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Abstract. Following theoretical predictions [1,2] thermocapillary lay-
ers can exhibit instabilities called “hydrothermal waves” (HTWs) and
“surface waves” (SWs) at sufficiently large Marangoni numbers. Only
two experiments on thermocapillary layers in annular gaps describe
SWs until now whereas HTWs have been found and investigated many
times. We review and complement the results on SWs in thermocap-
illary annular gaps which are in fair agreement with theory, though
severe differences between experimental and theoretical boundary con-
ditions exist. Surface waves exhibit a considerably larger frequency,
phase speed and surface deformation-amplitude compared to HTWs.
The critical Marangoni numbers of the SWs are larger than those of
the HTWs for layer depth d < 1.7mm at which depth they cross over.
SWs and HTWs are found to coexist for a certain range of liquid depths
at supercritical Marangoni numbers. Surprisingly, thermocapillary in-
stabilities of the type of SWs can exist in the liquid meniscus at the
cold end-wall in an underfilled cuvette with buoyant-thermocapillary
convection and they can excite standing gravity surface waves under
resonance conditions. These conditions are the underfilling of the cu-
vette (the meniscus shape) and the temperature difference between the
end-walls. Experimental evidence for this complex phenomenon is
presented.

1 Introduction

Thermocapillary forces drive flow by surface tension differences where the latter
are due to temperature differences in the free surface of liquids with temperature-
dependent surface tension. This type of force is abundant in technological processes.
The coupling of themocapillary forces with buoyancy forces is always present at nor-
mal gravity, however, thermocapillary forces can well dominate in layers of only a
few millimetre thickness d. This situation was studied by Smith and Davis [1,2] in a
theoretical model; (i) infinitely extended layer, (ii) linear thermocapillary flow with
“return flow”, (iii) constant temperature gradient imposed in x-direction along the
layer, (iv) gravity g=0. Two different conditions for the flexibility of the free surface
have been investigated, namely (a) the inflexible surface and (b) the flexible surface,
characterized by the surface tension parameter S = ρdσμ−2 with density ρ, layer
thickness d, mean surface tension σ and viscosity μ. The non-deformable free surface
is represented by S → ∞. The driving force of the flow is characterized by the
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Table 1. Relevant physical properties of ethanol at 20◦C.

Property of ethanol Value at 20◦C Dimension

Density ρ 789.4 kgm−3

Temperature coefficient dρ/dT −0.84 kgm−3K−1

Surface tension σ 22.75 Nm−1

Temperature coefficient dσ/dT −0.09 10−3Nm−1K−1

Specific heat cp 2414 J kg−1K−1

Thermal conductivity λ 0.166 Jm−1 sec−1K−1

Thermal diffusifity χ 8.7 10−8m2 sec−1

Dynamic viscosity η 1.20 10−3 kgm−1 sec−1

Kinematic viscosity ν 1.52 10−6m2 sec−1

Vapour pressure 5700 Nm−1

Prandtl number Pr 17
Surface tension number S = dρσ/μ2 for 5.73 103

a layer thickness d = 1mm

Reynolds number R = ργ bd2 μ−2, with the negative value of the temperature de-
pendence of the surface tension γ and the temperature gradient b. The Marangoni
number is given by Ma = R Pr where Pr is the Prandtl number.

1.1 The inflexible free surface and hydrothermal waves

It is rather non-realistic to assume a totally non-deformable free liquid surface be-
sides the other restrictions (i) to (iii) mentioned above, however, the simplified model
problem could be treated by three-dimensional linear stability analysis. For these as-
sumptions the instability in the form of hydrothermal waves (HTWs) was predicted
to occur at elevated Marangoni number Ma and its features have been calculated [1].
We can cite only a selected number of experiments on HTW-like instabilities in ther-
mocapillary liquid bridges which address the wavy nature of the instability [3–14] and
in thin liquid layers [15–29] which have been performed in the meantime. All experi-
ments displayed comparable results to the prediction of the theory of Smith & Davis.
These HTWs can travel under a certain angle to the temperature gradient, either
upstream or downstream, depending on the Prandtl number Pr of the liquid [1,4]
and possible geometrical constraints. In contrast to the condition of an inflexible
interface for the theoretical HTWs many experimenters observed in the time-
dependent state of their experiment faint, but distinct regular oscillations of the free
surface with the frequency of the HTWs (e.g. when observing the free surface under
the glancing angle). It is agreed on, that these faint surface oscillations are merely
passive reactions of the free surface on the HTW, be it on the flow pressure oscillations
or on temperature oscillations. They have no influence on the HTW.

1.2 The flexible free surface and surface waves

In a following paper Smith & Davis [2] allowed for a flexible free liquid surface and
conducted a two-dimensional linear stability analysis. The value of the surface tension
parameter S of typical experimental liquids is between S = 104 and S = 103. The S of
our experimental liquid ethanol is 5.73 103 (Table 1) and the results of the analysis of
Smith & Davis seem to be applicable to our experiments. They found travelling waves
that couple surface deflections with the underlying bulk shear flow. These waves are
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closely related to the instabilities sustained by isothermal liquid layers subject to
wind stresses [2] and they do not depend on the thermal boundary conditions at the
surface and, especially not on those at the bottom of the liquid layer. This point is
important in connection with one of our experiments. Such waves have been observed
as well in experiments with lid-driven cavity-flow with deformable surface [30]. Thus
the imposed temperature gradient and consequent surface tension gradient drive the
basic shear flow but have little effect on the surface wave instabilities. We call this
instability “Surface Waves (SWs) driven by thermocapillary flow”. It is the aim of the
present paper to discuss and to complement the few available experimental results
on SWs in side-heated thin liquid layers in the light of the paper by Smith & Davis.
The liquid in all discussed experiments is ethanol with a Prandtl number Pr = 17.
We can find in the theoretical paper of Smith & Davis only indications of the critical
conditions for the SWs in thin layers of ethanol (Smith & Davis concentrated on low
Prandtl liquids) and we have to discuss the limitations and restriction of experiments
in comparison with theory. We discuss the question why the SWs have been only
seldom observed in contrast to the frequent reports on HTWs.

1.3 The liquid meniscus at the cold end-wall and surface waves

Besides in thin flat layers, thermocapillary instabilities can as well develop in the
curved liquid meniscus at the cold end-wall of a side-heated cuvette. We present one
new and surprising effect of the SWs; this is the resonance of faint surface oscillations
of the SWs in the liquid meniscus at the cooled sidewall with macroscopic standing
gravity surface waves (SGSWs) in an under-filled rectangular side-heated cuvette.
The SGSWs found in this experiment can be excited and sustained by the action of
the SWs in the liquid meniscus at the cold end-wall of the cuvette. The assignment
of the effect to SWs is tentative.

2 Surface waves in thermocapillary liquid layers after the theory of
Smith & Davis

We summarize the results from Smith & Davis [2] which are relevant for our ex-
periments. The layer is again infinite in x-direction, bounded below by an adiabatic
bottom (no heat flux). It is important to note that our experimental liquid layers have
finite length L and are bounded at the hot and at the cold end by solid end-walls.
The aspect ratio is A=d/L. The free interface is located at z = 1 + η(x, t) allowing
for significant deflections. The authors take into account that on the free surface the
normal stress balances the surface tension times curvatures, and that the tangential
stress balances the gradient of surface tension along the interface. The bounding gas
is passive with constant pressure taken equal to zero.
The authors consider the parallel flow solution (surface flow with its return flow)

as for the case with the non-flexible interface where they found HTWs and applied
infinitesimal two-dimensional disturbances. They linearized their system of governing
equations and arrived at solvable linear disturbance equations after some justified
approximations. They treated first “the inviscid problem for the linear flow”(surface
flow without return flow). This is not our case of thermocapillary flow in side-heated
layers, however, Smith & Davis could show here, that the resulting surface mode
of instability is a hydrodynamic one. Thus the Reynolds number R rather than the
Marangoni number Ma is the appropriate parameter to use to characterize this in-
stability. The results of this analysis also apply to the thermocapillary layer under
certain limits; for large R, the stability of the thermocapillary layer is determined by
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Fig. 1. Critical Marangoni number for the return flow in a thin liquid layer. Curve (d)
is an estimate for two-dimensional surface waves in a slot with aspect ratio A = 0.1 and
S = 104 (Fig. 12 from Smith & Davis [2]). Curve (a) is for oblique HTWs, curve (b) is for
longitudinal HTWs and curve (c) is for two-dimensional HTWs. For Pr between 1 and 10
and Macrit above 4 10

3 some of these instabilities could coexist.

the stability of the isothermal layer. The authors then analyse the linear flow prob-
lem in the same way. They solve the eigenvalue problem for Pr between 0 and 10, S
between 103 and 104 and for all Biot numbers B=h d/χ ( heat transfer coefficient h
and the thermal diffusivity χ).
The minimum of the neutral curve for Pr = 0, B=0 and S=104 for the ther-

mocapillary layer with linear flow is around a wave number α =2π/λ =2 and for R
just below 4 102 (Fig. 1 in S&D). This minimum of the critical curve, defining the
critical Reynolds number Rc and a critical wave number αc is rather wide and its
variation with Pr and, especially with B is rather small. The largest variation occurs
for S=103 and is less than 6.7% for Pr = 10 and B = ∞. The variation is less than
2% for S = 104 and with the same changes in Pr and B. The largest variation in the
critical wavenumber αc is 5.7%, occurring for S = 10

5, Pr = 10 and B = ∞. The
largest variation in the critical phase speed cRc is 4.7% occurring at the same S = 10

3,
Pr = 10 and B =∞. With B = 0 the changes in Rc, αc and cRc as functions of Pr for
various values of S are also very week. This lengthy discussion is needed to show the
rather small variation of the neutral curve when changing Pr, B or S and this in turn
is important for an application of the theoretical results to our experimental ones in
spite of differences in these parameters.
Smith & Davis extended their results for various values of S, Pr and B from the

linear flow to the thermocapillary layer with return flow (Figs. 7, 8 and 9 in Smith &
Davis [2]). The computed neutral curves display a critical wavenumber α =0 of the
instability for the return flow with S = 104, Pr = 1 and B =∞. However, all possible
experiments on the instability of the thermocapillary return flow are naturally done
with layers of finite length L (with end walls). The end-walls will tend to stabilize
those disturbances whose wavelength is larger than the distance between the end
walls. Therefore, Smith and Davis extended their analysis to larger wavenumbers α.
The results for the larger Pr presented by the authors is for Pr = 1, shown in Fig. 9 in
S&D. The minimum of the critical curve is around (Re = 102, α = 0.25) for S = 104
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and around (Re = 7 102, α = 0.45) for S = 103. The minimum of the neutral curves
for S between 103 and 104 is rather flat. This means that the instability can set in
for a larger range of wavenumbers (what means for smaller wavelength) with only a
small increase of Ra above Rac (or Ma above Mac). It is possible that the horizontal
extension of the experiment could select the critical wavelength. We can draw this
conclusion because the results of Smith &Davis are rather insensitive to changes in
Pr and B (at most 7% over a large range of Pr and B).
The effects of stabilization of gravity for α→0 discussed by Smith & Davis do not

apply to our case of a liquid layer of finite length. We can expect damping of all α with
α ≤ 2πA. The analytical results of Smith & Davis are only valid for α < A2 < 2πA.
Only by extending these results to large values of α through numerical computation,
they can compute instabilities with larger α in experiments that are only weakly af-
fected by the presence of end-walls. The end-walls are expected to damp out those
disturbances whose wavelength is larger than the length L of the layer bounded by the
end-walls. The corresponding neutral curves would have a non-zero minimum unlike
those shown in Fig. 9 from S&D. The authors estimated the new minimum by using
the R from their neutral curves that corresponds to a wavelength whose wavelength
equals the layer length L, i.e. for α = 2πA. The resulting estimates of the critical
Marangoni number versus Pr for B=0 are given in Fig. 1 under the assumption of
A = 0.1 and S = 104. Their crude estimate shows that SWs are preferred over oblique
hydrothermal waves in a limited layer when Pr < 0.15. It can be expected from Fig. 1
that SWs can coexist with oblique HTWs at supercritical Ma when Pr = 10, where
the HTWs are the preferred mode. The prediction is not so clear for Pr = 1 when
considering two-dimensional hydrothermal waves; here the SWs could be preferred
over the 2-D HTWs. Two-dimensional HTWs could be preferred over oblique HTWs
in thermal boundary layers or liquid menisci at the bounding ends of the layer. There
is an interesting remark at the end of the paper by Smith & Davis: “Further estimates
for slightly larger A = dL−1 and fixed S indicate, that increasing A stabilizes the flow
(and lowers the value of Pr at which SWs become preferred)”. We conjecture that
this effect of an increase of A will occur for constant Pr when SWs are present. It can
be also conjectured that SWs cannot be found in thicker liquid layers though they
exist in thin liquid layers at else unchanged conditions.

2.1 Summary of the theory for application to the present experiments

The surface tension numbers in our experiments with ethanol are S (d = 1.0mm) =
5.73 103 and S (d = 3.0mm) = 5.16 104 (see Table 1). The Prandtl number is Pr = 17.
The “slot length” L is equivalent to the width of the annular gap ΔR = 20.0mm
(which is the space for 2D-travelling waves) and the cross stream-extension of the
layer can be taken as 2πR = 125.66mm (which is the space for 2-D oblique travelling
surface waves). Smith & Davis make predictions for two-dimensional surface waves
but it can be estimated that the oblique travelling surface waves have nearly the same
properties with a somewhat smaller critical Marangoni number.
The instabilities found in the return flow will be affected (damped) by the presence

of slot ends. Damping effects occur for λ > dA−1. We estimate for a layer with 1mm
thickness a critical Reynolds number Rec ≈ 102 and αc ≈ 0.3, though we must take
the values for Pr = 1 instead of those for Pr = 17. It can be guessed, that Rec could
be one order of magnitude larger for this higher Pr; a critical Marangoni number
Mac ≈ 103 for the two-dimensional surface waves (2-D SWs) can be estimated for
Pr = 17 from Fig. 1. The 2-D SWs are the preferred mode for Pr ≤ 0.15 whereas
the oblique hydrothermal waves are preferred for Pr > 0.15. For Pr ≤ 1.5 the 2-D
SWs are preferred over longitudinal HTWs and over 2-D HTWs. Whether surface
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waves or hydrothermal waves are preferred, depends on the restriction of the HTW,
to allow for oblique or for longitudinal or 2-D HTWs. Moreover, oblique SWs could
appear at lower Marangoni number and could be preferred over HTWs for Pr = 17
under certain conditions. Finally, we do not expect SWs to appear in thicker liquid
layers thought they exist in the thinner layers. The existence range of SW is limited
to small A.

3 Experiments on surface waves in thin layers in annular gaps

3.1 Experimental details

The physical data of the used liquid (ethanol) are given in Table 1. The con-
struction of one of the annular gap-experiments is sketched in Fig. 2. The optical
shadowgraph-technique for the visualization of the surface waves is described in [Fig. 4
from 16].
Both experiments are with shallow annular gaps filled flat (no liquid meniscus)

with ethanol. Ethanol is rather volatile at room temperature what makes provisions
(a tight lid) unavoidable to reduce evaporation. Heating is from the inner wall and
the cooling is from the outer wall. Figure 2 presents a sketch of the experiment A with
Ro = 77.00mm. The cooling is not only from the side in this experiment A but as
well from the bottom. This is a boundary condition which is different from theory [2]
and might pose problems of applicability. However, this design allowed temperature
differences ΔT up to 40K over 20mm in the volatile ethanol-layer and to achieve
the radial temperature gradients needed for the onset of the instabilities of thermo-
capillary flow and, to produce the large surface oscillations of the SWs (Figs. 7, 9
and 17 in [16]). The temperature gradient is confined to a region near to the heated
inner wall but extends almost 20mm out (flow induced) and the radial temperature
drop is almost linear as shown by measurements of the surface temperature in Fig. 3.

Fig. 2. Sketch of the experiment A on SWs in annular liquid layers of variable depth d
heated from the inner wall and cooled from the outside wall and cooled from the bottom
(isothermal bottom (2)) [16]. The free liquid surface (broken line) is under a thin air-gap
(defined by a distance piece (3) positioned on the heater). The vessel is tightly closed with a
plate from quartz glass (4) to avoid evaporative losses. The liquid meniscus at the cold outer
wall is away from the region of interest near the hot wall, where the SWs are observed. The
filling of the annular gap of experiment A and B to almost the height of the inner heater to
avoid a liquid meniscus was important because underfilling resulted in strong changes of the
measured critical Marangoni number [21] and in a distorted picture of the free surface.
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Fig. 3. Relative radial temperature profile near the hot side as measured with a fine thermo-
couple in the liquid. The thermocouples are hooked with their tips from below towards the
free surface. The flow-induced “linear” radial temperature profile extends 15mm to 20mm
away from the hot wall; d = 2.4mm, Thot = 18

◦C, Tcold = 2.6◦C (Fig. 19 from [16]).

Table 2. Details and comparison of the investigated experiments and of the theory by S&D.

Experiment A Experiment B Theory by 
Smith&Davis

Underfilled 
cuvette

Geometry Annular gap, 
with inner 
diameter=40 mm

Annular gap 
with inner 
diameter=40 mm

- extended 
layer

rectangular

Extension 
of gap, 
dimensions

L=52 mm L=20 mm L=20 mm
Width=41 mm 
Depth=20 mm 

Liquid 
depth

0.5-5.0 mm 0.6-5.0 mm ----- typically 19 mm

Thermal 
boundary
conditions

Heated from the 
inner wall. 
Isothermal cold 
bottom

Heated from the 
inner wall.
Thermally 
insulated 
bottom

constant
temperature 
gradient 
along free 
surface. 
Insulated 
bottom

Heated from 
the left side, 
cooled from 
the right side

Shape of 
free 
surface

Almost flat, no 
liquid 
meniscus

Almost flat, no 
liquid 
meniscus

Fixed flat 
free surface

Meniscus 
with height 
h=1.2 mm, 
pinned to 
upper rim

This gives a chance to apply theory [2] where a constant temperature gradient along
the free surface is assumed.
The second experiment (experiment B) in the same way but has an adiabatic bot-

tom in accordance with theory [2]. It has as well Ri = 40mm but a smaller annular
gap of only 20mm [21]. However, the possibility of a damping of the waves in the
shorter gap is given. The features of the investigated configurations are summarized
in Table 2.
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Fig. 4. Critical frequencies of the HTW (+) and of the SW (x) over liquid depth d (from
[16]). The two instabilities can obviously coexist near above the threshold.

The wavy states are detected by their temperature oscillations with up to 3 strate-
gically placed fine thermocouples and evaluated by Fourier analysis and correlation
analysis. The thermocouples are self-made from naked NiCr-Ni-wire with a diame-
ter of 0.05mm or 0.025mm (see Fig. 14). Another method was shadography with
the light reflected from the free surface, recorded by a video camera and described
in more detail in [16,21]. The latter method is more demanding than measurements
with thermocouples or shadowgraphy with light transmitting the layer. Our method
is only possible for rather flat liquid surfaces. However, this method is highly sensible
for the surface deformations of the SWs.

3.2 Experimental results on surface waves in thermocapillary annular gaps

Figure 4 shows the critical frequencies as measured in experiment A [16] and verified
in experiment B. The frequencies of both instabilities are incommensurable for all
liquid depth d and increase strongly with decreasing d. The frequencies of the SWs
are well above of the frequencies of the HTWs. Both waves coexisted at supercritical
Ma in the range 0.6mm < d < 2.2mm. The HTWs do not exist for d > 2.2mm and
above d > 4.2 no temperature oscillations by waves have been detectable at all [21].
This is in accordance with the expectations of Smith & Davis. The SWs are identified
by optical observations of their approximately ten times larger surface deformations
compared to that of the HTWs, by their larger wavelength, by a frequency much
larger than that of the HTWs and by a critical Marangoni number different from
that of the HTWs. The identification of another type of wave besides the HTW is
unquestionable because we could observe and measure both waves existing at the
same time under the same experimental conditions.
Almost all of the papers in literature report on temperature oscillations which are

due to instabilities of the type of hydrothermal waves. Thermocapillary surface waves
have been identified only in two experiments A and B [16,21].
It is time to mention that in all experiments on thermocapillary-driven instabil-

ities the so called “steady multicellular flow structure” (also called “multirolls”) is
observed before the onset of the wavy instabilities and that the multicellular struc-
ture is observed to oscillate at higher driving forces as coupled to the HTW or to the
SW [16,21,24]. The multicells are aligned with their axes perpendicular to the basic
thermocapillary flow, in which they are embedded, and they all have the same sense
of rotation. The “multicells” resemble the so called “cat-eyes” which develop between
two sheering layers of the same density flowing in opposite direction. It is not clear
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Fig. 5. Shadowgraphic picture (in reflection of the light from the liquid surface) of surface
waves (mode m = 6) at d = 3.1mm and ΔT = 24K in experiment B [21]. The 6-fold
pattern rotates in such a way that an azimuthally fixed thermocouple indicates the frequency
of the SWs in Fig. 4. The wavy white line lies near the heated inner cylinder. Due to a small
underfilling we have a week surface depression which is focusing the illuminating light. The
white “circle” of this focussed light is modulated by the azimuthally travelling SW. The
outer perfect circular white line marks the outer cold limitation by a small liquid meniscus
without wave. The white inner patch is from light reflected by the metallic distance piece
between inner heated cylinder and the cover from quartz glass.

whether the multicellular instability is an important ingredient of the wavy thermo-
capillary instabilities or whether the oscillation of the multicells is only passive. We
assume in the light of the theory of S & D that the multicells do not play a major role
for the surface waves in the surface flow and that their oscillatory motion is passive.
However, the existence of the multicells before the onset of the wavy thermocapillary
instabilities is an obvious difference between theory and experimental observations;
theory assumes an undisturbed return flow whereas in reality we have the multicells
below the surface flow. The minimum conclusion to be drawn from this is a difference
between the theoretical geometric liquid depth d and a smaller depth d′ in which
the wavy instabilities of the HTW or the SW can develop. This has consequences for
the value of the critical parameters of the HTWs and the SWs. We found obviously
a different instability from that of the HTWs and both instabilities do develop not
in the parallel return flow as assumed by S & D but in flow with cat eyes between
surface flow and return flow.
The direct observation of the SWs by a shadowgraph technique (Fig. 5) and

the measurement of the deformation of the surface by a travelling SW (Fig. 6) give
further evidence that the waves with higher frequency are different from the HTW.
The wavelength of the SW is generally larger than that of the HTW (Fig. 7), though
the difference is not dramatic in the d-range where they coexist. One must note that
the wavelength λ (and the azimuthal mode number) can change dramatically when
increasing Ma (ΔT) what makes a measurement of λ in case of the SW very difficult
and explains the scatter in Fig. 7. The scatter of the phase speeds of the SWs is
again larger than that of the HTWs (Fig. 8). However, the phase speed of the SWs
is significantly larger than that of the HTWs.
The critical Marangoni numbers, from both experiments are given in Fig. 9. The

values from both experiments coincide quite well (assuming a gap width L = 20mm
in experiment A). This indicates that the isothermal cold bottom of experiment A has
no big influence on the SW as expected from its hydrodynamic nature. The critical
Marangoni numbers in Fig. 9 show that the more dangerous mode for d ≤ 1.4mm
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Fig. 6. Asymmetric surface deformation by an azimuthally travelling SW in arbitrary units
for d = 1.2mm and ΔT = 24K (from [31]). The wave travels from the left to right. The
distance s is taken at the circumference of the inner cylinder. The asymmetry of the wave is
considerably smaller for ΔT = 18K. The absolute value of the surface deformation by the
SW lies between 5μm and 10μm [16] and depends on Ma whereas that of the HTWs is less
than 1μm [16].
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Fig. 7. Comparison of the wavelength of the SW with that of the HTW after experiment
A, and after experiment B [16,21].

(aspect ratio A ≤ 0.07) is the HTW whereas the SW is the more dangerous mode
for A > 0.07. In the range A ≤ 0.15 both waves can coexist as indicated in Fig. 9.
The values of the critical Marangoni numbers in Fig. 9 are in the range predicted
by S&D.
Figure 10 shows an example of the optically distorted free surface of the annular

gap in experiment B in shadowgraphic interferometric reflection. The HTWmodulates
the region near the outer meniscus at the cold side (outer white line) whereas the SW
modulates the meniscus-region at the hot inner side (inner white line). The phase
speeds of the two waves are rather different (Fig. 8 and figure caption of Fig. 10) with
the higher phase speed of the SW.
We stress the fact that all features assigned by us to the SWs differ considerably

from those of the HTW identified in [16] and [24].
The comparison between the experimental data of the SW in [16,21] and the

theoretical predictions by Smith & Davis [2] is not straight forward because of the
restriction in horizontal extension in the experiments compared to infinite extension
in theory. Theory dealt with wavenumbers α → 0 whereas our wavenumbers are
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Critical phase speeds:
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Fig. 8. Phase speeds of the SW and of the HTW at slightly supercritical Ma.

restricted to α > 2π A and the value of the radial wavenumber α (radial) can be
taken as 2πA, with the rather small aspect ratio A of our gap.
We see in Fig. 5 mainly an azimuthally travelling wave, in this case with six

wavetrains and we could assign an azimuthal wavenumber α(azimuth) = 2πA. The
value of the wavenumber, selected by the geometry is not very important for the value
of the critical Marangoni number because the critical curve in Fig. 2 in S&D is rather
flat. We estimate from this figure for d = 1mm and S = 5 103 the critical Reynolds
number Rec = 10

2 and a critical wavenumber α = 0.3. We have Mac(theory) =
Pr Re = 17 Re = 1700. This compares well with the two experimental values from
d = 1.0mm, Mac (exp) = 1560 from experiment A and Mac = 1796 from experiment
B. Further insights and their limitations are formulated in the discussions in [21]. The
non-linear character of the SW is expressed in experiment B as intermittent behaviour
[21] in accordance with a non-linear theory of the SWs [32]. This is again a hint that
we dealt with SWs in the experiments A [16] and B [21].

3.3 Why have the surface waves not been observed in other experiments on
thermocapillary flow?

We found the following optimum conditions for the appearance of thermocapillary
surface waves in the annular slot experiments:

1. Small layer thickness of the order of 1mm.
2. Lateral extension of the order of 20mm and more.
3. Azimuthal geometry with large azimuthal extension 2πR (20mm ≤ R) for the
waves to travel cross-stream (as observed).

4. Prandtl number Pr < 20.
5. Reduced evaporative loss for constant filling of the annular gap.
6. Flat filling of the gap because the critical Ma increases with underfilling.
7. Vibration-insulated mounting of the annular gap with its large free surface.
8. Dimensions larger than in [16,21] would run into difficulties because of large
evaporation and, because of boiling of the liquid at the hot side to reach the
critical Marangoni number (ΔT critical).

One experiment in which SWs could have been observed is [24] but this was not
reported there. The Prandtl number used in this work was approximately Pr = 14,
the extension of the layer was large enough and the liquid depth was small enough.
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Fig. 9. Critical Marangoni numbers Mac of the SW and of the HTW adopted from experi-
ments A and B [16,21]. The differences between the HTW and the SW are more clearly
visible when plotting the critical temperature difference over layer depth d as in [16].
The critical Marangoni numbers from experiment A [16] for A = 0.05 (d = 1.0mm) are
Mac(HTW) = 1190 and Mac(SW) = 1560. For A = 0.1 (d = 2mm) the authors of [16]
report Mac(HTW) = 6150 and Mac(SW) = 4040. The critical Marangoni numbers of the
SW from experiment B [21] are comparable to those from experiment A with the tendency
to somewhat larger values for smaller A. The cold isothermal bottom in [16] seems to play
no role for the value of Mac.

A reason for missing the SWs could have been the sidewalls in the rectangular con-
figuration used in this work which would damp the cross-stream travelling waves–in
contrast to the annular configuration. The main reason of the authors of [24] to miss
the SWs was probably the use of an IR-camera to detect the waves. Such a camera
is sensitive for the temperature oscillations of the HTWs but not for the surface os-
cillations of the SWs.
The Prandtl number of the 5cSt-silicone oil used in [19] was too high and the

liquid depth at the higher limit. The latter is true for most other experiments in an-
nular gap configuration or rectangular liquid layers [15,27–29], however, the authors
of [29] and their group work with silicone oil of Pr = 10 and in annular gaps with
the requested thin layers and could have observed SWs. They observe much more
types of waves than pure HTWs (see Fig. 5 in [29]). They interpret and model their
results in the framework of theory of nonlinear waves, e.g. in one case as secondary
Eckhaus instability. Another reason for the authors of [29] and this group not finding
SWs could be the difference in Prandtl number and in surface tension parameter S.
However, we conjecture that these authors miss the surface deformation by the SWs
because they used a shadographic technique based on light transmitting the liquid
layer. Their method is most sensitive to thermal disturbances and thus on HTWs,
whereas we used shadowgraphy with light reflected from the free surface, which latter
method is most sensitive to surface deformations.
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Fig. 10. Shadowgrapic-interferometric picture of light reflected from the free surface of the
annular gap. The HTW (outer white line with approx. 16 wavetrains on 360◦ is travelling
from point A (source) azimuthally in both directions, interfering in range B (sink). The SW
modulates the meniscus at the inner hot meniscus with approximately 7 wavetrains. It seems
to travel counter clockwise to the HTW. The annular gap of 20mm width appears smaller
than the radius of the inner cylinder (diameter 40mm) because it acts as a concave mirror
due to slight underfilling. The phase speed vϕ of the SW in this example is approximately
60◦/s and thus much higher than that of the HTW with 6◦/s.

A type of hydrothermal wave has been investigated very often in liquid bridges.
Liquid bridges, however, are only a few millimetres long and in most cases to thick
with 5 to 6mm in diameter. The small length as well as the small circumference
will prevent the development of SWs. The only experiment with a 15mm long liquid
bridge was executed under microgravity. But the Prandtl number was as large as 28
and, 15mm length are probably not sufficient and the highest applied temperature
difference was only 12K. In a rough estimation one could compare the radius of the
liquid bridge (e.g. r = 3mm) to the liquid layer depth d and sees that the “liquid
depth” of the liquid bridges is in the higher limit for SWs to occur.

4 Standing surface gravity waves excited by surface waves in the
cold liquid meniscus of a side-heated underfilled cuvette

The phenomenon of standing gravity surface waves (SGSWs) in thermocapillary-
driven flow was observed by chance some time ago by Metzger [33] whereas its nature
was revealed later by Bach [26]. The SGSW was observed in experiments with a side-
heated rectangular cuvette of e.g. L = 20mm, W = 41mm, D = 20mm which was
originally filled up to the rim (no liquid meniscus) with ethanol to study buoyant-
thermocapillary convection. After enough loss of the ethanol due to evaporation the
cuvette was underfilled and a free surface with a liquid meniscus at the sidewalls was
formed. At a certain level of underfilling the SGSWs have been observed. They have
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a frequency of the order of 7Hz in this cuvette and a peak-peak amplitude of up to
1mm. The distance between the thermostated copper-endwalls of the cuvette is L,
the temperature difference is ΔT.
We will now demonstrate in the following step by step;

1. Standing gravity surface waves occur for sufficient large temperature difference
ΔT in a certain range of under-filling.

2. Themocapillary flow with return flow separates from buoyancy-driven flow in the
bulk liquid. Thermocapillary further develops a “separated region” in the cold
liquid meniscus.

3. HTWs and SWs develop in this separated meniscus. Parts of the frequency spec-
trum of HTWs and of SWs in this meniscus region match the possible frequency
spectrum of SGSW in the free liquid surface of this cuvette.

4. The most probable resonant excitation of some SGSWs is by the third harmonics
of a SW in the meniscus.

5. We will demonstrate the resonance mechanism by tuning the frequencies of the
oscillations in the meniscus to that of the SGSWs. We could as well detune the
resonance by changing the cuvette dimensions.

This example with the thermocapillary instabilities in the liquid meniscus shows that
the existence of the SWs is not limited to the more academic case of thin liquid layers.

4.1 Standing gravity surface waves in a rectangular cuvette–the influence of
under-filling and the general spectrum of SGSWs in this geometry

A cuvette of 20mm depth, underfilled with ethanol by typically 1.0mm, heated from
the one end and cooled from the opposite one shows standing gravity surface waves
when a certain temperature difference between the ends is exceeded. These oscillations
do not occur if the cuvette is completely filled (no meniscus), or if the underfilling is
so large that the meniscus is no longer pinned to the sharp rim of the cuvette-ends.
Figure 11 shows the frequency of the surface oscillations measured by a thermocouple
in an optimum position with its tip near the free surface to detect SGSWs. The oscil-
lating surface has points of maximum amplitudes (crests) and of minimum amplitudes
(nodes) as normal for standing waves. The oscillations have a sharp frequency peak
and higher harmonics are clearly visible.
The spectrum of SGSWs in an underfilled rectangular cuvette can be calculated

only approximately. We excited SGSWs independently from the excitation by oscilla-
tions in the cold meniscus by short shocks of the table and we visualized them by shad-
owgraphic pictures of light reflected from the free surface to have an overview. In a first
approximation we have λn =2L/n, λm =2W/m, λk,l = 1/((k/4L)

2 + (1/4W)2)1/2,

with the frequencies of standing gravity waves (SGWs) fn = (ng/πL)
1/2 . . . etc. The

reader can refer to [36–38] for further details of SGSWs in rectangular containers.
By thermocouple measurement we could identify the oscillation mode n = 1 (basic

mode along the temperature gradient/x-axis) with f = 7.22Hz; m = 2 (first harmonic
along the y-axis with f = 7.22Hz); k = 1, l = 1, basic diagonal oscillation with
f = 4.68Hz; k = 2, l = 2, first harmonic diagonal with f = 9.22Hz.
The surface oscillation amplitude (e.g. for mode n = 1 in Fig. 12) shows a steep

increase at an underfilling h = 0.45mm and its corresponding meniscus shape. The
surface oscillations cease again for an underfilling around h = 1.8mm. This under-
filling is the point when the meniscus contact line changes from being pinned to the
sharp upper edge of the end-wall to a meniscus with “free slip contact line”. We as-
sume that the condition of “free slip” suppresses the SWs. It will change the spectrum
of possible SGSWs, anyhow.
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Fig. 11. Fourier analysis of the surface oscillations of the SGSWs excited by oscillations in
the meniscus at the cold wall. The main frequency is about 7Hz with its 3rd harmonics at
around 21.3Hz.

Fig. 12. The maximum amplitude (in millimetres) of the surface oscillations of two differ-
ent modes of the SGSWs depends on the under-filling h of the cuvette (on the meniscus-
height h).

We have menisci at the hot and at the cold end and the question arose whether
the oscillations that excite the SGSWS come from the hot meniscus or from the cold
one. This question was answered by slightly tilting the cuvette around the y-axis
through its centre, to increase or to decrease the meniscus height at will at the cold
or at the hot end under constant temperature gradient for the appearance of the
SGSWs; the surface oscillations arose only under the “under-filling conditions” at
the cold side. The liquid meniscus at the cold side is the location of the exciting
oscillations.
In order to distinguish between hydrodynamic instabilities and surface oscilla-

tions we changed the cuvette dimensions in some cases to change the frequencies of
the SGSWs drastically (e.g. we changed to L = 16mm or to L = 12mm, or changed to
W = 35mm. This allowed us to measure possible exciting hydrodynamic oscillations
in the menisci without the resonance with the SGSWs.
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Fig. 13. a) Left: streamlines by tracer streaks and b) right: isotherms by holographic in-
terferometry in a strongly under-filled cuvette (20mmx20mmx41mm), heated from the left
and cooled from the right [35]. Reflection pictures and a thermocouple are visible above
the free surface. We observe a flow-dominated temperature field with a rather homogeneous
temperature in the thermocapillary convection with its return flow (Fig. 13b).

Very important is the observation of the existence of a critical temperature differ-
ence ΔT between the copper ends for the onset of the SGSWs, obeying the law of a
Hopf-bifurcation (Fig. 16). We draw the conclusion from it that the excitation is by
a hydrodynamic phenomenon. The reader is referred to the thesis of Ch. Bach [26]
for further details.

4.2 Thermocapillary flow with its return flow separating from buoyant flow and
further separation in the cold liquid meniscus

It was observed for ethanol and for liquids with comparable Prandtl number that a
hotter thermocapillary-driven surface flow on top separates from the colder buoyancy-
driven flow underneath [34,35]. This is demonstrated by streak-lines and by isotherms
in Fig. 13.

4.3 The liquid meniscus at the cold end-wall and surface waves

When the cuvette is underfilled a further separation of the region in the cold menis-
cus occurs. Figure 14 shows a medium under-filling with a well developed liquid
meniscus. The separated meniscus-area with a separated convection roll in the up-
per corner is clearly visible. One part of the surface flow coming from the left hot
side streams further along the free surface whereas the bigger part flows downward
with higher velocity; we call this scenario “separation of a vortex at the cold wall”.
This scenario develops more and more in this direction the higher the meniscus be-
comes. For an under-filling h = 1.8mm one can observe up to 4 separated convection
rolls in the wedge-shaped meniscus, all of different extension, depending on their
position.
The situation is somewhat similar to that of the multicells in front of the cold wall

in a thin side-heated liquid layer. We can assume the existence of two-dimensional
HTWs and SWs in this narrow meniscus region. The situation is much more complex
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Fig. 14. Flow visualisation by tracer streak lines in a vertical light cut, h ≈ 1.2mm and
different possible positions for the thermocouple-tip (red marked) to detect different sig-
nals. The bright golf club-like reflection is from the LASER-light sheet from a naked fine
thermocouple wire.

because the wedge-shaped meniscus allows for multirolls of different size. However, as
pointed out earlier, we can assume that HTWs and especially SWs are not coupled to
the underlying convection rolls. The surface oscillations by these waves could excite
SGSW in the free surface of the liquid (Fig. 11 and Fig. 14).
It is very difficult to differentiate and to measure the exciting oscillations of the

HTW and the SW on top of very large oscillations of the SGSWs which have nearly
the same frequency due to their resonance relation. For measuring the SW the thermo-
couple must be placed near a node of the standing wave. By placing the thermocouple
tip in point (a) of Fig. 14 one would catch oscillations from the free surface which are
transported by flow towards the cold end-wall. Placing the thermocouple near (b) is
for catching oscillations from hydrodynamic instabilities in the meniscus, transported
downwards by the flow along the cold wall. Moreover, placing the thermocouple in a
node of the SGSWs in cross-stream direction one can partly avoid the superposition
of the hydrodynamic signal with that from the SGSWs.
We have already shown that the SGSWs are excited by a process in the menis-

cus at the cold end-wall. Concerning whether hydrodynamic instabilities exist in the
meniscus at the hot wall, we could never detect the oscillation signals from hydrody-
namic instabilities in the meniscus at the hot end. The reason for lacking instabilities
in the hot liquid meniscus is the different condition for flow separation at the hot end
compared to the cold end.

4.4 Evidence for the instabilities in the cold meniscus exciting the standing
gravity surface waves in resonance

We present in Fig. 15 one example of oscillation spectra measured with an extra fine
thermocouple (wire diameter 0.025mm) positioned in the cold fluid meniscus. The
strongest signals come from the exited SGWs. They are very broad, presumably by
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Fig. 15. One example of temperature oscillation-measurements aiming to detect the exiting
oscillations (the sharp spikes, e.g.:“a”, “b1”, “b2”,”a′”).

disturbing vibrations from the environment, by liquid-level change during the long
data acquisition time for the spectrum, by reflection of the SGWSs in the four meni-
cus regions and by possible non-homogeneities in the menisci. We could change the
position of the broad frequency bands dramatically by changing the cuvette dimen-
sion. These broad frequency bands belong definitely to the surface oscillations of
the SGSW. The frequencies of the broad bands fit to the frequencies calculated for
SGSWs in a cuvette with L = 20mm, W = 41mm, filled with ethanol. They are
labelled in Fig. 15 according to increasing frequency (k = 1, l = 1), (n = 1 coin-
ciding with m = 2) and (k = 3, l = 3). Besides these broad frequency bands we
could detect sharp line-like frequency peaks (Fig. 15). These sharp frequencies (e.g.
at 4.95Hz labelled “a” and its harmonics near 9.9Hz labelled “a′” are not affected by
a size-change of the cuvette and are therefore assigned to hydrodynamic instabilities
in the cold liquid meniscus. Not shown in Fig. 15 is signal “d′” (harmonic of “d”)
with 20.6Hz.
The frequency oscillation peaks of the SGSWs are broad enough that an exciting

hydrodynamic oscillation near their half width could excite them by parametric res-
onance. Thus it is possible that “a” is exciting (k =1, m =1) or, that “b2” or “a′”
are exciting (k = 3, l = 3). There is the possibility, that “d′” with 20.6Hz excites the
standing surface waves n = 1 and m = 2 in parametric resonance because “d′” has
approximately three times the frequency of (n = 1 and m = 2). Our situation is just
like this; (i) the SWs are travelling along the meniscus confined to the cold wall. (ii)
They excite with their faint surface oscillations in the meniscus the free surface of
ethanol. (iii) The cuvette acts as resonating system for the excited SGSWs.
Most interesting are the oscillation frequencies “d” and its harmonics “d′” which

we assign to the hydrodynamic instability of the SWs. The oscillations “d” and
“d′” are of hydrodynamic nature as shown by the existence of a threshold and the



IMA7 – Interfacial Fluid Dynamics and Processes 337

Fig. 16. Increase of the signal amplitude of the frequency peak “d′” with the applied
ΔT. Frequency “d” is assigned to a SW in the cold meniscus (from thermocouple signals)
from [26].

Fig. 17. Strong shift of the frequency peak-position of peak “d′” (hydrodynamic instability)
by the temperature difference ΔT.

behaviour as a Hopf-bifurcation at the threshold when increasing the Marangoni
number by increasing ΔT (Fig. 16).
One can tune or can detune the resonance between the exciting oscillations and

the standing surface gravity waves. Figure 17 shows the possibility to increase the fre-
quency of the hydrodynamic oscillation “d′” by increasing the temperature difference.
The frequency of the SGSWs is rather unaffected by a change of ΔT. One can arrange
perfect or not so perfect resonance between exciting hydrodynamic instabilities in the
liquid meniscus and the SGSWs by adjusting ΔT or the under-filling h.
An example of this resonance mechanism is shown in Fig. 18 for the main SGSW

mode (n = 1 coinciding with m = 2) with approximately 7Hz and its most danger-
ous excitation mode by the hydrodynamic instability “d′” with approximately three
times the frequency (21Hz). These two oscillations can couple perfectly because of
their frequency relation 3:1. The amplitude of the SGSW is largest for vanishing
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Fig. 18. Amplitude of the SGSW m = 2 dependent on the frequency difference to its
exciting SW “d′”. The amplitudes of the SGSW and that of the SW have been measured by
thermocouples when changing the under-filling h (ΔT = 25K, L = 12mm to suppress other
SGSWs except mode m = 2, B = 41mm).

Fig. 19. Comparison of the ΔT-dependence of the amplitudes of the exciting SW “d′” and
that of the SGSW (n = 1, m = 2). The amplitude of the SGSW was gained by measur-
ing the surface deformations by an optical method, the amplitude of the SW comes from
thermocouple measurements (normalized).

frequency difference. Figure 19 shows essentially the same amplitude-dependence of
the frequency “d′” of the exciting SW and the surface oscillations of the excited
SGSW n = 1/m = 2. We see in Fig. 19 that the SGSW has approximately the same
threshold as the exciting SW in the liquid meniscus. This again is strong evidence for
the resonant excitation of the SGSW by the oscillation “d′” in the liquid meniscus.
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5 Conclusions

We extracted the main predictions on surface waves in thermocapillary liquid layers
made by a theory [2], which considered the instabilities in infinitely extended thin
liquid layers with thermocapillary flow with return flow, taking the flexibility of the
free surface into account. Two-dimensional calculations predicted critical Marangoni
numbers Mac of approximately 102 for liquids with Prandtl number 17. It is pointed
out that the stream-wise dimension will select the wavenumber of the most critical
mode. The dependence of the critical Marangoni number on the wavenumber is rather
small in the range of the larger wave-numbers what allows us to estimate Mac ≈3 104
for experiments with ethanol, where Mac depends further on the aspect ratio of the
gap. Theory [2] predicts as well the existence of hydrothermal waves in the same range
of Ma what makes it possible that both instabilities could appear simultaneously and
can be directly compared in experiments at supercritical Ma.
We reviewed and complemented the results of two experiments with differentially

heated thin liquid layers in annular slots in which surface waves (SWs) occurred for
layers with thickness d below 2.2mm. We presented measurements of frequencies,
wavelength, phase speeds and critical Marangoni numbers of the SWs for different
aspsect ratios. The description is complemented by pictures of the surface deforma-
tions by the SWs. The experimental critical Marangoni numbers are in the range
predicted by Smith & Davis [2]. The assignment of the experimental observations to
the SWs of this theory was concluded from the observation of much larger surface de-
formation and from the larger wavelength and phase speed compared to hydrothermal
waves. It was argued that the SWs have not been observed by other experimenters
because of too small horizontal extension of their layers, or too small Marangoni num-
bers, or too large or differing Prandtl numbers. A further reason of other researchers
to miss the SWs in their experiments could be the much smaller sensitivity for surface
deformations of their detection methods compared to our shadowgraphy with light
reflected from the free surface.
The observation of thermocapillary instabilities in the liquid meniscus at the

cold wall of a 20mm deep, under-filled cuvette is due to a strong separation of the
thermocapillary-driven flow from the flow in the bulk liquid in this small region. This
creates thermocapillary flow with return flow in a narrow wedge-shaped meniscus
somehow similar to the flow in side-heated layers. We can assume a variety of ther-
mocapillary instabilities to exist there, travelling mainly along the wall. We assume
among them instabilities of the type of SWs because of the excitation of macroscopic
standing gravity surface waves by these hydrodynamic instabilities. We could iden-
tify one instability which could be exciting SGSWs in parametric resonance. This
thermocapillary instability in the cold meniscus behaves like a Hopf bifurcation (as
do the SGSWs). The excitation of macroscopic surface waves with amplitudes up to
0.5mm by faint surface oscillations of the SWs in the liquid meniscus is only possible
by resonance and for standing waves.

Dietrich Schwabe is grateful to DAAD for the financial support (reference 521/nm) to attend
the 7th Conference of the International Marangoni Association, 23. 06.–26. 06. 2014 at the
Technical University of Vienna (Austria). We thank Dr. Juergen Schneider who supplied the
video for the photo in Fig. 10.
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