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Abstract. The paper deals with the investigation of the implications
of the Marangoni effect on the onset of Rayleigh-Benard convection in
a two-layer system with deformable fluid interface. The study of the
conductive state stability to the longwave perturbations shows that
in the case of heating from above the thermocapillary effect leads to
the increase of instability domain to the monotonic longwave perturba-
tions. In the case of heating from below, the thermocapillarity makes
stabilizing effect on the longwave perturbations and at some values
of the parameters the configuration where more dense fluid is located
above less dense one turns out to be stable. However, the analysis of the
perturbations with finite wavelength in the presence of thermocapillary
effect shows that in the case of heating from below the Rayleigh-Taylor
instability is not suppressed. For any values of the parameters the
perturbations with finite wavelength turn out to be more dangerous.
In this situation the instability domain becomes wider with the increase
of the Marangoni number modulus. In the case of heating from above,
for any values of the Marangoni number, at the Rayleigh numbers small
in the modulus, long-wave monotonic perturbations are most danger-
ous whereas at the Rayleigh numbers large in the modulus, the most
dangerous mode is cellular monotonic instability.

1 Introduction

The onset of thermal buoyancy convection in two-layer systems of immiscible fluids
has been explored in many theoretical and experimental works, see e.g. [1–4]. Most
of these studies have been performed in the framework of the Boussinesq approxima-
tion, neglecting interface deformations. In [5] it is shown that accounting for interface
deformations under the ordinary Boussinesq approximation can yield physically
incorrect results. If the relative density difference is of the same order of magnitude
as the density inhomogeneities caused by non-isothermality, then gravity is unable
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to retain the interface planar at finite Rayleigh numbers. In this case interface defor-
mations may be large and therefore should be properly accounted for. A generalized
Boussinesq approximation in the case where both the density inhomogeneities and
the Boussinesq parameter are small was independently formulated by Busse [6] and
Lyubimov [7].
In [6] the stability of the conductive state of a two-layer system of immiscible fluids

with a deformable interface and perfectly conductive external boundaries was studied
for fluids with close densities on the basis of the generalized Boussinesq approxima-
tion. The layer thicknesses and other parameters of fluids, except the densities, were
assumed to be the same. Monotonic and oscillatory instability modes with finite wave-
length were found. Later on, Lobov, Lyubimov and Lyubimova [7] found a solution to
this problem for fluids with different properties and discovered a monotonic long-wave
instability mode associated with the interface deformability (such mode does not exist
in a particular case considered in [6]). They noted that long-wave perturbations are
most dangerous in a wide range of parameters.
In the case of a single horizontal layer of fluid under prescribed heat fluxes at the

external boundaries, the conductive state instability occurs at heating from below
due to the development of monotonic long-wave perturbations [8]. The stability of
the conductive state of a two-layer system of horizontal layers of immiscible fluids
under prescribed heat fluxes at the external boundaries and non-deformable interface
was studied in [3]. The calculations showed the existence of the long-wave monotonic
instability when the ratio of the lower layer thickness to the total thickness of the
two-layer system is close to zero or unity, i.e. the system was close to a single layer
under given heat fluxes at the external boundaries. They also revealed the presence
of long-wave monotonic instability at the intermediate values of layer thickness ratio
close to 0.5.
Two long-wave instability modes (monotonic and oscillatory) were discovered in [9,

10] for the two-layer system of horizontal layers of immiscible fluids with a deformable
interface subjected to the prescribed heat fluxes at the external boundaries.
In the systems with free surfaces or fluid interfaces, thermocapillary forces

(for the transverse layer heating) may lead to the development of initial per-
turbations (Marangoni instability). When the layers are of small thicknesses, the
Marangoni convection has a significant influence on the stability of conductive
state.
In a series of papers [11,12], thermocapillary instability in model two-layer sys-

tems was studied, and the impact of various factors on this type of instability was
analysed. It was found that in the system of fluids with equal properties and a planar
interface the monotonic instability occurs only in the case of heating from the thick
layer, and the oscillatory instability takes place under cooling from this layer [11]. In
thermocapillary waves, the longitudinal motions dominate near the interface between
the layers. The temperature field keeps these oscillations at the expense of motion
phase differences in different layers. In [12] the conditions for monotonic and oscilla-
tory instabilities in a two-layer system with a deformable interface at zero thermal
Rayleigh number are determined. In the oscillatory convection regimes, two different
mechanisms were distinguished: capillary, when the kinetic energy of flow is converted
into the potential energy of the deformable interface (capillary waves), and thermo-
capillary, when during the motion the surface free energy varies due to a change in
its temperature (thermocapillary waves). Capillary and thermocapillary waves differ
significantly in the flow structure.
In [13] the Rayleigh – Benard – Marangoni convection in a two-layer system of

fluids with a deformable interface and perfectly conductive external boundaries was
investigated within conventional Boussinesq approximation. The results of theoretical
and experimental studies for the benzene-water system are provided. Within the
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framework of the linear stability theory, it was found that in the case of heating from
below the critical Marangoni number is smaller than in the case of heating from above.
The experiments showed that the critical Rayleigh number in the system heated from
below was in the range between the critical Rayleigh number predicted by the theory
in the absence and in the presence of thermocapillary convection; in the system heated
from above no instability was detected even for Marangoni numbers five times greater
than the critical value calculated based on the linear theory. Discrepancies between the
theoretical and experimental critical values of the Rayleigh number were attributed
to the interface contamination.

In [14] theoretical and experimental studies of the Rayleigh-Benard-Marangoni
instability in a two-layer system of fluids with a deformable interface were performed
for different layer thickness and perfectly conductive external boundaries. The long-
wave oscillatory instability was observed for fluids with close densities. Long-wave
oscillatory perturbations grow when the layer of greater thickness is heated.

The purpose of the present paper is to study the Marangoni effect on the onset
of the Rayleigh-Benard convection in a two-layer system of immiscible fluids with a
deformable interface under the prescribed heat flux at the external boundaries. The
study is performed in the framework of a generalized Boussinesq approximation using
the Busse-Lyubimov model [6,7].

2 Problem formulation and mathematical model

Consider a two-layer system of horizontal layers of immiscible fluids with a deformable
interface. The layers are bounded by rigid plates z = −h1, h2, at which a constant
heat flux is preset: ∂T1/∂z = const and ∂T2/∂z = const. The system of coordinates
is taken in such a way that the z-axis is directed vertically upward, and the x-y
plane coincides with the undisturbed interface. In virtue of the problem symmetry
in the x-y plane (problem isotropy), the two-dimensional problem in the x-z plane is
examined; the layers of equal thicknesses h1=h2=h are considered.

We investigate the fluids of close densities, which allows to correctly take into
account the deformations of the interface by solving the problem in terms of the Busse-
Lyubimov model. In accordance with this model, the density of each fluid depends
only on temperature; the density variations due to thermal expansion are assumed
to be small and satisfying the linear law ρj = ρ0j(1− βj(Tj − T0)), where βj are the
thermal expansion coefficients, ρ0j is the density of the j-th fluid at temperature T0,
taken as a reference point and equal to the conductive state value of the interface
temperature and

δ = 2
ρ02 − ρ01
ρ02 + ρ01

, |δ| � 1. (1)

Within the Busse-Lyubimov model, the conventional Galileo number Ga∗ = gh3
/
ν2∗

is assumed to be an asymptotically large parameter, and its product with every
small parameter – finite: Ra = β∗(Θ1 −Θ2)Ga∗ ν∗/2χ∗ is the Rayleigh number, and
Ga = δGa∗ ν∗/χ∗ is the modified Galileo number. Here, β∗, ν∗, χ∗ are the average
values of thermal expansion, kinematic viscosity and thermal diffusivity coefficients.
Thus, in this model, the densities of two fluids are assumed to be constant and equal
to the average value ρ∗ everywhere, except the terms describing gravity force in stress
balance condition at the interface. Positive modified Galileo numbers correspond to
the potentially unstable stratification of fluids (the lighter fluid is at the bottom),
and negative Ga the stable stratification.
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According to the Busse-Lyubimov model, the system of equations for thermal
buoyancy convection is written as

1

Pr

(
∂vj
∂t
+ (vj∇)vj

)
= −∇pj + νjΔvj +RaβjTjγ (2)

∂Tj

∂t
+ (vj∇)Tj = χjΔTj , divvj = 0. (3)

Here j = 1, 2, index 1 denotes the quantities pertaining to the lower fluid, and index 2
those pertaining to the upper fluid; γ is the unit vector directed vertically upward. The
equations are written in dimensionless form. For the scales of time, length, velocity,
temperature and pressure we use h2

/
χ∗, h, χ∗/h, A∗h, ρν∗χ∗

/
h2, respectively.

As the scales for viscosity, thermal conductivity, thermal expansion, thermal dif-
fusivity and conductive state temperature gradients, we take their arithmetic mean
values ν∗ = (ν1∗+ν2∗)/2, κ∗ = (κ1∗+κ2∗)/2, β∗ = (β1∗+β2∗)/2, χ∗ = (χ1∗+χ2∗)/2,
A∗ = (A1∗ +A2∗)/2. With this choice of scales, the following relations are fulfilled:

ν1 + ν2 = 2, κ1 + κ2 = 2, β1 + β2 = 2, χ1 + χ2 = 2, A1 +A2 = 2. (4)

On rigid external boundaries, the no-slip conditions and prescribed heat fluxes are
imposed:

z = ±1: vj = 0,
∂Tj

∂z
= const. (5)

The thermal conductivities of fluids are assumed to be constant, therefore the
condition of constancy of the heat fluxes means the condition of constancy of the
temperature gradients.
The kinematic condition and the conditions of continuity of velocity, temperature

and heat flux at the interface take the form:

z = ζ:
∂ζ

∂t
+ (v∇) ζ = vγ, [v] = 0, [T ] = 0 , [κ∇T ]n = 0, (6)

where [f ] is a jump of the quantity f across the interface, i.e. [f ] = (f1 − f2)z=ζ , n is
the vector of the normal to the interface directed from the first medium to the second
one; ζ = z(x, t) is the equation for the interface (ζ = 0 for the planar interface).
The continuity conditions for normal and tangential stresses at the interface,

written under the assumption that the surface tension is linearly dependent on the
temperature, have the form:

− [p] + [σnn] + Gaζ = (Ca +Ma T )K, [σnτ ] = Ma ∇T (7)

where K is the interface curvature.
The boundary-value problem (2)–(7) contains the following dimensionless para-

meters: Prandtl number Pr, Rayleigh number Ra, capillarity parameter Ca, modified
Galileo number Ga, Marangoni number Ma.

Pr = ν∗/χ∗, Ra = gβ∗A∗h4
/
(ν∗χ∗), Ca = α0h/(ν∗χ∗ρ0),

Ga = (ρ02 − ρ01)gh3
/
(η∗χ∗), Ma = (∂α/∂T )

(
h 2A∗

/
(χ∗ η∗)

)
.

(8)

Here, η∗ = ρ0ν∗ is the average value of dynamic viscosity, α0 is the value of surface
tension at temperature taken as the reference point. Note that, for the majority of
fluids, ∂α/∂T is negative, and therefore the positive values of the Marangoni number
correspond to heating from above, negative to heating from below.
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The problem (2)–(7) admits a stationary solution related to the quiescent fluids
with a planar horizontal interface v0j = 0, ζ0 = 0. Temperature distribution in the
layers corresponds to the heat-conductive regime:

T0j = −z Aj , p0j = −RaβjAj z2/2, A1 = κ2, A2 = κ1. (9)

3 Long-wave instability of conductive state

Let us investigate the linear stability of the conductive state of the system to small
normal perturbations of the form: exp(λt+ ikr).
To study stability to long-wave perturbations, all the fields and the increment λ

are expanded into a power series of the wavenumber:

λ = kλ1 + k
2λ2 + . . . , qj = q

(0)
j + kq

(1)
j + . . .

uj = ku
(1)
j + k

2u
(2)
j + . . . , wj = kw

(1)
j + k

2w
(2)
j + . . .

θj = θ
(0)
j + kθ

(1)
j + . . . , ζ = ζ

(0) + kζ(1) + . . .

(10)

Here we introduced the following notations for the amplitudes of the perturbations:
uj – for the projection of the velocity in the direction of the wave vector, wj – for the
vertical velocity component, θj – for temperature, qj – for the pressure.
Calculations showed that λ1 vanishes identically, and for λ2 a quadratic equation

is obtained
λ22 +Bλ2 + C = 0

whose coefficients are the cumbersome functions of the parameters (their explicit form
is not given here).
The problem under consideration contains a large number of dimensionless pa-

rameters, so the calculations were performed for a specified pair of fluids – formic
acid – transformer oil; the study of the stability of such a system in the absence of
Marangoni convection was carried out in [3,7,9,10].

3.1 Heating from below

Figure 1 presents the boundaries of conductive state instability to the long-wave
monotonic and oscillatory perturbations in the parameter plane modified Galileo
number – Rayleigh number in the case of heating from below.
In this and all subsequent figures the solid lines indicate the boundaries of insta-

bility to monotonic perturbations, and the dashed lines to oscillatory perturbations.
When the thermocapillary effect is absent [9] (Ma = 0, the black lines in Fig. 1), two
branches of the monotonic instability of hyperbolic type 1 and 2 occur. The branch
1 corresponds to the case when the heavier fluid is at the bottom (negative modifed
Galileo numbers). In this case the perturbations have two-floor structure (Fig. 2c)
and the interface is nearly non-deformed. To the right of the branch 2, the Rayleigh-
Taylor instability develops which correspond to the critical perturbations having the
single-floor structure (Fig. 2a).
Between the branches of monotonic instability there is an oscillatory instability

boundary in the form of a straight line. The structure of critical perturbations as-
sociated with the threshold of oscillatory instability continuously changes with the
modifed Galileo number from the two-floor structure at negative Ga large enough
in the modulus to the through flow (single-floor perturbations which cover the total
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Fig. 1. Boundaries of long-wave instability for the system heated from below; black lines –
Ma = 0, grey lines – Ma = −50; solid lines – monotonic instability, dashed lines – oscillatory
instability.

layer thickness) at Ga close to zero (Fig. 2b). For weak thermocapillary effect (grey
lines in Fig. 1) the long-wave instability boundaries are qualitatively similar to those
at Ma = 0. At negative Galileo numbers large in the modulus (Ga < −219.22), weak
thermocapillary forces make stabilizing effect on the two-floor long-wave monotonic
perturbations and at Ga > −219.22 destabilizing effect. The effect of weak thermo-
capillary forces on oscillatory long-wave perturbations is stabilizing and, as one can
see from Fig. 1, this results in the extension of the stability domain. Moreover at
some parameter values, the configuration, where the fluid of higher density is located
above, may become stable. However, whether these long-wave perturbations are most
dangerous and whether the suppression of the Rayleigh-Taylor instability is possible
should be revealed in the analysis of the stability to the perturbations with finite
wavelengh.

Figure 3 describes the evolution of the instability boundaries with the increase
of thermocapilary effect. The instability boundaries are depicted in the parameter
plane modified Galileo number – Rayleigh number. As one can see, at the neg-
ative Marangoni numbers smaller in the modulus than 187.1 (grey thick lines in
Fig. 3a, Fig. 3d, Ma = −170) the location of the long-wave instability boundaries
remains qualitatively the same as in the absence of the thermocapillary effect. At
Ma ≈ −187.1 the qualitative rearrangement takes place: recoupling of the branches
of monotonic long-wave instability boundaries. As the result the system turns out to
be unstable for any parameter values (Fig. 3c, Fig. 3d). In our opinion this rearrange-
ment is related to the exchange of contributions of two governing mechanisms: at
Ma > −187.1 the gravity effect dominates and at Ma < −187.1 the thermocapil-
lary effect. Similar arrangement takes place for coupled magneto-sound waves (see,
for example, [15]).
Despite the qualitative difference, the monotonic instability branches correspond-

ing to different values of the Marangoni number have two common points. One point
(Ga, Ra) = (127.90, 160.62) lies in the instability area and presents thus no interest.
The second common point (Ga, Ra) = (−219.22, 252.32) corresponds to the bound-
ary between the areas of stabilization and destabilization of conductive state with
respect to monotonic long-wave perturbations discussed above.
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Fig. 2. Velocity profiles and flow patterns of neutral monotonic perturbations for two in-
stability modes at Ma = 0, (a) Ga = −0.1, (b) Ga = −100, (c) Ga = −370. Velocity profiles
are plotted for the cross-sections passing through the centers of the vortices.

3.2 Heating from above

At nonzero Marangoni numbers, the instability of the system heated from above may
take place when the lighter fluid is located above the heavier one, which is not observed
at Ma = 0 (Fig. 4, grey and thin black lines). The instability has a monotonic type. As
Ma increases, the boundary of the instability domain shifts to the left, i.e. instability
domain is extended.

4 Instability with respect to perturbations with finite wave numbers

Investigation of the stability of the conductive state to perturbations with finite wave
numbers (cellular perturbations) has been carried out numerically using a differential
sweep method and a shooting method [16]. Calculation results were used to cre-
ate full stability maps for different values of the Marangoni number. The stability
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Fig. 3. Boundaries of long-wave instability in the system heated from below: thin black
lines (a, b, c) – Ma = 0, dark grey lines (a, d) – Ma = −170, bold black lines (b, d) –
Ma = −187.1, light grey lines (c, d) – Ma = −200.

Fig. 4. Boundaries of monotonic long-wave instability for the system heated from above;
bold black line – Ma = 0, grey line – Ma = 50, thin black line – Ma = 200.
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Fig. 5. Stability maps: (a) Ma = −100, (b) Ma = −200. Black lines correspond to the
boundaries of long-wave instability, and grey lines denote cellular instability. Solid lines
indicate instability boundaries with respect to monotonic perturbations, and dashed lines
show instability boundaries with respect to oscillatory perturbations.

maps presented below show the boundaries of instability to monotonic perturbations
(solid lines) and oscillatory perturbations (dashed lines). Grey lines correspond to
the boundaries of cellular instability and black ones to the boundaries of longwave
instability.

4.1 Heating from below

Instability boundaries with respect to finite-wavenumber perturbations for the system
heated from below are shown in Fig. 5 by the grey lines. The results are presented
for the two values of the Marangoni number, Ma = −100 (a) and Ma = −200 (b). As
one can see, any values of the parameters, the perturbations with a finite wave length
are most dangerous. In the case when the denser fluid is above the less dense one,
the Rayleigh-Taylor instability is observed, and convection develops monotonically in
the form of rolls of finite length. However, it is worth noting that this result holds
valid only for the examined system, where the layer thickness is large enough. For
thin films in a well-known work by Burgess et al. [17], the long-wave modes are found
to be more dangerous.
With the increase of thermocapillary effect the oscillatory cellular perturbations

become less dangerous than monotonous ones. In the case of a non-deformable in-
terface, at negative Marangoni numbers large in modulus, the instability threshold
decreases with increasing Marangoni number modulus.
Thus, in the case of heating from below, finite-wavelength perturbations are most

dangerous. Convection can develop both monotonically for nearly non-deformable
interface and oscillatory when the deformations of the interface are essential.

4.2 Heating from above

For heating from above, the evolution of the instability boundaries with the increase of
the Marangoni number is shown in Fig. 6. The grey lines correspond to the instability



258 The European Physical Journal Special Topics

Fig. 6. Stability map: (a) Ma = 100, (b) Ma = 200. Black lines correspond to the boundaries
of long-wave monotonic instability, and grey lines denote cellular monotonic instability.

Table 1. The wave numbers of most dangerous perturbations for different domains of in-
stability boundaries.

Ga k Ma

−200 1.87 0
1.89 −100
1.91 −200

−300 1.73 0
1.85 −100
1.93 −200

boundaries with respect to cellular perturbations, the instability domains are located
above the curves. As one can see comparing Fig. 6a and Fig. 6b, the thermocapillary
effect leads to the expansion of the parameter domain, where the most dangerous per-
turbations are those with a finite wavenumber. Oscillatory perturbations are absent
and only monotonic perturbations may occur.
Table 1 presents the numerical data on the wave number of most dangerous pertur-

bations for different domains of instability boundaries. As one can see, the wavelength
of most dangerous perturbations is of the order of layer thickness; it slightly decreases
with the thermocapillary effect growth.

5 Discussion

We have investigated the system of two horizontal layers of immiscible fluids bounded
by two rigid plates. The layers are infinite in the horizontal directions. The fluid inter-
face is deformable. The interaction of two mechanisms responsible for the excitation
of convection: due to density changes with temperature (Rayleigh-Benard convection)
and surface tension with temperature (Marangoni convection) are considered in the
framework of the generalized Boussinesq approximation (Busse-Lyubimov model).
The stability of the conductive state to long-wave perturbations was studied analyt-
ically using a series expansion with respect to the perturbation wave number. The
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stability maps in the parameter plane Rayleigh number – modified Galileo number
at different Marangoni numbers are obtained. It is shown that, as in the absence of
the Marangoni effect, the boundary of monotonic instability consists of two branches
of a hyperbolic type. As the thermocapillary effect increases, the instability domain
is expanded. With respect to oscillatory perturbations, the stabilization of conduc-
tive state with increasing Marangoni number is observed: the oscillatory instability
boundary shifts to the positive Rayleigh numbers and at strong enough thermocapil-
lary effect the oscillatory instability mode degenerates; the conductive state becomes
unstable only with respect to monotonic perturbations.

The work was supported by Russian Scientific Foundation (grant No. 14-01-00090).
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