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Abstract. We consider the evolution and related instabilities of thin
metal films liquefied by laser pulses. The films are patterned by large-
scale perturbations and we discuss how these perturbations influence
the dynamics. In the experiments, we find that the considered thin
films dewet, leading to the formation of primary and secondary drops,
with the locations of the primary ones coinciding with the original per-
turbations. Based on the results of the fully nonlinear time-dependent
simulations, we discuss the details of the evolution leading to these pat-
terns. Furthermore, in both experiments and simulations, we discuss
the influence of the shape of the initial perturbations on the properties
of the final patterns.

1 Introduction

Instabilities of thin liquid films are of importance in a variety of applications. In
particular, thin metal films and the patterns that form during their evolution find
its relevance for plasmonic enhanced functionalities such as surface-enhanced Raman
spectroscopy (SERS) [2,19,21,22] and magnetic nano-particles [14,21], among others.
In addition to their applications, these films serve as systems that can be used to test
the application of continuous fluid mechanics on nanoscale. One advantage of metal
films over other materials is that it is possible to control very precisely their initial
configuration (e.g. by lithographic techniques) and then, after the films are liquefied,
follow their evolution starting from the precisely known initial condition. Such a setup
allows for a direct comparison between experiments and simulations that cannot be
easily achieved with other materials.
Thin metal films and their instabilities have been considered extensively in

the literature, see e.g., [13,16,20,24,25,29] and references therein. In our recent
works [8,9,18,26], we have started analyzing the interplay between the instability
development and initial geometry of the films. While analyzing instabilities in the
problems where contact lines are initially present is of significant interest, it is even
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Fig. 1. Illustration of the patterning process. The first step involves patterning cylinder
arrays of diameter D and the distance S (orange). The second step involves covering the
cylinder with a continuous thing film (green).

more insightful, from the point of view of understanding the instability mechanisms, to
consider configurations involving dewetting. In our recent work [26] we have reported
experiments involving thin films patterned by disk-like perturbations. The focus of
the present paper is to discuss in more detail the underlying instability mechanism
in such a geometry, with the focus on the role of destabilizing liquid-solid interaction
forces. Furthermore, we present new experimental and simulation results where we
vary geometric properties of the imposed perturbations and discuss the influence that
these properties have on the instability development.

2 Experiments

The details of experimental procedure can be found in [26]. Here we just briefly re-
view the main process flow as illustrated in Fig. 1. The metal thin film geometry was
realized by two steps. Initially 9 nm thick Cu cylinders, squares and triangles were
patterned using electron beam (EB) lithography on a 100 nm amorphous thermal
SiO2 film on a Si substrate. During the lithography step, ≈200 nm thick PMMA
resist was used and the patterns were exposed to 1200 μC/cm2 100 keV focused EB.
After metallization using an AJA DC sputtering chamber and liftoff of the resist, the
patterned copper shapes were immediately loaded to the vacuum chamber of the DC
sputtering system to prevent oxidation of Cu, and a continuous 9 nm thick Cu top
layer was sputtered on top of the patterned shapes and substrate. The patterned Cu
film was then exposed to an 18 ns, 248 nm KrF excimer laser. Limited oxidation is
expected due to the continuous experimental steps considering that the initial oxi-
dation rate of copper is slow (≈0.031 nm/day) [4]. The pulse energy is selected to
be 140 mJ/cm2 to elevate thin film temperature above its melting point (1358 K)
and the corresponding liquid lifetime was estimated by thermal simulations [26]. The
estimated maximum temperature and liquid life time of a 9 nm film and a 20 nm film
using thermal simulation are ≈1872 K (≈26 ns liquid time) and ≈2000 K (≈37 ns
liquid time) respectively. We note that since the 248 nm excimer laser wavelength is
far from the range of plasmonic resonance of the patterned Cu nanostructures (high
energy mode located at ≈600− 800 nm), we ignore plasmonic heating in this study.
We note that the fluence range for the Cu melting is below a typical ablation thresh-
old and rapid heating and cooling minimizes Cu evaporation and diffusion into the
substrate [27].
After exposure, the liquid instability leads to spontaneous pattern formation.

The novelty of the geometry considered here is the synthetic perturbations regularly
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Fig. 2. Experimental results for the perturbations of different shapes. The top row shows the
initial configurations, and the bottom row shows the resulting nanoparticles. Both the base
film and the perturbations are 9 nm thick. The shapes shown have resulted after one pulse;
the liquid lifetime for a single pulse is estimated as 25 ns for the 9 nm Cu film and 37 ns for
the 18 nm film [26]. The transparent circles highlight the location of primary nanoparticles.
The bright areas show the parts of the domain covered by the metal particles, and dark
areas show the substrate. Here the distance between perturbation centers is S = 500 nm,
and the length of a typical dimension (the edge length of squares and triangles, diameter for
circles) is D = 350 nm.

spaced on top of the film. In [26], a variety of different thicknesses of the film and
the perturbations were discussed; here we will use fixed film thickness, and consider
perturbations whose aspect ratios and geometry are varied. Figure 2 shows the re-
sults for three different shapes of perturbations: disks, and four-sided and three-sided
prisms. For simplicity, we will refer to these shapes as circles, squares and triangles.
We see that for each considered geometry, the final pattern involves drops/particles
that form at the location of the initial perturbations, with additional patterns that
form in between. Clearly, the perturbation shape influences the evolution, although
the final patterns that form are similar, in particular in the case of circles and trian-
gles. Square geometry has not finished evolving during a single laser pulse, and the
shape of the secondary patterns provides some insight into the dynamics. We discuss
these dynamics in more detail after introducing our theoretical model.

3 Model

In the present work, we use an implementation of the long wave (lubrication) model
for the purpose of analyzing and understanding the evolution and fluid instabilities
that lead to the patterns such as the ones shown in Fig. 2. Before proceeding with
more detailed description of the model, it is important to clarify one crucial point:
in the experiments, after application of laser pulses, the complete domain is covered
by liquid metal, and fluid fronts and corresponding contact lines are not present, at
least initially. Therefore, any implemented model must include an ingredient that
leads to film instability and dewetting. On nanometric length scales, as considered
here, this ingredient is destabilizing liquid-solid interaction: without inclusion of this
interaction, instability cannot happen. In our model, we include this interaction via
so-called disjoining pressure model, discussed in some details in [7], that includes both
stabilizing and destabilizing interactions. Such a model leads naturally to formation
of an equilibrium film of thickness h∗, corresponding to the thickness at which the
competing terms in the disjoining pressure balance.
After specifying the crucial component of the model, we briefly outline the main

concepts. Within long wave theory, one averages over the short direction (film thick-
ness) and ignores all gradients in the out-of-substrate-plane direction. The relevant
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asymptotic expansion requires that all slopes are small: while this assumption is not
satisfied at the late stages of evolution (such as the ones shown in Fig. 2) since the
contact angle for Cu on SiO2 is ≈79◦ [28], it is expected to be a reasonable approxi-
mation for early stages of evolution, as soon as capillary effects smoothen the initially
imposed shapes. The additional assumptions and approximations used are as follows:
(i) we assume that the evolution proceeds in isothermal regime, and therefore we are
ignoring transient effects at the very beginning and the very end of a laser pulse, as
well as temperature dependence of material parameters, in particular of metal viscos-
ity and surface tension. The latter may lead to Marangoni stresses; our preliminary
estimates based on the thermal simulations [26] (estimates using the approximate
analytical results for liquid metal temperature given in [24] lead to similar results)
suggest that for the considered geometry the Marangoni effects are not dominant.
(ii) phase change effects are ignored. (iii) inertial effects are also not considered in
the present work; more complete model based on directly solving Navier-Stokes equa-
tions [1], as well as the experiments with Au particles [11] suggest that these effects
may become important in the problem where contact lines are initially present and
dewetting can proceed on a time scale faster than the evolution considered in the
present work. Arguably, these approximations should be reconsidered and we are cur-
rently in the process of analyzing their influence; however, at this point, we aim to
formulate a minimal model that can provide an initial insight into the considered
problem. Similar approach has been used in our earlier works, see e.g., [8,10,13,27].
Following the approach outlined above, one obtains the following 4th order partial

differential equation describing evolution of a liquid film of thickness h(x, y, t), where
(x, y) are the in-plane coordinates:

3μ
∂h

∂t
+ γ∇ · (h3∇∇2h) +∇ · [h3∇Π(h)] = 0. (1)

Here, μ and γ are the fluid viscosity and surface tension, respectively, assumed to be
space and time independent. The second term corresponds to capillary forces, and the
third one models liquid-solid interaction; Π is the disjoining pressure, describing the
interaction of the liquid metal with the solid substrate. This interaction may be very
complex and it is not well understood [27]. Following the approach of formulating a
minimal model that still has a potential to provide useful insight, we consider the
disjoining pressure of a simple power-law form

Π(h) = κf(h) = κ

[(
h∗
h

)n
−
(
h∗
h

)m]
· (2)

Such a form of disjoining pressure with (n,m) = (3, 2) was used to describe
instabilities of thin (unstructured) metal films [10]. Here, κ = s/(Mh∗), where
M = (n−m)/((n− 1)(m− 1)), and s = γ(1 − cos θ), where θ is the contact an-
gle. The Hamaker constant, A, is related to κ by A = 6κh3∗ [7].
To proceed, we analyze this evolution equation coupled with no-flux, zero-

derivative boundary conditions: hxxx = hyyy = hx = hy = 0. This choice preserves
mass in the computational domain, furthermore, the use of zero-derivative boundary
condition allows (for circular and square geometries) an implementation of bound-
aries as symmetry lines. This feature is useful since in simulations we consider only
a subset of the experimental domains shown in Fig. 2. For triangular geometries, we
use periodic boundary conditions1.

1 The authors acknowledge help by Te-Sheng Lin with implementation of periodic bound-
ary conditions.
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Before proceeding with the analysis of Eq. (1), we write it down in non-dimensional
form. For this purpose, we introduce the viscous time scale, tc = 3μhc/γ, where
hc = 1 nm is the chosen length scale. Then, we define non-dimensional variables
(with bars) by h = h̄hc, t = t̄tc, x = x̄hc, y = ȳhc. After the non-dimensionalization,
we obtain (for simplicity we drop all the bars)

∂h

∂t
+∇ · (h3∇∇2h) +K∇ · [h3f ′(h)∇h] = 0. (3)

Here,K = κhc/γ. For the material parameters corresponding to Cu on SiO2 substrate,
given in [28], we find tc = 1.008× 10−11 s, and K = 1.608.

4 Results

In this section, we start by discussing the results of the linear stability analysis (LSA)
of Eq. (3) and then continue with describing the outcomes of fully nonlinear time
dependent simulations. The LSA is expected to provide the basic understanding of
the instability mechanism, since it is carried out assuming that the base state is a
flat film, and furthermore, by design it applies only to the early stages of evolution.
However, as we will see in what follows, this approach does provide useful insight in
particular regarding evolution of the flat film in between the perturbations.

4.1 Linear Stability Analysis

The LSA is carried out by considering initially flat film of thickness h0, and assuming
that this flat film is perturbed by small perturbations: h(x, t) = h0+ δ exp(iqx+ σt),
where δ � 1, q = 2π/λ is the wavenumber and σ is the growth rate. Assuming this
form of h in Eq. (3), and collecting the terms linear in δ, we obtain the following
dispersion relation

σ = −h30q4 −Kh30f ′(h0)q2. (4)

As expected, the perturbations characterized by large q’s (short wavelengths) are
stabilized by surface tension, and the growth rate for small q’s converges to zero as
q → 0. The wavelength of maximum growth, λm, corresponding to the largest growth
rate, σm, is considered to be the most “dangerous”, meaning that one expects (at
least within the linear picture) that the instabilities characterized by wavelengths
close to λm show up in physical experiments. Both λm and σm depend on h0; to
gain basic understanding, take h0 = 13.5 (average of the base film thickness and
the total thickness of the perturbations, ignoring the equilibrium film thickness). We
then find that hcλm ≈ 260 nm, and the time for which instability is expected to grow,
tc/σm ≈ 11.95 ns. Recalling the experimental time scale on which instabilities develop
(≈20− 30 ns), we see that the predictions of the LSA are consistent with the experi-
mental data; furthermore, the LSA suggests that the in-plane dimensions of the film
in between the perturbations are comparable to hcλm, and therefore it is reasonable
to expect thin-instability to be relevant in the experiments considered. The various
mechanisms that may lead to instability of thin films have been extensively discussed
in the literature, particularly in the context of polymeric [3,23], liquid crystal [12] and
metal films [10,13,25], see [5,17] for reviews. For the present purposes, we only note
that this instability may be driven either by experimental noise of various (thermal,
mechanical) origins, or also, in the present context, by the fact that large imposed
perturbations may induce dynamics that will lead to instability of the film in between
the perturbations. We discuss these dynamics next in the context of the results of
numerical simulations.
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Fig. 3. Evolution of a flat film of the thickness of 10 nm, with imposed 9 nm thick disk-like
perturbations. The diameter of the disks is D = 350 nm, and the distance between disk
centers is S = 500 nm, as in Fig. 2.

4.2 Nonlinear simulations: Reference case

Here we proceed by discussing the results of the simulations of the evolution Eq. (3).
These simulations are based on ADI-type of scheme that allows for efficient compu-
tation of two dimensional problems considered here [15].
Figure 3 shows an example of the evolution where the initial perturbation, shown

in part (a) is of circular shape. The whole domain is covered by a 10 nm thick film (so,
9 nm above the equilibrium film thickness) and on top of this film we add 9 nm thick
cylinders. This geometry closely resembles the one used in the experiments, shown in
Fig. 2, second column. To avoid infinite gradients of the initial profile we smoothen
the perturbation boundaries in a narrow transition region; the size of this transition
region does not influence the results that follow, as long as its size is much smaller
than the cylinder diameter, D.
Figure 3 shows that, as soon as the evolution starts, the surface tension effects

lead to formation of large drops on top of the film. In between these large drops, in the
particular case shown in the figure, smaller, secondary drops form, see part (b). These
secondary drops are essentially due to the fluid being pushed away during spreading
of the initial perturbations, and form exactly in between any three original perturba-
tions. A detailed inspection of the results show that, while the film is thicker at the
location of the secondary drops, it is slightly thinner at the points that are furthest
away from the secondary drops (due to the imposed symmetry, these points are at
the intersection between the lines connecting the centers of the secondary drops and
the lines connecting the centers of the primary drops. These locations are the most
unstable due to the presence of van der Waals forces, and here is where the film dewets
(the thickness reaches h∗), see part (c). In the particular case shown in Fig. 3, the
further evolution involves formation of filaments between the primary and secondary
drops. As the dynamics proceeds, these filaments break up by the process resembling
Rayleigh-Taylor instability of a liquid jet (see, e.g., [6] for extensive discussion of this
problem). These breakups lead to the formation of tertiary drops that are smaller in
size than the secondary ones. The final result is the network of drops or different sizes,
see part (d). By comparing with the LSA, we note that, as expected, the instability
develops on the consistent time scale. A comparison with the experimental results,
see Fig. 2, second column, shows that secondary drops develop at consistent locations
between the simulations and experiments. A careful examination of the experimental
result after application of laser pulses uncovers also smaller, tertiary drops in some
cases. The simulation results suggest that these drops may be due to the breakup of
filaments that form in between the primary and secondary drops. Therefore, we find
that, at least for the considered case, our simulations, although based on a rather
simple model, compare favorably with the experiments.
After outlining the basic picture of instability development, we proceed in Sect. 4.3

to discuss the influence of the shape of the imposed perturbations on the final pat-
tern. Before that, we note in passing some additional features of the instability
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Fig. 4. Final shapes obtained from the disk-like perturbations whose aspect ratio is varied:
the volume of the perturbations is the same as in Fig. 3. The perturbations’ thickness is
shown for the each snapshot. See Fig. 3 for the final shape for 9 nm thick perturbations.

development, observed both in experiments and simulations [26]. First, placing the
perturbations very close together, while keeping their size fixed, may lead (in simu-
lations) to full merge of the perturbations and the final result may just be a film of
uniform thickness determined by the mass conservation. In experiments (or in sim-
ulations with superimposed perturbations, as discussed further below), such a film
breaks up, again due to destabilizing liquid-solid interaction, leading however to ir-
regularly spaced drops. On the other hand, if the initial perturbations are placed
far apart, the metal film in between has sufficient time to become unstable and this
instability leads to the formation of disordered drops in between the main ones that
form at the locations of the original perturbations. This effect was also observed in
the simulations where the initial condition was perturbed by a set of random pertur-
bations [26]. In between these two extremes, there is a regime where a regular array
of drops forms, both in the experiments, see Fig. 1a and in the simulations, see Fig. 3.
We focus on this regime in what follows.

4.3 Nonlinear simulations: Shape dependence

We proceed by discussing the influence of the shape of the imposed perturbations on
the dynamics. Here are some questions that we will consider: (i) Assuming that the
considered perturbation is of disk-like shape, what is the influence of the aspect ratio
of the perturbation on the evolution? (ii) What is the influence of perturbation shape
on the evolution? For example, if we have perturbations with the base of triangular
or square shape, how is the evolution influenced?
Figure 4 shows the final outcomes of the simulations where the aspect ratio of the

disk-like perturbations was varied – we consider perturbations that are thicker, but
their volume is kept fixed. While the generic features of the results are similar for all
aspect ratios, some differences can be seen as well. One of the differences is the size
of the primary drops, which decreases as the perturbation thickness increases. This
could be explained by realizing that thicker perturbations collect less of the material
from the underlying film during their evolution since their diameter is smaller. There-
fore, by varying the aspect ratio of the perturbations, one can control the size of the
primary particles. The second difference is the distribution and size of the secondary
and tertiary drops. While some features of the final results depend on the details of
the dynamics, the main difference between the results shown in Fig. 4 and Fig. 3d) is
that for the cases shown in Fig. 4, the filaments do not form between the primary and
secondary drops (these filaments lead to tertiary drops visible in Fig. 3d), since the
primary drops are smaller in size here. Instead, filaments form between the secondary
drops themselves, and their breakup then leads to the formation of tertiary drops that
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Fig. 5. Evolution of square-like perturbations. The distance between the squares’ centers is
500 nm, and the length of a square edge is 350 nm, as in Fig. 2.

Fig. 6. Evolution of triangle-like perturbations. The distance between the triangles’ centers
is 500 nm, and the length of a triangle edge is 350 nm, as in Fig. 2.

differ in size, depending on the size of the secondary drops. We note that simulations
turn out to be very useful in understanding the details of the dynamics since they
provide detailed insight into the evolution, that cannot be reached by considering
experimental results alone.
Figures 5 and 6 show the results of simulations where the perturbations are

the prisms with either square or triangular base, respectively. The perturbations are
arranged in the same manner and are of the same size as the experimental ones shown
in Fig. 2. We observe that the symmetry of the distributions of perturbations plays
an important role. For triangular perturbations, distributed in a symmetric fashion,
the final outcome is similar to the one observed for circular perturbations, compare
Fig. 6d and Fig. 3d, although the intermediate stages of evolution may be very differ-
ent, compare, e.g., Fig. 6b and Fig. 3b. In the particular case of triangles considered
here, we note that the secondary drops form by two separate mechanisms - either
by instability of the film in between the perturbations (mechanism I, similarly as for
the circles), or by separation of some of the material that was originally a part of
the main drops (mechanism II). Careful examination of the results shown in Fig. 6b
shows that the drops produced by the mechanism I are slightly larger. This difference
is more pronounced in the experiments, see Fig. 1, right column; this difference may
be a consequence of simplified modeling assumptions used in the present work.
If the distribution and shape of the perturbations are not symmetric, as in the case

of square-like perturbations shown in Fig. 5, then both the evolution and the final
outcome are different; small differences in the early stages of evolution lead to forma-
tion of the filaments between some of the original perturbations, and the breakups
of these filaments then lead to non-symmetric distribution of the secondary particles.
The experimental results, shown in Fig. 2, are consistent with the simulations: note
much higher degree of symmetry (and similarity) for triangular and circular pertur-
bations versus square ones.
Here we have considered the evolution of different perturbation shapes for a par-

ticular perturbation size and distance; of course, changing these parameters will in
general lead to different results. However, we find that in all cases that we have ana-
lyzed, very useful insight can be reached by considering basic mechanisms leading to
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instability, in particular thin film and filament breakups that were considered in the
earlier works [6,7].

5 Conclusions

In the present work, we have focused on the influence of controlled large-scale per-
turbations of a flat film on its evolution. We show, both experimentally and compu-
tationally, that these perturbations can be used to control and direct this evolution,
leading as a result to formation of ordered arrays of drops/particles. Furthermore, we
show that the geometric properties of these arrays depend on the degree of symmetry
satisfied by the distribution and shape of the original perturbations.
Another important finding is that continuum fluid mechanics, and its long wave

limit, augmented by inclusion of liquid-solid interaction in the model, prove to be
extremely useful in developing better insight into the dynamics and development of
instabilities on nanoscale.
For the considered problem of metal films irradiated by laser pulses, there is

much more to be done, including consideration of thermal effects and resulting
Marangoni stresses, inclusion of phase change, inertial effects, and development
of models appropriate for large contact angles. Our work in these directions continues.
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