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Abstract. A comprehensive numerical method for analysis of the evap-
oration of a particle-laden microdroplet is developed including the ef-
fects of heat and mass transfer, phase change, dynamic contact angles,
Marangoni force, and particle concentration. A level-set method, which
can easily handle the liquid-gas interface with change in topology, is
employed to solve the conservation equations of mass, momentum and
energy in the liquid and gas phases, vapor concentration in the gas
phase, and particle concentration in the liquid phase with sharp-
interface numerical techniques for the boundary conditions at the
interface. The numerical method is applied to microdroplet evaporation
on a solid surface to investigate the Marangoni effect on the droplet
evaporation and particle distribution.

1 Introduction

The evaporation of a particle-laden microdroplet has received significant attention as
an efficient and low-cost fabrication process for microstructures. Efforts have been
made to develop a predictive model for the evaporation process involving multiphase
dynamics of liquid, gas, vapor, and solid particles.
Deegan et al. [1] theoretically predicted the particle distribution in droplet evapo-

ration on a solid surface simplifying the droplet shape and the conservation equations
of momentum and particle concentration and using an approximate expression for the
evaporation rate. Their analysis proved that the particle accumulation or coffee-ring
formation near the pinned liquid-gas-solid contact line resulted from the increased
evaporation rate in that region. Fischer [2] showed that the particle deposition pat-
tern could be changed by varying the evaporation condition and thus the internal
flow of the droplet.
For its more general prediction, numerical simulations of particle-laden droplet

evaporation were performed in several studies. Widjaja and Harris [3] simulated the
evaporation process using a finite element method (FEM) to solve a diffusion equation
for the vapor fraction and an advection-diffusion equation for the particle concentra-
tion. Bhardwaj et al. [4] extended the FEM analysis for the particle deposition by
including the effects of heat transfer and wettability. Maki and Kumar [5] computed
the particle transport in the evaporation of a spreading droplet employing body-fitted
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moving grids for the interface region combined with Cartesian grids for the remaining
region. They demonstrated the formation of a layer of particles on the droplet surface
and the particle accumulation at the droplet edge to produce a coffee ring. However,
the Lagrangian methods are generally not straightforward to implement for break-
ing or merging of the interface. Recently, Fujita et al. [6] performed direct numerical
simulation of individual particles in drying colloidal suspension by combining an im-
mersed boundary method for particle-fluid interaction and a level-set (LS) interface
tracking method based on diffuse-interface modeling. Their formulation was simpli-
fied by assuming the vaporization mass flow rate was constant rather than solving
the conservation equations of energy and vapor fraction.
In this study, a LS method, which can easily handle the liquid-gas interface

with change in topology, is developed for comprehensive simulation of particle-laden
droplet evaporation including the effects of Marangoni force and particle concentra-
tion as well as the effects of heat and mass transfer, evaporation, and dynamic contact
angles.

2 Numerical analysis

The present numerical approach is based on the sharp-interface LS formulation devel-
oped by Son [7–9] for droplet evaporation and Lee and Son [10] for particle motion.
The LS method is extended for analysis of particle-laden droplet evaporation with
the Marangoni effect caused by the gradient of surface tension coefficient. The droplet
surface is tracked by the LS function φ, which is defined as a signed distance from
the liquid-gas interface. The negative sign is chosen for the gas phase and the positive
sign for the liquid phase. In this work, the following assumptions are made:

(1) the gas phase is an ideal mixture of air and vapor;
(2) the liquid phase is a mixture of evaporating liquid and non-evaporating
particles;

(3) the wall temperature is below the boiling temperature;
(4) the interface has no thickness;
(5) the temperature is continuous at the interface.

The fourth and fifth assumptions are not valid when the droplet size is of the order of
a few tens of nanometers, which is comparable to the interface thickness or the mean
free path of a gas, as addressed in Refs. [11–13]. However, they are not so restrictive
in the present work considering the initial droplet size of the order of a few tens of
micrometers. In this work, we do not consider the contact angle between each indi-
vidual particle and the liquid-gas interface. The contact angle effect can be estimated
only when direct numerical simulation of individual particles is conducted, which will
be done in the future.
Based on the ghost fluid method (GFM) [14–16], which is a sharp-interface numer-

ical technique for accurately enforcing the boundary conditions at the interface, the
conservation equations of mass, momentum and energy in the liquid and gas phases,
vapor mass fraction (Yv) in the gas phase, and particle volume fraction (Yp) in the
liquid phase can be expressed as

∇ · u = βṁn · ∇α (1)

ρ̂

(
∂u

∂t
+ uf · ∇uf

)
= −[∇p+ (σκ− βṁ2)∇α] + fM

+∇ · μ̂[∇u− (βṁn∇α)T + (∇uf )T ] (2)
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ρfcf

(
∂Tf

∂t
+ uf · ∇Tf

)
= ∇ · λ̂f∇Tf if φ �= 0 (3)

Tf = TI if φ = 0 (4)

∂Yv

∂t
+ ug · ∇Yv = ∇ · D̂v∇Yv if φ < 0 (5)

Yv = Yv,I if φ = 0 (6)

∂Yp

∂t
+ ul · ∇Yp = ∇ · D̂p∇Yp if φ > 0 (7)

(ul −U) · nYp = D̂p∇Yp · n if φ = 0 (8)

where

α = 1 if φ > 0 (9)

α = 0 if φ ≤ 0 (10)

β = ρ−1g − ρ−1l (11)

n = ∇φ/|∇φ| (12)

κ = ∇ · n (13)

ρ̂ = ρg(1− Fl) + ρlFl (14)

μ̂−1 = μ−1g (1− Fl) + μ−1l Fl (15)

λ̂−1g = λ
−1
g (1− Fl) (16)

λ̂−1l = λ
−1
l Fl (17)

D̂−1v = D
−1
v (1− Fl) (18)

D̂−1p = D
−1
p Fl. (19)

Here, u is the velocity, p the pressure, and T the temperature. The subscript f denotes
the liquid phase (l) for φ > 0 and the gas phase (g) for φ ≤ 0. The discontinuous step
function α, the interface normal n, and the interface curvature κ are evaluated from
the LS function. The surface tension coefficient σ is assumed to be a linear function
of interface temperature

σ = σref − |σT |(T − Tref). (20)

The velocity uf (ul or ug) for each phase is extrapolated into the entire domain (or a
narrow band near the interface) from the real velocity. For example, the ghost liquid
velocity at φ ≤ 0 is evaluated by the first-order extrapolation from the real liquid
velocity at φ > 0. The effective density ρ̂, viscosity μ̂, thermal conductivity λ̂, vapor
diffusion coefficient D̂v, and particle diffusion coefficient D̂p are interpolated by using
a fraction function Fl, which is defined as

Fl = 1 if α(φA) = α(φB) = 1

= 0 if α(φA) = α(φB) = 0

=
max(φA, φB)

max(φA, φB)−min(φA, φB) otherwise
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where the subscripts A and B denote the grid points adjacent to the location where
Fl is evaluated. The temperature TI and the vapor fraction Yv,I at the interface
(φ = 0) and the evaporation mass flux ṁ are simultaneously determined from the
following coupled equations for the mass and energy balances at the interface and the
thermodynamic relation

ṁ =
n · ρgDv(∇Yv)g
(1− Yv,I) =

n · [λl(∇T )l − λg(∇T )g]
hlg

(21)

Yv,I =
Mvpv,sat(TI)

Mvpv,sat(TI) +Ma [p∞ − pv,sat(TI)] (22)

where hlg is the latent heat of vaporization, p∞ the ambient pressure, pv,sat the satu-
rated vapor pressure, Ma the air molecular mass, and Mv the vapor molecular mass.
This simultaneous calculation procedure is preferred to the sequential calculation for
high evaporation rate cases. Its implementation is described in Ref. [7]. For 1-D case
of φi < 0 < φi+1, Eq. (21) can be expressed as

ρgDg

1− Yv,I
Yv,i − Yv,I
φi

=
λi+1

hlg

Ti+1 − TI
φi+1

− λi
hlg

Ti − TI
φi

·

When Yv,i, Ti and Ti+1 are treated explicitly and Yv,I is a function of TI as given
by Eq. (22), the above equation is solved for the interface temperature TI using a
Newton-Raphson iterative algorithm. Yv,I and ṁ are then obtained from Eqs. (22) and
(21). This kind of interfacial boundary conditions are possibly not needed when using
a diffuse-interface method supplemented by the van der Waals equation of state [11].
However, the diffuse-interface modeling will require a special technique to maintain
the interface thickness without being smeared if it is applied to two-phase flows with
large liquid-gas density ratios, as in the present study. The sharp-interface LS method
has the advantages in reducing the numerical diffusion. The interface velocity U is
evaluated using the real or ghost liquid velocity as

U = ul +
ṁ

ρl
· (23)

To consider the case where the particle concentration reaches the maximum value (in
random packing) of Yp = 0.64, the liquid viscosity is evaluated as [17,18]

μl = μlo

(
1− Yp
0.64

)−1.6
· (24)

The diffusion coefficient Dp of particles is determined from the generalized Stokes-
Einstein equation [19,20]

Dp = Dpo(1− Yp)6
1 + 4.875Yp + 7.441Y

2
p − 2.219Y 3p − 65.61Y 4p + 68.097Y 5p
(1− Yp/0.64)2 · (25)

The dilute limit Dpo is expressed as Dpo = kBT/3πμldp, where kB is the Boltzmann
constant and dp is the particle diameter.
Introducing the delta function |∇α|, as done in Refs. [21,22], the Marangoni force

fM can be formulated as
fM = (∇sσ)|∇α| (26)

where ∇sσ = ∇σ−n(n · ∇σ). However, this delta function formulation is not appro-
priate for prediction of the flow field in the gas region, as observed in Ref. [9] while
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computing two-phase Marangoni convection in a cavity. We use a sharp-interface for-
mulation of fM developed in Ref. [9] for good convergence in both the liquid and gas
regions. The formulation can be derived by following the discretization procedure of
Kang et al. [14] for the viscous terms. In a staggered grid system where the velocity
components are defined at cell faces whereas the other dependent variables at cell
centers, it can be written as

(fM )p,q =

(
ˆ̂μ∇sσ|∂α

∂r
|
)
p−1/2,q

+

(
ˆ̂μ∇sσ|∂α

∂r
|
)
p+1/2,q

+

(
ˆ̂μ∇sσ|∂α

∂y
|
)
p,q−1/2

+

(
ˆ̂μ∇sσ|∂α

∂y
|
)
p,q+1/2

(27)

where the axisymmetric coordinates (r, y) are used and the subscript (p, q) refers to

the grid point where the velocity component is defined. The viscosity function ˆ̂μ is
expressed as

ˆ̂μp±1/2,q =
μ−1p±1,q|φp±1,q|

μ−1p,q|φp,q|+ μ−1p±1,q|φp±1,q|
(28)

ˆ̂μp,q±1/2 =
μ−1p,q±1|φp,q±1|

μ−1p,q|φp,q|+ μ−1p,q±1|φp,q±1|
· (29)

The LS function φ is advanced and reinitialized as

∂φ

∂t
+U · ∇φ = 0 (30)

∂φ

∂τ
=

φ√
φ2 + h2

(1− |∇φ|) if |φ| ≥ h/2 (31)

where h is a grid spacing.
While considering the particle motion in an evaporating microdroplet, the liquid

flow inside the droplet is important although it is much weaker than the gas flow
caused by the droplet evaporation. The low liquid velocity can be easily influenced
by the numerical errors in discretizing the surface tension force, even without includ-
ing the Marangoni effect. When the LS formulation was applied to 2-D computation
of particle motion in an evaporating spherical droplet in our previous study [10],
the result for the particle distribution was significantly deviated from the spherical
symmetry. As an effort to reduce the numerical errors, we tested the calculation pro-
cedure for the interface curvature proposed by Sussman and Ohta [23] and Sussman
[24], which was originally developed to relax the time constraint caused by the explicit
treatment of surface tension. The interface curvature is evaluated solving the follow-
ing equation for volume-preserving motion by mean curvature (or a kind of diffusion
equation) with smaller time steps:

dl+1 − dl
Δt/N

= κl − κ0av with d0 = φn+1 (32)

∂dl+1

∂τ
=

dl+1√
(dl+1)2 + h2

(1− |∇dl+1|) if dn+1 ≥ h/2 (33)
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Fig. 1. Effect of mesh size on microdroplet evaporation with the Marangoni effect: (a)
droplet-wall contact diameter and (b) droplet volume.

for l = 0, 1, ..., N − 1. Here, κ = ∇ · (∇d/|∇d|) and κav is the average curvature. We
have to choose N to be proportional to 1/h. The resultant dN is used to determine
the interface curvature κ in the momentum equation,

κ =
dN − d0
Δt

· (34)

When using the modified formulation of the interface curvature, the results for
droplet internal flow and particle distribution can be significantly improved, as seen in
Ref. [10].
While discretizing the governing equations temporally, we use a first-order ex-

plicit scheme for the convection and source terms and a fully implicit scheme for the
diffusion terms. The mass and momentum equations are solved by employing the pro-
jection method. A second-order essentially nonoscillatory (ENO) scheme is used for
the convection terms and the distance function and a second-order central difference
scheme for the other terms including the diffusion terms and the interface curvature.
The interface curvature κ is interpolated to the zero LS for the interface. For example,
κi±1/2,j is expressed for φi,jφi±1,j < 0 as

κi±1/2,j =
φi,jκi±1,j − φi±1,jκi,j

φi,j − φi±1,j · (35)

3 Results and discussion

The sharp-interface LS formulation is applied to particle-laden droplet evaporation
on a solid surface. The computational domain is chosen as a cylindrical region of
0 ≤ r ≤ L and 0 ≤ y ≤ H. We impose the slip condition at r = 0, the open boundary
condition at r = L or y = H, and the following no-slip condition at the bottom wall
(y = 0):

u = 0, T = Tw,
∂Yv

∂y
=
∂Yp

∂y
= 0,

∂φ

∂y
= − cos θ (36)

where θ is a contact angle formed on the liquid-gas-solid contact line and is used to
determine the LS function at the wall. The typical contact angle varies dynamically
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Fig. 2. Droplet motions and velocity fields in microdroplet evaporation (a) without and (b)
with the Marangoni effect.

between an advancing contact angle θa and a receding contact angle θr, as described
by Fukai et al. [25]. The contact line does not move when the contact angle changes
in the range θr < θ < θa. Otherwise, while the contact line moves, the contact angle
remains constant as θ=θr or θ=θa. To simulate the contact line pinning phenomena,
which occur in the evaporation of a droplet including particles, the receding contact
angle is set to θr = 0.

The calculations are carried out using the water and air properties at 1 atm:
ρl = 997 kg/m

2, ρg = 1.18 kg/m
3, μl = 8.91 × 10−4 Pas, μg = 1.85 × 10−5 Pas, cl =

4.18×103 J/kgK, cg = 1.01×103 J/kgK, λl = 0.595W/mK, λg = 2.55×10−2W/mK,
Dg = 2.6 × 10−5m2/s, σref = 7.2 × 10−2N/m, and |σT | = 1.48 × 10−4N/mK. The
dilute diffusion coefficient of particles is chosen as Dpo = 5 × 10−12m2/s based on
dp = 0.1μm. The saturated vapor pressure is evaluated as a function of temperature
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Fig. 3. Pressure fields in microdroplet evaporation (a) without and (b) with the Marangoni
effect. The intervals between pressure contours are 1Pa in the gas region and 30Pa in the
liquid region, respectively.

from the steam table [26]

pv,sat(TI) = exp

(
9.487− 3.893× 10

3

TI + 230.47

)
(37)

where pv,sat is given in MPa and TI in
◦C.

Considering the experimental conditions of Lim et al. [27] for the evaporation
of a pure water droplet, we choose the initial droplet radius as Ri = 21μm, the
initial temperature as Ti = 25

◦C, the wall temperature as Tw = 70 ◦C, the advanc-
ing contact angles as θa = 58

◦, and the vapor mass fraction at the boundary as
Yv,∞ = 8.8 × 10−3 based on the relative humidity of 45%. A large computational
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Fig. 4. Temperature fields in microdroplet evaporation (a) without and (b) with the
Marangoni effect. The interval between temperature contours is 1 ◦C.

domain of L = H = 773μm is taken so that the droplet evaporation is not affected
by the domain size. Uniform meshes with h are used near the droplet, r ≤ 42μm and
y ≤ 42μm, whereas nonuniform meshes with the ratio of two adjacent intervals of 1.1
are used for the other regions to save computing time. Initially, the droplet shape is
taken to be a spherical cap with θ = 58◦ and the initial particle volume fraction as
Yp,i = 0.05.
A convergence test for grid resolutions is made with h = 1.68μm, h = 0.84μm

and h = 0.42μm. The results are plotted in Fig. 1. The relative differences between
the droplet-wall contact diameters and droplet volumes obtained from the successive
mesh sizes are observed to be small as the mesh size decreases. The results obtained
with h = 0.84μm almost overlap with h = 0.42μm. Therefore, most of computations
in this study are done with h = 0.84μm to save the computing time, without losing
the accuracy of numerical results.
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Fig. 5. Vapor fraction fields in microdroplet evaporation (a) without and (b) with the
Marangoni effect. The interval between vapor fraction contours is 0.01.

Figure 2 shows the droplet motions and the associated velocity fields computed
without/with the Marangoni effect. As the droplet volume decreases with evapora-
tion, the contact angle decreases while the liquid-gas-solid contact line is fixed or
pinned. In the case without the Marangoni effect, the liquid velocity is invisibly small
in comparison to the gas velocity which is generated due to the liquid-vapor phase-
change on the droplet surface and decays away from the liquid-gas interface. However,
the case with the Marangoni or thermocapillary effect results in a significant increase
of liquid velocity, as seen in Fig. 2b. The surface tension gradient due to the tempera-
ture variation on the droplet surface induces liquid and gas flows along the interface.
The thermocapillary-driven liquid flows develop into clockwise and counter-clockwise
circulations, as observed in the entire droplet region. The Marangoni flows decay
as the interface temperature variation decreases with the heat transfer between the
droplet and the solid surface. This velocity behavior affects the pressure field as seen
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Fig. 6. Particle concentration fields in microdroplet evaporation (a) without and (b) with
the Marangoni effect.

in Fig. 3. The pressure gradient is pronounced in the gas region near the liquid-gas-
solid contact line and in the liquid region with the thermocapillary-driven flow.
The Marangoni effect on the temperature and vapor fraction fields are plotted

in Figs. 4 and 5. Compared to the case without the Marangoni effect where the
isotherms are parallel to the horizontal wall inside the droplet with negligible internal
flow, the temperature fields in Fig. 4b with the Marangoni effect are disturbed inside
the droplet and near the interface, but the thermocapillary effect is limited to the
early period of droplet evaporation. It is noted that the temperature is not uniform
along the interface, which results in the non-uniform vapor fraction distribution on
the interface, as depicted in Fig. 5. The vapor fraction contours are more crowded near
the lower portion of the interface with a higher temperature than the upper portion
of the interface. This means that the evaporation rate is higher near the lower portion



412 The European Physical Journal Special Topics

 0

 20

 40

 60

 80

 100

 120

 0  10  20  30  40  50  60

D
c 

(u
m

)

t (ms)

Comp. Ma=0
Comp. Ma=0        \  
Experiment  

 0

 20

 40

 60

 80

 0  10  20  30  40  50  60

V
ol

 (
pl

)

t (ms)

Comp. Ma=0
Comp. Ma=0        \  
Experiment  

)b()a(

Fig. 7. Marangoni effect on microdroplet evaporation: (a) droplet-wall contact diameter
and (b) droplet volume.

of the interface or the liquid-gas-solid contact line. The vapor fraction distribution is
found to be little influenced by the Marangoni flow during the whole period of droplet
evaporation.
Figure 6 shows the particle concentration fields. In the case without the Marangoni

effect, as the non-uniform evaporation along the interface causes the liquid inside
the droplet to move toward the contact line, the particles are accumulated near the
contact line, as seen in Fig. 6a. However, the case with the Marangoni flow which
is circulated along the interface toward the upper portion of the interface presents a
significant change in particle distribution. When the thermocapillary-driven flow is
pronounced during the early period of droplet evaporation, as depicted at t ≤ 12.6ms
of Fig. 2b, the particle accumulation occurs near the center of solid surface due to
the downward flow developed in the middle of the droplet. As time elapses and the
Marangoni flow decays, the particle accumulation occurs in a wider region inside the
droplet than the case without the Marangoni effect, as seen at t = 30.5ms of Figs. 6a
and 6b. This particle accumulation pattern in droplet evaporation dependent on the
Marangoni effect is consistent with the observation of Hu and Larson [28].
The Marangoni effect on the temporal variations of the droplet-wall contact di-

ameter and droplet volume is plotted in Fig. 7. The numerical results demonstrate
the the Marangoni effect, which is an important parameter to determine the particle
accumulation pattern, is negligible on the temporal variation of droplet shape and
the evaporation rate. Compared with the experimental data of Lim et al. [27] for the
evaporation of a pure water droplet with θa = 58

◦ and θr = 25◦, the numerical pre-
diction of droplet behavior shows a good agreement while the contact line is fixed, but
it is deviated as the contact line of a pure droplet recedes. A particle-laden droplet,
whose contact line is fixed during the whole period, is found to have a higher evapora-
tion rate than a pure droplet. The evaporation period is shorter in the particle-laden
droplet.

4 Conclusions

A level-set method, which is easily applicable to the liquid-gas interface with change
in topology, was developed for comprehensive analysis of the evaporation of a
particle-laden microdroplet on a solid surface including the effects of Marangoni or
thermocapillary force and particle concentration as well as the effects of heat and
mass transfer, evaporation, and dynamic contact angles. The computation without
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the Marangoni effect shows that the droplet internal flow is invisibly small in compari-
son to the gas flow, and the particles are accumulated near the liquid-gas-solid contact
line as the non-uniform evaporation along the interface causes the liquid inside the
droplet to move toward the contact line. The case with the Marangoni effect results in
a significant increases of the liquid velocity. When the thermocapillary-driven flow is
pronounced during the early period of droplet evaporation, the particle accumulation
occurs near the center of solid surface due to the downward flow developed in the
middle of the droplet. During the late period of droplet evaporation, the Marangoni
flow decays due to the heat transfer between the droplet and the solid surface, and the
particle accumulation occurs in a wider region inside the droplet than the case with-
out the Marangoni effect. However, the Marangoni effect is negligible on the temporal
variation of droplet shape and the evaporation rate. A particle-laden droplet, whose
contact line is fixed during the whole period, is found to have a higher evaporation
rate and a shorter evaporation period than a pure droplet.
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