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Abstract. The effect of liquid bridge shape on the instability and asso-
ciated oscillation mode of Marangoni convection due to the tempera-
ture gradient along the free surface is experimentally studied. Although
the onset condition of oscillatory state is known to depend on the liq-
uid bridge shape, this effect is not completely understood yet. Onset
conditions are measured for various combinations of the aspect ratio
(AR) and the volume ratio (VR) of liquid bridges. It is found that the
convection becomes most stabilized at a certain combination of AR
and VR and also that the oscillation mode changes at this most stabi-
lized condition. To account for the effects of AR and VR in a simple
way, a new dimensionless parameter SDR (i.e., the ratio of the surface
length to the neck diameter) is proposed. It is shown that all the onset
conditions measured presently are well correlated with SDR.

1 Introduction

Marangoni convection is driven by the temperature gradient along the free liquid-gas
interface. The flow is usually driven from higher temperature side toward lower tem-
perature side. This flow plays an important role in small scale phenomena because
the surface force becomes dominant over the body force as a result of the decrease
of the length scale. The flow geometry considered in this study is a half-zone (HZ)
liquid bridge (LB, hereafter) suspended between coaxial disks with different temper-
atures (Fig. 1a). This flow geometry is simplified from the floating-zone (FZ) method
(Fig. 1b), which is known as a high purity crystal growth technique. The flow in the
HZ LB remains steady and laminar if the temperature difference is small, while it
becomes oscillatory and three-dimensionally complex if the temperature difference
exceeds a certain level, which is represented by the critical temperature difference
and the oscillation frequency.
It is well recognized that the onset of oscillatory flow depends on various para-

meters such as physical properties of the fluid, the length and the volume of the
LB, heat exchange through the liquid surface and so on. Hu et al. [1] and Masud
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Fig. 1. Schematic of the (a) half-zone (HZ) liquid bridge and (b) floating-zone (FZ) liquid
bridge.

et al. [2] found in their terrestrial experiments that the slenderness of the LB strongly
affects the critical condition for unsteady Marangoni convection. Chen and Hu [3] and
Kuhlmann et al. [4] also studied the effect of LB shape by means of the linear stability
analysis. They reported that the Marangoni convection becomes most stabilized at a
certain LB shape even for different experimental/numerical conditions such as disk
diameter, working fluid and so on. Furthermore, Kuhlmann et al. [4] found that the
critical azimuthal mode number is also affected by the LB shape, in agreement with
the results from the previous ground based experiments [5–7].

The present study focuses on the effect of LB shape on the critical condition for
the onset of oscillatory state and associated flow patterns. Obtained results are com-
pared with the latest experimental benchmark reported by Shevtsova et al. [7]. The
LB shape can be specified by the two dimensionless geometrical parameters. They are
the aspect ratio, AR, and the volume ratio, VR, of the LB. The former is defined as
AR = H/D, where H and D respectively denote the LB length and the disk diameter,
while the latter is defined as V R = V/V0, where V and V0 respectively denote the LB
volume and the cylindrical gap volume between upper and lower disks (=πD2H/4).
The gravity causes the LB deformation and its effect is specified by the Bond number
which is defined as Bo = ΔρgH2/σ, where Δρ, σ and g are the density difference be-
tween liquid and gas, the surface tension and the acceleration of gravity, respectively.
The effect becomes negligible for small LBs and in the microgravity environment. It
is well known that the effects of AR and VR on the instability of thermal Marangoni
convection appear not only in the critical temperature difference and oscillation fre-
quency but also in the critical azimuthal mode number, which is denoted by m in
this paper. The values of m should be integer because of the 2π-periodicity in the
azimuthal direction of the LB. Preisser et al. [8] reported an experimentally observed
relation of AR×m≈ 1.1 for the LBs of AR < 1.3, V R≈ 1.0 and Pr = 8.9, where
Pr is the Prandtl number. They showed that m = 2 for AR = 0.55 and m = 1 for
AR = 1.1. Sakurai et al. [6] (Pr = 16.0 ∼ 68.4) and Shevtsova et al. [7] (Pr = 68)
studied the effects of AR and VR on m to find rather complex relations which were
therefore reported in diagram or in tabular form. Lappa et al. [9] considered the effects
of AR and VR to introduce the effective aspect ratio which is defined as Am = H/D0,
where D0 is chosen to be either minimum or maximum diameter of the LB in order
to represent the slenderness or fatness of the LB. They suggested a modified empir-
ical relation, Am×m≈ 1, from their numerical simulations for AR = 0.25 ∼ 1.25,
V R = 0.78 ∼ 1.22 and Pr = 0.01 under zero gravity condition. This empirical rela-
tion was extended up to Pr = 4 by Nienhüser and Kuhlmann [10] by means of their
linear stability analysis.

The present study aims at proposing a new dimensionless parameter that can be
used for more general treatment of the effect of LB shape (i.e., AR and VR) on the
instability of thermal Marangoni convection. As described later in this paper, the
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Table 1. Physical properties of the test fluid at 25◦C.

Test fluid 5cSt silicone oil
Prandtl number, Pr [-] 67
kinematic viscosity, ν [m2/s] 5.0×10−6
density, ρ [kg/m3] 915
thermal diffusivity, α [m2/s] 7.49×10−8
surface tension, σ [N/m] 19.7×10−3
temperature coefficient of σ, σT [N/(m·K)] −6.58× 10−5
coefficient of thermal expansion, β [1/K] 1.09×10−3

Fig. 2. Liquid bridge geometry.

surface length of LB is taken as a representative length scale, instead of H, to express
the critical conditions and to define the dimensionless parameter. The surface length
is evaluated from the LB shape that is calculated from the Young-Laplace equation
[11]. It is demonstrated that not only the critical azimuthal mode number but also
the critical conditions (i.e., the critical temperature difference and the oscillation
frequency) can be correlated reasonably well by this new dimensionless parameter.

2 Method

2.1 Experimental conditions

Silicone oil with the kinematic viscosity of 5cSt at 25◦C (Shin-Etsu Co., Ltd., KF-
96L-5cs) is used as the test fluid (Pr=67). Typical physical properties of used fluid
are listed in Table 1. The temperature dependency of ν is considerable thus it is
evaluated from the following equation;

ν(T ) = exp

(
5.892× 25− T

273.15 + T

)
× ν(25) (1)

where T is the temperature in degree Celsius. The representative value of kinematic
viscosity, ν̄, is evaluated as an average of those evaluated at the temperatures of heated
disk and cooled disk (i.e., TH and TC). The working fluid is seeded with small tracer
particles made of nylon-12 (Toray Industries, Inc., SP-500). Their average diameter
and density are 5μm and 1017 kg/m3, respectively. The volume concentration of
tracer particle is kept less than 0.05volume% so that their suspension does not affect
the flow field.
The geometry of HZ LB is illustrated in Fig. 2. The diameters of both heated and

cooled disks are 5mm. The cooled disk has a 45◦ sharp edge to prevent the liquid
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Fig. 3. Experimental setup.

leakage. Also to prevent fluid from creeping over the edges of upper and lower disks,
they are covered with an anti-wetting-barrier. The lower cooled disk is traversed in
axial (z) direction, so that AR is changed in the range of 0.50∼0.65. The resultant Bo
changes from 2.84 to 4.80. VR is changed in the range of 0.6∼1.1. The ratio of buoy-
ancy to thermocapillary forces is represented by the dynamic Bond number, which
is defined as Bd = ρgβH2/|σT |, where ρ, β and σT are the density, the coefficient
of thermal expansion and the temperature coefficient of surface tension, respectively.
The resultant Bd changes from 0.93 to 1.57 for AR = 0.50 ∼ 0.65. Masud et al. [2]
showed from their experiments that the effect of buoyancy becomes negligible for Bd
smaller than 0.26. Although Bd = 0.93 ∼ 1.57 are larger than that, the present choice
of D = 5mm and H = 2.5 ∼ 3.25mm is the result of compromise between buoyancy
and other factors such as evaporation, leakage, measurement resolution and so on.

2.2 Experimental setup

Schematic diagram of the experimental setup is shown in Fig. 3. The LB is formed
between upper sapphire and lower aluminum disks. The temperatures of those disks
are feedback controlled by the heating tapes and a Peltier device, respectively. Any
required temperature difference between heated and cooled disks (ΔT = TH − TC)
can be realized stably.
In the present experiment, TC is kept constant at 18

◦C within the accuracy of
±0.2◦C and TH is increased/decreased in a stepwise manner. The temperature sig-
nal measured by a fine thermocouple sensor placed near the liquid surface and the
motion of tracer particles observed by CCD cameras are simultaneously used for the
detection of oscillatory flow. The used thermocouple sensors sampled at 100Hz, which
is enough fast to detect the temperature fluctuation due to the flow instability. As
shown in Fig. 3, three CCD cameras are mounted around the LB. Two CCD cam-
eras (side-view cameras) observe the overall flow pattern and the LB shape from the
orthogonal directions. Another high speed CCD camera with microscopic objective
(top-view camera) observes the oscillation mode of Marangoni convection in radial
plane through the transparent sapphire disk. Note that the main part of the exper-
imental setup is surrounded with a rectangular plastic box to defend the LB from
ambient air disturbance. It is known that the square amplitude of temperature signal,
A2, and its oscillation frequency, f, show a linear dependence on ΔT near the critical
condition (Hopf bifurcation [12]). In this study, ΔT giving A2=0 is obtained by using
the linear approximation method and this extrapolated value is regarded as critical
temperature difference, ΔTc.
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Table 2. Comparison of contact angle with benchmark [7] for AR = 0.5.

V R = 0.8 V R = 0.9 V R = 1.0
D = 3mm, Bo = 1.02 benchmark 51.28◦ 67.98◦ 85.04◦

present 51.26◦ 67.99◦ 85.04◦

D = 5mm, Bo = 2.84 benchmark 41.65◦ 58.95◦ 76.11◦

present 41.66◦ 58.94◦ 76.06◦

D = 6mm, Bo = 4.09 benchmark 34.79◦ 52.56◦ 69.81◦

present 34.76◦ 52.55◦ 69.79◦

The most important condition for the present study is to keep the liquid volume
constant during the experiment. The LB is formed by using a lab-made apparatus
which consists of micro syringe, fixture and micrometer head. The working fluid is
supplied from the micro syringe, and the fluid volume is carefully adjusted with the
micrometer head. The LB shape is always monitored with the side-view cameras and
the lost volume due to the evaporation is compensated adequately. The minimum of
adjustable fluid volume is 0.02mm3, so the resolution is good enough for the present
experiment (liquid volume for AR = 0.5, V R = 1.0 and D = 5mm is V = 49.1mm3).
Detailed comparison of experimental and theoretical LB shape will be discussed in
Sect. 3.1.

3 Result and discussion

3.1 Liquid bridge shape

For quantitative consideration of LB shape, the equilibrium LB shape is calculated
from the Young-Laplace equation [11]. For the case of axisymmetric LB, it can be
written as follows:

d2r

ds2
= −dz
ds

(
− Bo
AR2

z

D2
+
C

σ
− 1
r

dz

ds

)
(2a)

d2z

ds2
=
dr

ds

(
− Bo
AR2

z

D2
+
C

σ
− 1
r

dz

ds

)
(2b)

where s, r, z and C are respectively the curve arc length, the radial position, the
axial position and the constant which depends on the pressure difference between
liquid and air. Note that r and z are the function of s. In the followings, the values
of 9.8m/s2 and 1.18 kg/m3 are used for the acceleration of gravity and the density of
air, respectively. The problem can be solved numerically as an initial value problem
by using shooting method [11]. The boundary conditions are as follows: (1) r = D/2
at z = 0, H, (2) dr/ds = cosβ0, dz/ds = sinβ0 at s = 0 and (3) π

∫
r2dz = V R × V0,

where β0 is the contact angle at lower disk edge (Fig. 2). The calculated results are
verified with the benchmark results reported by Shevtsova et al. [7] in terms of contact
angle at the upper disk. The detailed values are summarized in Table 2 with good
agreement, indicating that the Young-Laplace equation is solved successfully.
Figure 4 shows the LBs for different VR and constant AR(= 0.50). The LBs are

illuminated from the backside, and it makes easier to detect the interface between
liquid and air. The resultant shapes of liquid surface are compared with those ob-
tained from Eq. (2) in Fig. 5. There is reasonable agreement between experiment
and calculation. Their differences of VR are less than 1%, indicating that accurate
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Fig. 4. Variety of liquid bridge shapes for AR = 0.5.

Fig. 5. Comparison of liquid bridge shapes between experiment and calculation.

evaluation of VR can be realized in the present study. As a result, the surface length
of LB, denoted by S (Fig. 2), which is the tangential length of LB from the cooled
disk to the heated disk, is evaluated from the calculated LB shape.

3.2 Instability of Marangoni convection

In this study, ΔTc, f and associated oscillation modes are measured for various com-
binations of AR and VR. For the better understanding, obtained ΔTc and f are
non-dimensionalized into Marangoni number,MaH , and dimensionless oscillation fre-
quency, FH [8], which are defined as follows;

MaH =
|σT |ΔTH
ρν̄α

(3)

FH =
H2

α
√
MaH

f (4)

where α is the thermal diffusivity. TheMaH with ΔT=ΔTc gives a critical Marangoni
number, MacH . Figure 6 shows the measured (a) MacH and (b) FH as a function of
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Fig. 6. Plot of (a) MacH and (b) FH as a function of VR comparing with the benchmark
results [7].

VR for AR=0.50 (upper) and 0.60 (lower). Also included in these results are the exper-
imental benchmarks reported by Shevtsova et al. [7]. They presented the benchmark
values of MacH which are obtained from nine test cases conducted by five differ-
ent groups. Their liquid volume was changed for V R = 0.80, 0.90 and 1.00 for each
AR(= 0.32, 0.50 and 0.60) whereas the results for AR = 0.32 is not discussed here
because ΔTc for this AR becomes too high to be measured in the present study. Note
that the data for AR = 0.60 and V R = 0.90 are not available from the benchmark.
The results of MacH show a reasonable agreement between the present experiment
and the benchmark however all measured values in the present experiment are slightly
larger than the benchmarks. It is well known that the onset condition of oscillatory
Marangoni convection is very sensitive to the boundary conditions, and such a slight
discrepancy may be caused by the difference of experimental conditions. In Fig. 6,
there are two branches of stability curve which can be assigned to larger/smaller VR,
and they appear to intersect with each other at quite highMacH condition. As shown
later, their meeting point is found to be corresponding to the transition point of m
and therefore FH shows a jump at this condition (Fig. 6b). Here, oscillatory flows
with m = 1 appears for smaller VR and those with m = 2 appears for larger VR. As
for FH , the present experiment and the previous data are in good agreement, thus
supporting again the appropriateness of the present experiment.
Figure 7 shows the plots of (a)MacH and (b) FH as a function of VR for different

ARs (AR = 0.50, 0.55, 0.60 and 0.65). The MacH–VR plot for each AR show a local
peak at a certain VR, at which the FH–VR plot for corresponding AR shows a sudden
increase. More importantly, a definite transition of m occurs at this VR as recognized
from the open symbols (m = 1) and the closed symbols (m = 2) in both plots. This
particular VR is, therefore, referred to as the mode-transition VR hereafter. It is
obvious that the mode-transition VR increases with AR in the range studied here.
It is reported that the mode-transition VR also depends on Bo and the surrounding
conditions in the air near the interface [7]. From Figs. 7a and 7b, each dependence
of MacH and FH on AR for constant VR can be interpreted as follows: (1) MacH
decreases while FH increases with AR for small VR (say, V R < 0.8) wherem = 1, and
(2) both MacH and FH increase with AR for large VR (say, V R > 1.0) where m = 2.
This interpretation suggests that the dependence of instability of thermal Marangoni
convection on AR and VR can be simplified by introducing a new dimensionless
parameter that can specify the mode transition caused by the change of AR and VR.
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Fig. 7. Plot of (a) MacH and (b) FH as a function of VR with various AR.

3.3 New dimensionless parameter

In the former section, it is suggested that the trends of MacH , FH and m strongly
depend on both AR and VR. The purpose of this section is to propose a new dimen-
sionless parameter with a view to correlating the complex dependence of the critical
conditions on AR and VR into simpler relations. Considering that the driving force
of thermal Marangoni convection is exerted on the LB surface, S is used, instead of
H, as a characteristic length for defining the Marangoni number and the dimension-
less oscillation frequency. Furthermore, S is used to define a dimensionless parameter,
SDR (= S/D0), which is to describe the LB shape, where D0 is the minimum or
maximum diameter of the LB as considered by Masud et al. [2] and Lappa et al. [9].
For deformed LBs that exhibit both concave and convex surfaces, D0 is defined as an
average of the minimum and the maximum diameter of the concave and the convex
surfaces, respectively, as proposed by Masud et al. Although intuitively introduced,
S and SDR are shown to be quite useful for the correlation of the dependence of the
critical conditions on the LB shape.
Figure 8 shows the relation of SDR, VR and AR, where open symbols and closed

symbols represent the critical modes of m = 1 and m = 2, respectively. It is evident
that SDR≈ 0.64 corresponds to the mode transition from the m = 2 to m = 1. This
mode transition at SDR≈ 0.64 holds true for the data of Preisser et al. [8] (Pr = 8.9)
and Shevtsova et al. [5] (Pr = 105). The former reported m = 1 for AR = 0.7 ∼ 1.2
(corresponding to SDR = 0.7 ∼ 1.2) and m = 2 for AR = 0.4 ∼ 0.65 (SDR =
0.4 ∼ 0.65), both for V R≈ 1.0, while latter reported m = 1 for V R = 0.7 ∼ 0.95
(SDR = 0.64 ∼ 0.97) and m = 2 for V R = 1.05 ∼ 1.2 (SDR = 0.59 ∼ 0.61), both
for AR = 0.6. Note that Bd = 0.7 ∼ 2.9 for the data of Preisser et al. while Bd = 2.3
for the data of Shevtsova et al. These results indicate that the complex dependence
of m on AR and VR can be simplified by use of SDR, at least for the available data
taken in the ground experiments.
Figure 9 shows (a) the critical Marangoni number, MacS , and (b) the dimension-

less oscillation frequency, FS , plotted as a function of SDR, where S is used as the
characteristic length in Eqs. (3) and (4) instead of H. The figures show reasonable
correlations of MacS and FS with SDR, demonstrating the usefulness of SDR. These
figures clearly show the presence of two branches corresponding to m = 1 and 2.
As for MacS , the stability curves for m=2 and 1 appear to be intersected to each
other, showing a sharp peak ofMacS (≈ 5.0× 104) at SDR≈ 0.64 and an asymptotic
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Fig. 8. Relation of SDR and VR for various AR.

Fig. 9. Plot of (a) MacS and (b) FS as a function of SDR.

approach to a value (≈ 1.5× 104) with increasing SDR. On the other hand, FS shows
two linear branches revealing a discontinuous decrease at SDR≈ 0.64. These corre-
lations of MacS and FS with SDR appear to be in agreement with the data reported
by Shevtsova et al. [5], except for the values MacS near SDR = 0.64 where the mode
transition takes place and therefore MacS could be sensitive to each experimental
conditions.

4 Conclusions

The present paper reports the effect of liquid bridge shape on the instability and asso-
ciated oscillation mode of thermal Marangoni convection in liquid bridges of 5cSt sili-
cone oil. The shape is varied in the ranges of AR = 0.50 ∼ 0.65 and V R = 0.60 ∼ 1.10
for a single disk diameter of 5mm. The liquid volume is controlled accurately by us-
ing a lab-made micro syringe apparatus. The measured liquid bridge shapes compare
well with those calculated from the Young-Laplace equation. Onset conditions of
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oscillatory state, oscillation frequencies and associated oscillation modes are deter-
mined experimentally. The results plotted as a function of VR reveal the presence of
local peak of critical Marangoni number and the presence of a suddenly decrease of
oscillation frequency at a certain VR. The position of this peak shifts with AR and
the observed azimuthal mode number changes at this peak position. To correlate the
complex effect of AR and VR in a simple way, a new dimensionless parameter SDR is
proposed. It is the ratio of the liquid surface length to the neck diameter of the liquid
bridge. It is shown that the transition of azimuthal mode numbers (i.e., the transition
from m = 2 to m = 1) for all ARs and VRs examined here takes palce at SDR≈ 0.64.
It is also shown that the critical Marangoni numbers and the dimensionless oscillation
frequencies fall onto their respective curve, if they are non-dimensionalized with the
liquid surface length instead of the liquid bridge height. Each curve consist of two
branches, one is stability curve for m = 1 and the other for m = 2. The tendencies
of the critical Marangoni number and the dimensionless oscillation frequency change
at the crossing point of these two branches. The usefulness of SDR is further checked
by the reasonable agreement between the present results and the literature data.

This study was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI
(Grant-in-Aid for JSPS Fellows, 13J02728 and Grant-in-Aid for Scientific Research (B),
24360078).
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