

[B]
(i)
+

[
1

I∗ (ξ)
dI∗ (ξ)
dξ

](i)

[A]
(i)

)

−
[
A∗ (ξ)
I∗ (ξ)

](i)

[Ase]
(i)
=[A]

(i)
+

[
1

A∗ (ξ)
dA∗ (ξ)
dξ

](i)

.

(16)

In Eq. (16), the terms

[
1

A∗ (ξ)
dA∗ (ξ)
dξ

](i)

,

[
A∗ (ξ)
I∗ (ξ)

](i)

,

[
1

I∗ (ξ)
dI∗ (ξ)
dξ

](i)

are geometry-dependent diagonal matrices with values of the geometrical parameters.
Now we can rewrite the motion Eqs. (15) for the domain points in order to eliminate
the redundant equations ([6,7] and [15]) obtaining:

[

Bve
](i){v}(i)−[Ase

](i){Ψ}(i)+λ4s2{v}(i)=0
[

Bse
](i){Ψ}(i)+[Ave

](i){v}(i)+λ4s2r2{Ψ}(i)=0
(17)

where bar signs means truncated non-square matrices. Combining Eqs. (17):

[Bv] {v}− [As] {Ψ}+λ4s2{v}d=0 [Bs] {Ψ}+ [Av] {v}+λ4s2r2{Ψ}d=0 (18)
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where

{v}=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1
(1)

v2
(1)

.

.

.

vN−1(1)

vN
(1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

T⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1
(2)

v2
(2)

.

.

.

vN−1(2)

vN
(2)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

T

· · ·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1
(n+1)

v2
(n+1)

.

.

.

vN−1(n+1)

vN
(n+1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

T⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

T

{Ψ}=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ1
(1)

Ψ2
(1)

.

.

.

ΨN−1(1)

ΨN
(1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

T⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ1
(2)

Ψ2
(2)

.

.

.

ΨN−1(2)

ΨN
(2)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

T

· · ·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ1
(n+1)

Ψ2
(n+1)

.

.

.

ΨN−1(n+1)

ΨN
(n+1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

T⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

T

[Bv ] =diag

([
Bve

](1)[
Bve

](2)· · ·
[
Bve

](n+1)
)

[Av] =diag

([
Ave

](1)[
Ave

](2)· · ·
[
Ave

](n+1)
)

[Bs] =diag

([
Bse

](1)[
Bse

](2)· · ·
[
Bse

](n+1)
)

[As] =diag

([
Ase

](1)[
Ase

](2)· · ·
[
Ase

](n+1)
)

.

(19)
The “diag” operator provides the diagonal matrices. In order to separate the do-
main, boundary, adjacent displacement and rotation components, Eqs. (18) need to
be rearranged [11]:

[Bv]b{v}b+[Bv]d{v}d+[Bv]c{v}c−[As]b{Ψ}b−[As]d{Ψ}d−[As]c{Ψ}c+λ4s2{v}d=0

[Av]b{v}b+[Av]d{v}d+[Av]c{v}c+[Bs]b{Ψ}b+[Bs]d{Ψ}d+[Bs]c{Ψ}c+λ4s2r2{Ψ}d=0
(20)

where

{v}b=
{ {

v1
(1)
}

{

vN
(n+1)

}

}

{Ψ}b=
{ {

Ψ1
(1)
}

{

ΨN
(n+1)

}

}

{v}c=
{

{

vN
(1)
}
{

v1
(2)

vN
(2)

}T{
v1
(3)

vN
(3)

}T

· · ·
{

v1
(n)

vN
(n)

}T
{

v1
(n+1)

}

}T

{Ψ}c=
{

{

ΨN
(1)
}
{

Ψ1
(2)

ΨN
(2)

}T{
Ψ1
(3)

ΨN
(3)

}T

· · ·
{

Ψ1
(n)

ΨN
(n)

}T
{

Ψ1
(n+1)

}

}T

{v}d=

⎧

⎪⎪⎨

⎪⎪⎩

⎧

⎪⎨

⎪⎩

v2
(1)

...
vN−1(1)

⎫

⎪⎬

⎪⎭

T⎧

⎪⎨

⎪⎩

v2
(2)

...
vN−1(2)

⎫

⎪⎬

⎪⎭

T

· · ·

⎧

⎪⎨

⎪⎩

v2
(n+1)

...
vN−1(n+1)

⎫

⎪⎬

⎪⎭

T
⎫

⎪⎪⎬

⎪⎪⎭

T

{Ψ}d=

⎧

⎪⎪⎨

⎪⎪⎩

⎧

⎪⎨

⎪⎩

Ψ2
(1)

...
ΨN−1(1)

⎫

⎪⎬

⎪⎭

T⎧

⎪⎨

⎪⎩

Ψ2
(2)

...
ΨN−1(2)

⎫

⎪⎬

⎪⎭

T

· · ·

⎧

⎪⎨

⎪⎩

Ψ2
(n+1)

...
ΨN−1(n+1)

⎫

⎪⎬

⎪⎭

T
⎫

⎪⎪⎬

⎪⎪⎭

T

(21)

3.2 Compatibility conditions

We analyse the compatibility conditions that link the inertia and elasticity of the
beam with the distributed masses.
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Around each concentrated mass [x−m, x+m] and neglecting the moment of inertia,
the compatibility conditions are continuous in the vertical displacement and rotation.
This due to the acceleration of distributed masses that produce a bending moment
and a discontinuous transverse force.

w (x−m,t)=w (x+m,t) ψ (x−m,t)=ψ (x+m,t) M (x−m,t)=M (x+m,t)

V (x−m,t)−V (x+m,t)=mi ∂
2w(x,t)
∂t2

(22)

wheremi,M , V are the translational inertia of the i
th concentrated mass, the bending

moment and shear force respectively, which are presented for ith sub-beam as [20]

M (i)=EI
dΨ(i)

dx(i)
=
EI

L

1

l(i)
dΨ(i)

dζ
V (i)=kAG

(

Ψ(i)−dW
(i)

dx(i)

)

=kAG

(

Ψ(i)− 1
l(i)

dΨ(i)

dζ

)

(23)
compatibility conditions can be expressed in the DQ form as

v
(i)
N =v

(i+1)
1 Ψ

(i)
N =Ψ

(i+1)
1

N∑

j=1

A
(i+1)
1j Ψ

(i+1)
j −

N∑

j=1

A
(i)
NjΨ

(i)
j =0

N∑

j=1

A
(i+1)
1j v

(i+1)
j −

N∑

j=1

A
(i)
Njv

(i)
j +

αis
2λ4

A∗ (ξi)
v
(i)
N =0

(24)

we can define the dimensionless translational inertias of the ith concentrated mass as

αi=
mi

ρA0L
(25)

Eq. (24) can be rewritten in matrix form as

[Qe]
(i)

{

{v}(i)
{v}(i+1)

}

+λ4[qe]
(i)

{

{v}(i)
{v}(i+1)

}

=

{

0
0

}

[Qe]
(i)

{

{Ψ}(i)
{Ψ}(i+1)

}

=

{

0
0

}

(26)
where

[Qe]
(i)
jk=

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−δNK
δ(N+1)K

−A(i)Nk
A
(i+1)
1k

j=1,1≤k≤N
j=1,N+1≤k≤2N
j=2,1≤k≤N
j=2,N+1≤k≤2N

j=1,2

1≤k≤2N

[qe]
(i)
jk=

⎧

⎨

⎩

αis
2

A∗ (ξi)
0

j=2,k=N

else

(27)

Rewriting and composing a new Eq. (26) for all sub-beams,

[Q] {v}+λ4 [q] {v}= {0} [Q] {Ψ}= {0} (28)

where [Q], [q] are corresponding matrix that contains [Qe]
(1) to [Qe]

(n+1) and [qe]
(1)

to [qe]
(n+1) respectively. Equation (26) may be rewritten and sectioned to separate
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the components of domain, boundary, and adjacent displacement

[Q]b{v}b+[Q]d{v}d+[Q]c{v}c+λ4 ([q]b{v}b+[q]d{v}d+[q]c{v}c)= {0}

[Qv]b{Ψ}b+[Qv]d{Ψ}d+[Qv]c{Ψ}c= {0}.
(29)

From Eq. (27), it can be concluded that [q]b = [q]d = 0. Therefore, Eq. (29) can be
summarized as

[Q]b{v}b+[Q]d{v}d+[Q]c{v}c+λ4[q]c{v}c= {0} (30)

{Ψ}c= [Jb] {Ψ}b+ [Jd] {Ψ}d (31)

where
[Jb] =−[Qv]−1c [Qv]b [Jd] =−[Qv]−1c [Qv]d . (32)

Substituting Eq. (31) into Eq. (20)

[Bv]b{v}b+[Bv]d{v}d+[Bv]c{v}c+ [Gsb] {Ψ}b+ [Gsd] {Ψ}d+λ4s2{v}d= {0}
[Av]b{v}b+[Av]d{v}d+[Av]c{v}c+ [Esb] {Ψ}b+ [Esd] {Ψ}d+λ4s2r2{Ψ}d= {0}

(33)

where

[Gsb] =[As]b+[As]c [Jb] [Gsd] =[As]d+[As]c [Jd] [Esb] =[Bs]b+[Bs]c [Jb]

[Esd] =[Bs]d+[Bs]c [Jd].
(34)

3.3 Boundary conditions

The boundary conditions for a cantilever beam (robotic fish backbone) depicted in
Fig. 2 can be considered as

W (1)
∣
∣
x(1)=0

=0 ψ(1)
∣
∣
x(1)=0

=0 V (n+1)
∣
∣
x(n+1)=L(n+1)

=0 M (n+1)
∣
∣
x(n+1)=L(n+1)

=0.

(35)
Equation (35) can be rewritten using Eq. (23) as

Ψ(1)
∣
∣
x(1)=0

=0 1
l(i)
dΨ(n+1)

dζ

∣
∣
∣
ζ=1
=0 v(1)

∣
∣
x(1)=0

=0
(
1
l(i)
dΨ(n+1)

dζ
−Ψ(n+1)

)∣
∣
∣
ζ=1
=0.

(36)
In the DQ form, Eq. (36) can be indicated as

[m] {Ψ}=0 (37)

[m] {v}+ [n] {Ψ}= {0} (38)

where

mjk=

⎧

⎪⎪⎨

⎪⎪⎩

1

A
(n+1)
N(k−nN)

0

j=k=1

j=2,nN+1≤k≤(n+1)N
else

j=1,2

1≤k≤(n+1)N

njk=

{ −1
0

j=2,k=(n+1)N

else.

(39)
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Equations (37) and (38) can be rewritten and sectioned in order to separate the
components (boundary, domain, adjacent displacement and rotation)

[m]b{Ψ}b+[m]d{Ψ}d+[m]c{Ψ}c= {0}

[m]b{v}b+[m]d{v}d+[m]c{v}c+[n]d{Ψ}d+[n]c{Ψ}c= {0}.
(40)

From Eq. (39), we know that [n]c = [n]d = 0; Hence, using Eq. (31), Eq. (40) we have

{Ψ}b= [t] {Ψ}d {v}b=−[m]−1b [m]−1d {v}d−[m]−1b [m]−1c {v}c−[m]−1b [n]b [t] {Ψ}d
(41)

where
[t] =−[r]−1b [r]d [r]b=[m]b+[m]c [Jb] [r]b=[m]d+[m]c [Jd]. (42)

Replacing Eq. (41) into the set of Eqs. (20) and (30), a new set of equations is
obtained:

[K]

⎧

⎪⎨

⎪⎩

{v}d
{v}c
{Ψ}d

⎫

⎪⎬

⎪⎭

=λ4 [M ]

⎧

⎪⎨

⎪⎩

{v}d
{v}c
{Ψ}d

⎫

⎪⎬

⎪⎭

(43)

where

[K] =

⎡

⎣

[Bv]d−[Bv ]b[m]−1b [m]d [Bv ]c−[Bv ]b[m]−1b [m]c [Gsd] + [Gsb] [t]−[Bv ]b[m]−1b [n]b [t]
[Q]d−[Q]b[m]−1b [m]d [Q]c−[Q]b[m]−1b [m]c −[Q]b[m]−1b [n]b [t]
[Av]d−[Av ]b[m]−1b [m]d [Av]c−[Av ]b[m]−1b [m]c [Esd] + [Esb] [t]−[Av]b[m]−1b [n]b [t]

⎤

⎦

[M ] =−
⎡

⎣

s2I(n+1)(N−2)∗(n+1)(N−2) {0}(n+1)(N−2)∗2n {0}(n+1)(N−2)∗(n+1)(N−2)
{0}2n∗(n+1)(N−2) [q]c {0}2n∗(n+1)(N−2)

{0}(n+1)(N−2)∗(n+1)(N−2) {0}(n+1)(N−2)∗2n s2r2I(n+1)(N−2)∗(n+1)(N−2)

⎤

⎦·

(44)
Using Eq. (44), we can determine the natural frequencies and corresponding mode
shapes. The corresponding mode shapes can be completed using the Eqs. (31) and
(41). It should be noted that the number of grid points affects the results. The number
of grid points must be determined to satisfy the following relation for convergence of
first n frequencies:

∣
∣
∣
∣

λl
(N)−λl(N−1)
λl(N−1)

∣
∣
∣
∣
≤ε l=1,2, ...n (45)

where ε is considered as 0.01 in this study.

4 Experimental results

4.1 Numerical comparison

In order to assess the effectiveness of the proposed method, we have compared its
accuracy with the exact solution obtained with the method proposed by Lee and
Len [14].
We applied both methods to a cantilever Timoshenko beam with (v = 0.25, k =

2/3), an attached tip mass (α = 0.32), beam cross-sectional properties A = A0(1 −
0.4ξ) and I = I0(1 − 0.4ξ)3 for a slenderness ratio r of 0.1 and 0.04 as shown in
Table 1.
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Table 1. Comparison between this method and the exact method proposed by [14] for the
first three non-dimensional frequencies (λ2).

Slenderness ratios r 0.04 0.1

Modes of Vibration 1 2 3 1 2 3

Presented Method 2.117 13.42 36.11 1.997 10.69 24.34
Lee and Lin (1995) 2.099 13.55 36.76 2.015 11.07 25.63

Fig. 3. Experimental Setup.

4.2 Practical application

Our goal was to analyse the natural frequency in the robotic fish that we are devel-
oping, in order to optimise its energy efficiency. However, this analytical method can
only be used for any kind of robots which are completely or partially based on a con-
tinuous and flexible structure. This also applies to robots whose structure is based on
materials that work as actuators [21,22]. Therefore, we have applied our method to
the physical prototype using the setup depicted in Fig. 3. The parameters modelling
the robotic fish body as a conical Timoshenko beam where: slender ratio (r = 1.03),
elastic section modulus (s = 2.58), diameter variation d = d0(1−0.5ξ) and uniformly
spaced distributed masses (α = 1.3). The number of distributed masses (n) are 19
this corresponds to the number of masses (ribs) in the robotic fish.
In order to analyse the behavior of the backbone, the tail was set to its initial

position (Fig. 4a) and then released. Figure 4 shows the evolution of this movement.
The settling time was 6 seconds. White marks in the tail were used to allow a particle
tracking software (Tracker [23]) to find the free vibration response (Fig. 5a) and the
experimental natural frequency (Fig. 5b), using a Canon EOS 7D camera with a
50mm f1.8 lens to capture the movement at 60 frames per second. The figure 5b
was obtained by using the Fast Fourier Transform (FFT) that allows us to analyse a
signal’s spectrum with MATLAB®.
From the analysis of the images recorded, the natural frequency of the structure

obtained experimentally was 2.1249Hz.

5 Discussion and conclusions

In this work, we proposed the use of a theoretical model to find the natural frequency
of a robotic fish with distributed masses along a flexible, continuous and non-uniform
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Fig. 4. Free vibration analysis of the backbone. The white spots are the marks for the
tracking, the red line is the trajectory of the tail.
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Fig. 5. Experimental results. The natural frequency obtained was 2.1249Hz.

backbone. The theoretical model proposed can be used for the beams with a large
number of sections and capable of analyse the non-uniform beams with any variation
in the cross section and moment of inertia. A comparison with an exact method for a
set of cases where this could be applied assessed the goodness of the proposed method.
Comparing the data obtained experimentally for a physical prototype we could

confirm that our method can effectively be used to analyse the free vibration in beams
whose section is an arbitrary function, and with distributed masses. Also it can be
observed the good accuracy for the proposed method.
Note the small variation of 0.2519Hz between the theoretical value (1.873Hz) and

the one obtained experimentally (2.1249Hz). This is due to the flexible skin, whose
effect was not considered. The corresponding three modes for n=19 are depicted in
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Fig. 6. (a) First three modes of robotic fish with nineteen equally spaced similar concen-
trated masses. (b) Robotic fish maximum height Fig. 5c vs. Mode 1 Fig. 6a.

Fig. 6a. The first frequency of the bean with concentrated masses versus the position
of the robotic fish is plotted in Fig. 6b.
Adding the effects of the skin and hydrodynamics in the analytical model will be

object of future work. However this can be made by using the inviscid fluid model
of Chu [24] which its good accuracy has been demonstrated in comparison to experi-
mental measurements [25]. The Chu’s model relates the density of the fluid (ρfluid),
the resonant frequencies in vacuum (ωvac) and fluid (ωfluid) and density (ρ), width
(b) and thickness (h) of the beam. This can and has been successfully used to predict
the resonant frequencies of cantilever beams of rectangular cross section immersed in
viscous fluids. This still needs to be done.
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