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Abstract. The removal of suspended particles from the interior of a
thermocapillary liquid bridge via a finite-particle-size effect restricting
the particle motion near the free surface is analyzed in the framework
of a model flow. The particle depletion occurs on the same short time
scale as does the particle accumulation in experiments. Furthermore,
the time scale diverges in a similar manner for decreasing particle size.
The dependence of the time scale for particle accumulation on the par-
ticle size is explained in terms of a diverging return time to the free
surface for those finite-size particles which are subject to the
particle-free surface-interaction.

1 Introduction

The motion of small particles suspended in a fluid is of considerable fundamental
and technical interest. In particular, the temporal evolution of the particle concen-
tration field is important for mixing and de-mixing. A very fast and strong de-mixing
is observed for micron-sized spherical particles in thermocapillary liquid bridges. The
most impressive case is the attraction of the majority of particles to a line-like closed
spiral which is rotating about the axis of the liquid bridge with constant rotation
rate. This phenomenon has been termed particle accumulation structure (PAS) by [1].
It has been shown that such patterns can be caused by particle–boundary interac-
tions [2], inertia effects due to a mismatch between the density of the particles and
the fluid [3,4], and by numerical error [5]. Recent investigations of [6] have shown
that the experimentally observed time scale for the formation of PAS is consistent
with a particle–boundary interaction, in particular acting at the free surface, while
the inertia-induced accumulation process is too slow to explain the experimental
observations.
Within the particle–free-surface interaction model of [2] it was shown by [7]

that the spiralling line-like accumulation pattern is the visualization of only the most
impressive attractor out of a class of different attractors. Other attractors are toroidal
structures (tubular PAS), period-doubled PAS [8], and strange PAS which denotes
the accumulation on a structure which is assumed to be fractal within the particle–
free-surface interaction model employed by [7]. A visible property of strange PAS
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Fig. 1. (a) Experimental visualization (axial view) of the depletion zone in a nominally
axisymmetric flow; courtesy I. Ueno and M. Gotoda (Tokyo University of Science). 2-cSt
silicone oil, 15-micron diameter gold-coated acrylic particles, particle-to-fluid density ratio
2.0, Pr = 28, Re = 360, Γ = d/R = 0.64, R = 2.5mm, normal gravity, heated from
above, volume ratio 1. (b) Sketch of representative streamlines and notation. The flow is
anticlockwise (arrow). The grey region is not accessible for particles (dashed circles). The
white region becomes depleted for t → ∞ due to particle–free-surface collisions along the
cylinder at r = R∗ indicated by the bold vertical line. Particles from the textured region
are advected without any collision, its border is called release surface. Length scaled by the
length of the liquid bridge d.

is the removal of particles from streamlines which approach the free surface closer
than a particle radius. As these streamlines also fill the space around the axis of
the liquid bridge the accumulation becomes visible by a zone depleted of particles
near the axis. In a traveling hydrothermal wave the shape of the projected depletion
zone has the same azimuthal periodicity and rotation speed as the underlying flow
field. Examples of such depletion patterns can be found in [9]. In fact, the rotating
particle-depletion patterns have been employed as indicators signalling a traveling
hydrothermal wave [9].
An example for a depletion zone in a nominally axisymmetric flow is shown in

Fig. 1a. For subcritical conditions the depletion zone appears in this experiment in
less than one second after stirring the particles, and it is axisymmetric. In the course
of time the depletion zone becomes slightly offset from the axis in the direction of the
incident light as shown in the figure. The broken symmetry is assumed to result from
a slightly non-axisymmetric experimental setup.
Since the creation of a particle-depletion zone is the first stage of all PAS and a

direct manifestation of the particle–free-surface interaction, we investigate the sim-
plest case and consider finite-size spherical particles density-matched to the liquid and
moving in a steady axisymmetric thermocapillary flow in a cylindrical liquid bridge
using the collision model of [2]. Of interest are the temporal evolution of the particle
accumulation and the properties of the accumulation pattern, in particular the radius
of the depletion zone in axial projection.

2 Geometry of the axisymmetric depletion zone

Figure 1b shows a sketch of the geometry and streamlines of the axisymmetric steady
flow with velocity field U . Within the model of [2] a finite-size particle is perfectly
advected by the flow, but the center of a particle cannot approach the free surface
closer than a particle radius a. This model is based on the assumption that capillary
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Fig. 2. Radius of the depletion zone in axial projection Rdepl as a function of the particle
radius a (all lengths scaled by the length of the liquid bridge d). Shown are results for the
axisymmetric model flow of [7] with Pr = 4, Re = 1800 and Γ = 0.66 (line, zero gravity)
as well as results for Navier–Stokes flows in cylindrical liquid bridges under zero gravity
obtained using OpenFOAM for Pr = 8, Re = 800 and Γ = 1.15 (circles, corresponding to
the experiments of [10]) and for Pr = 28, Re = 360 and Γ = 0.64 (squares, corresponding to
the experiment shown in Fig. 1a), both for adiabatic free surface. The solid black square is
an experimental result corresponding to the dashed line in Fig. 1a.

and colloidal forces are sufficiently strong to prevent the particle from appreciably
deforming the liquid–gas interface. The finite-particle-size effect is only taken into
account near the free surface, because the streamlines are extremely crowded there
for thermocapillary flows (see also [6]).
We assume that the liquid is initially randomly seeded/marked by particles within

the accessible volume which is the volume of the liquid bridge V0 reduced by the pro-
hibited volume Vprohib = {x | R∗ < r < R,−0.5 < z < 0.5} (grey in Fig. 1b), where
R∗ = R−a is the radius R of the liquid bridge reduced by the radius a of the particles.
As time evolves particles are advected to the cylinder r = R∗ (point 2) from where
they are transported only by the vertical component of the velocity field. At point 3,
characterized by a change of sign of the radial velocity component, they are assumed
to be released to the bulk and accumulate on the release surface [7] which is a toroidal
stream surface (border of the textured region in Fig. 1b) tangent to the cylinder with
radius R∗. The streamline through point 3 which is tangent to the cylinder r = R∗
marks the border between the volumes depleted of and occupied by particles, respec-
tively. The minimum radial coordinate of this streamline Rdepl corresponds to the
radius of the depletion zone in axial projection visible in experiments (Fig. 1a).
Assuming model [2] holds Rdepl provides information about the closest approach

to the free surface of this streamline. While the closest approach to the free surface of
a streamline (on which advected particles are transported) is very difficult to measure,
Rdepl is very easy to measure. Thus the measurement of Rdepl together with numer-
ically computed streamlines can be used to predict the maximum radial position of
that streamline, and thus to test the validity of the collision model [2].
To estimate the radius of the depletion zone we use the axisymmetric part of

the model flow of [7] which has been fitted to the Navier–Stokes flow corresponding
to Prandtl number Pr = 4, thermocapillary Reynolds number Re = 1800 and aspect
ratio (height-to-radius ratio of the liquid bridge) Γ = d/R = 0.66 and compare the re-
sult with numerical simulations of Navier–Stokes flows. Figure 2 shows the predicted
radius of the depletion zone Rdepl for several flows as a function of the minimum
separation from the free surface of the streamline defining the depletion zone, i.e. the
particle radius a.
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The radius of the depletion zone depends sensitively on the aspect ratio, because
the radial extent of the toroidal thermocapillary vortex scales with the height of the
zone and not with its radius. Therefore, Rdepl for a large aspect ratio Γ = 1.15 is
much smaller than for small aspect ratios (Γ = 0.64). As can be seen the radius
of the depletion zone for the model flow [7] (Γ = 0.66) is very similar to the one
obtained by simulation of the Navier–Stokes equations for a comparable aspect ratio
(Γ = 0.64). The experimental value (solid square) determined from the dashed line
in Fig. 1a is about 20% larger than the radius predicted by the numerical simulation
(open squares). Notwithstanding the experimental and numerical uncertainties, and
also the different gravity levels, this result may indicate that the distance between
the limiting streamline (release surface) and the free surface is slightly larger than
the particle radius. This is consistent with the assumption of [8] that the particle
free-surface interaction parameter Δ (minimum distance of the particles from the
free surface) is bounded from below by the particle radius a.

3 Particle-depletion process

3.1 Depleted volume

To study the dynamic evolution of the depletion process we consider an incompressible
flow with a random particle seeding initially. Since the particle flux density ηU is
proportional to the volume flux densityU with particle number density η, we calculate
the volume flux through r = R∗. The volume (seeded by particles) which has passed
through the cylindrical surface A∗ = {x | r = R∗,−0.5 < z < 0} from t = 0 to t is
given by

V (t) =

∫ t

0

∫
A∗
H[T (ψ)− t′] U |r=R∗ · dA dt′, (1)

where A∗ is the cylindrical surface at r = R∗ and dA = R∗dϕdz. The heaviside func-
tion H[T (ψ)− t′] has been introduced, because only the volume marked by particles
is of interest. After a turnover time T (ψ), which depends on the streamline defined
by the value of the streamfunction ψ, all particles initially located on this streamline
between points 0 and 2 (Fig. 1b) will have been removed from the bulk. For t → ∞
the whole volume exterior of the toroidal release surface will have become depleted
of particles, i.e. V (t → ∞) = V∞depl (white region in Fig. 1b). In a two-dimensional
axisymmetric flow this volume can never be populated by particles again within the
model used, because all streamlines within this volume originate from the prohibited
region R∗ < r < R unaccessible for particles. In a three-dimensional traveling hy-
drothermal wave a similar but more complicated depleted volume is created bounded
by a more complicated release surface [7].

3.2 Turnover time

The turnover time can be easily calculated for the axisymmetric part of the model flow
of [7] which has been fitted to the Navier–Stokes flow corresponding to Prandtl num-
ber Pr = 4, thermocapillary Reynolds number Re = 1800 and aspect ratio (height-
to-radius ratio of the liquid bridge) Γ = d/R = 0.66. This model has been devised
in order to obtain a closed-form and exactly solenoidal approximation of the solution
of the Navier–Stokes equations which, in turn, can only be obtained approximately
by numerical means and with a certain numerical error, in particular, a divergence
error [5]. The mirror symmetry of the axisymmetric model streamlines with respect
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Fig. 3. Turnover times along a closed streamline (except for the fraction in the prohibited
region) for St = 10−4, St = 10−5 and St = 10−6 (from lower to upper curve) as function
of the vertical coordinate zψ of the intersection point of the streamline (collision point)
with R∗.

to z = 0, as opposed to the slightly broken mirror symmetry of the axisymmet-
ric Navier–Stokes flow, is not expected to have a substantial effect on the turnover
time. Similarly, the mean turnover time is not expected to be significantly affected
by a slightly supercritical three-dimensional hydrothermal wave, because the wave
amplitude is small. As the amplitude of the hydrothermal wave becomes larger, most
streamlines will be chaotic [7,8]. Since the hydrothermal wave is periodic in azimuthal
direction with only a small amount of nonlinear rectification, it is expected that a
suitably defined mean turnover time is little affected by the hydrothermal wave.
The stream function of the steady axisymmetric model flow reads [7]

ψ(r, z) = −A0rf(r) cos(πz), (2)

where lengths, velocities and time are viscously scaled by d, ν/d and d2/ν, respectively,
d being the height of the liquid bridge and ν the kinematic viscosity of the liquid.
Moreover, f(r) = rn(1 − Γr) ≥ 0 for all r ∈ [0, 1/Γ], A0 = 11.1 and n = 4.74 as
in [7]. The radial and axial velocities are U(r, z) = −∂zψ/r = −πA0f(r) sin(πz) and
W (r, z) = ∂rψ = A0g(r) cos(πz). The flow is anti-clockwise.
Since the turnover time depends on the streamline, we parameterize the turnover

time using the z coordinate zψ = arccos[−ψ/(A0R∗f(R∗))]/π of the collision point
(point 2 in Fig. 1b) of the respective streamline. Due to the mirror symmetry with
respect to z = 0 of the streamlines the time required for a particle to be advected
from point 0 to 2 requires twice the time from point 1 to point 2. With U = dr/dt,
the turnover time becomes

T (zψ) = 2

∫ t∗

t†
dt = 2

∫ R∗

R†

dr

Uψ(r, z)
=
2

πA0

∫ R∗

R†

rdr√
[rf(r)]

2 − (ψ/A0)2
, (3)

where Uψ denotes the radial velocity on the streamline considered. In the last step

we have used (2), i.e. sin(πzψ) = −[1 − (ψ/[A0rf(r)])2]1/2, where the minus sign is
due to zψ ≤ 0.
The turnover time as function of zψ < 0 is shown in Fig. 3 for three particle sizes

which are measured using the viscously scaled Stokes number St = (2/9)a2/d2. It
diverges for zψ → −1/2, because the vertical velocity according to (2) approaches
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Fig. 4. Volume transported through R∗ according to (4) as function of time for Stokes
numbers St = 10−6, 10−5, and 10−4 (from bottom to top). The volume is normalized by the
total volume V0 = π/Γ

2 of the liquid bridge. The dotted lines represent the time asymptotic
values (6) of the depleted volume.

zero on the axis r = 0 by construction, while U satisfies free-slip conditions on the
walls at z = ±1/2. A similar and perhaps stronger divergence of the turnover time
would result from no-slip boundary conditions on the walls.

3.3 Depletion dynamics

From the model flow (2) and the turnover time (3) the depleted volume (1) is
obtained as

V (t) = −2π2A0R∗f(R∗)
∫ 0
−1/2

H̃(z, t) sin(πz) dz, (4)

where

H̃[T (z)− t] =
{
t, t < T (z),

T (z), t > T (z).
(5)

The integral in (4) is understood as the principal value. The typical evolution of the
depleted volume is shown in Fig. 4 for three different relative particle sizes. For t→∞
the depleted volume V (t)→ V∞depl approaches its maximum. It can be expressed, using
the result given in the appendix of [7] as

V∞depl = V
∗ − 4

∫ R∗

R†
arccos

( −ψ∗
A0rf(r)

)
rdr, (6)

where ψ∗ is the value of the streamfunction on the streamline tangent to R∗ and
V ∗ = V0 − Vprohib the volume accessible by particles. To illustrate the depletion
patterns particle configurations at t = 1 are shown in Fig. 5 for the 2D-model flow
(2) and for the full three-dimensional model [7] (for comparison). The particles near
the axis move very slowly (the turnover time diverges for ψz → −0.5, Fig. 3) and
have not escaped from that region at t = 1. In an experiment such slowly-moving
particles may sediment if not density-matched to the liquid.
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(a) 2D, St = 10−4 (b) 2D, St = 10−5 (c) 3D, St = 10−4 (d) 3D, St = 10−5

(e) 2D, St = 10−4 (f) 2D, St = 10−5 (g) 3D, St = 10−4 (h) 3D, St = 10−5

Fig. 5. 2000 particles after t = 1 for the model of [7]. Shown are results for the 2D and 3D
flows for Stokes numbers St = 10−5 and St = 10−4. Random initial conditions. Particle size
not to scale. Top row: azimuthal projection, bottom row: axial projection.

4 Particle-accumulation measures

To measure the evolution of PAS [7] have introduced a the scaled integral deviation

K(t) =
1

2(N −N)
Ncells∑
i=1

∣∣ki(t)−N ∣∣ , (7)

of the particle concentration from the mean. To determine K the flow is seeded with
N particles, the accessible volume is subdivided into Ncells equally-sized cells, and
the number of particles ki(t) in the i-th cell at time t is measured. With Ncells = N

we have N = N/Ncells = 1 such that Krandom = 1/e and Kmax = 1 [7]. K can be
evaluated numerically as well as experimentally.
Based on the ratio V (t)/V ∗ of the depleted volume to the accessible volume ini-

tially seeded by particles we calculate K in the limit N → ∞ by noting that the
contribution of the depleted volume to the sum in (7) is

∣∣ki(t)−N ∣∣ = 1. The com-
plement of this volume, [V ∗ − V (t)]/V ∗ (textured in Fig. 1b), remains occupied for
all times by a random arrangement of particles. In the limit N →∞ the contribution
to K is 1/e per cell. Thus we obtain the following expression for K based on the
depleted volume

Kdepl(t) =
1

2

V (t)

V ∗
+
1

e

V ∗ − V (t)
V ∗

+ c
V (t)

V ∗
· (8)

The first term is due to the depleted volume and the second due to the complement
of this volume. The third term takes into account the particles which have been
transferred to the toroidal stream surface. It must scale with V (t)/V ∗, because only
those particles occupy this torus which were previously located in the volume depleted
at time t. The constant c remains undetermined, because it depends on the surface
area of the torus and its coverage with cells. The accumulation signal above the
random level is

Kdepl(t)− 1
e
=

(
1

2
− 1
e
+ c

)
V (t)

V ∗
· (9)

Therefore, the signal above the random level based on the depleted volume V (t) should
be the same, up to a scale factor, as the value of K − 1/e obtained by a simulated
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Fig. 6. Accumulation measure K(t) by numerical simulation for St = 10−5 using
32000 particles sampled into 200-1-160 bins in radial, azimuthal, and axial directions (noisy
curve) and K(t) based on (9) (full curve). The diamonds represent K(t) for the full three-
dimensional model of [7], extracted from their Fig. 18a.

motion of particles. This is shown in Fig. 6. The lower full curve shows Kdepl(t) for
c = 0 which can be directly obtained from the depleted volume V (t). In addition its
time asymptotic value is indicated (as well as the random level) by a dotted line. The
noisy signal represents K(t) obtained from a simulation of 32000 particles initiated at
random in the accessible volume V ∗ and advecting them in the axisymmetric flow (2).
The volume has been partitioned into 200× 1× 160 cells of equal volumes in radial,
azimuthal and axial direction, respectively. RescalingKdepl → 4.3×(Kdepl−1/e)+1/e
yields the upper smooth curve which is identical to the numerical simulation within
the noise level. In addition, K(t) for the full 3D model of [7] is shown (diamonds).
It is evident that the formation-time scale is practically independent of the presence
of the azimuthal part of the flow. Merely, K is smaller in the 3D case, because the
release surface has a more complicated structure (see Fig. 28g of [7]).
In order to reduce the information contained in K(t) to a characteristic time of

formation of PAS [6] have defined the formation time TPAS as the time at which K(t)
has grown to a fraction α of its total variation, i.e.

K(TPAS) = Krandom + α (K∞ −Krandom). (10)

A natural choice for α would be α = 0.5. This definition is meaningful if K is a
monotonically increasing function, which has been the case for all experiments and
simulations of PAS to date. Similarly one can define a depletion time Tdepl by

K(Tdepl) = Krandom + α
(
Kdepl∞ −Krandom

)
, (11)

whereKdepl∞ can be evaluated for c = 0, because the characteristic time is independent
of c. Equation (11) is equivalent to V (Tdepl) = αV

∞
depl.

As the depletion process primarily depends on the strength of the axisymmetric
part of the flow [6] it is tempting to compare the 2D depletion time with the 3D
PAS formation time from experiments in order to compare their dependence on the
particle size and on the strength of the flow. This comparison is made in Fig. 7 for
a typical range particle radii a between the criterion (11) with α = 0.5 (circles) and
the experimental data of [10] (bold squares and error bars, taken from their Fig. 12)
for nearly density-matched particles with density ratio ρp/ρf = 1.01. The data show
the same trend but differ in magnitude.
The difference can be explain in terms of the strength of the flow. [6] have shown

that the time scale for PAS by way of free-surface collisions is ∝ Re−1, because



IMA7 – Interfacial Fluid Dynamics and Processes 317

Fig. 7. PAS formation time TPAS and depletion time Tdepl (both in viscous units) as functions
of the non-dimensional particle radius a (in units of the zone height d, lower axis) and
corresponding Stokes numbers (upper axis). Shown are theoretical results for Tdepl for Re =
1800 (circles) and for Re = 2800 (squares) in comparison with the formation time TPAS
obtained experimentally by [10] for particle-density ratios � = 1.01 (bold squares and error
bars), taken from their figure 12 with Re ≈ 2800 (see text).

the key quantity determining the time scale is the characteristic (average) frequency

(here ≈ 1/T (zψ)) at which colliding particles return to the free surface. The same
applies to the depletion time. While our analysis was carried out for a thermocapillary
Reynolds number Re = 1800, the experimental data of [10] shown in Fig. 7 for
a Na0.76Cs0.24NO3 mixed melt are based on Ma

exp := Reexp Pr/Γ2 = 1.7 × 104
with Γ = 1.15. According to [11] the Prandtl number of the mixed melt should not
differ much from Pr = 8 of the pure NaNO3 melt. Under this premise the Reynolds
number in the experiment can be estimated as Reexp ≈ 2800 which is a factor of
≈1.5 larger than Re. However, within our model, the depletion time for Re = 2800
can be obtained just by re-scaling the data for Re = 1800. The result, shown as small
squares in Fig. 7, roughly agrees with the experimental data.

5 Discussion and conclusion

Particle accumulation in steady axisymmetric thermocapillary flow in a liquid bridge
has been considered in the framework of the particle–free–surface interaction model
of [2]. For the model flow of [7] as well as for some Navier–Stokes flows we calculated
the radius of the depletion zone in axial view. A comparison of these predictions with
experimental data, which are not yet available, would provide a critical test of the
particle–free-surface interaction model [2].
Furthermore, the dynamic evolution of the particle-depletion process was inves-

tigated for the model flow. The times scales for the creation of the depletion zone
based on the depleted volume is the same as the one based on the simulated particle
motion. We find a good agreement between the depletion time for axisymmetric flow
and the PAS formation time measured by [10] for nearly density-matched particles
in a three-dimensional flow if the strength of the flow, i.e. the Reynolds number,
is properly taken into account. The strength of the flow is important, because the
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characteristic flow velocity is expected to be approximately proportional to the mean
eddy-turnover frequency which determines the average particle–free-surface collision
rate. The agreement of the depletion time with the PAS formation time is further
corroborated by the result for the accumulation measure K(t) computed by [7] from
particle simulations for the three-dimensional model flow (Fig. 6).
In qualitative agreement with the experimental PAS formation time we find a

strong increase of the depletion time as the particle size gets smaller. As a → 0 the
depleted volume shrinks (R∗ → 1/Γ, Rdepl → 0, see Figs. 5a,b,e,f). Since the depleted
volume is always bounded by the solid walls and the axis, the average turnover time
T (zψ) of the streamlines in the depleted volume increases strongly (Fig. 3). This leads
to the diverging depletion and PAS formation times in the limit. A different divergence
of Tdepl(a) and TPAS(a) for a→ 0, which is very difficult to pinpoint experimentally,
may be caused by the different ways in which the average turnover time diverges: In
the model flow with free-slip walls the vanishing axial flow velocity on the axis causes
the diverging time scale, while the time scale in the experiments also diverges due to
the no-slip condition on the solid walls.
The agreement in magnitude and trend of the depletion time and the PAS-

formation time supports the particle–free-surface interaction model of [2], even though
further details of a more accurate particle–surface interaction model still need to be
developed. The agreement also suggests that PAS becomes visible to the eye in the
experiments, because the majority of particles from the volume V∞depl are removed
within Tdepl and mapped to streamlines close to the periodic attractor (in case of
line-like PAS) [8]. As a result of this particle removal the axial view is cleared on
line-like PAS which would otherwise remain partly obscured by the particles moving
in V∞depl.

This work has been supported by the Austrian BMVIT through ASAP9 (project
number 840119). We are very grateful to I. Ueno and M. Gotoda (Tokyo University of
Science) to allow the reproduction of the image shown in Fig. 1a. H. K. is indebted to
D. Schwabe for stimulating discussions.
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